JPS6137113B2 - - Google Patents

Info

Publication number
JPS6137113B2
JPS6137113B2 JP56210603A JP21060381A JPS6137113B2 JP S6137113 B2 JPS6137113 B2 JP S6137113B2 JP 56210603 A JP56210603 A JP 56210603A JP 21060381 A JP21060381 A JP 21060381A JP S6137113 B2 JPS6137113 B2 JP S6137113B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
temperature
thermoplastic resin
molded product
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56210603A
Other languages
Japanese (ja)
Other versions
JPS58112730A (en
Inventor
Yoshio Kato
Senichi Yamada
Tomohisa Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP56210603A priority Critical patent/JPS58112730A/en
Publication of JPS58112730A publication Critical patent/JPS58112730A/en
Publication of JPS6137113B2 publication Critical patent/JPS6137113B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、非晶質合金のリボンまたは薄板を熱
可塑性樹脂膜の間に挾んで成形融着せしめたラミ
ネート成形品の製造方法に関するものである。 非晶質合金とは、例えば、クロム、コバルト、
ニツケル等の一種またはそれ以上を基本成分と
し、これにリン、炭素、珪素、モリブデン、硼素
等の一種またはそれ以上を補助成分として添加し
た非晶質の合金である。この合金は非晶質である
ことから、一般の金属材料で得られない特徴的な
電気的、磁気的、化学的および機械的性質を有す
る。例えば、非晶質合金は磁気シールド効果が非
常に大きい。しかしながら、非晶質合金は冷却速
度の問題から、現在厚さ約100μm以下の薄板の
ものしか得られず、そのままでは剛性に乏しい塑
性変形もしにくいという問題がある。 本発明は上記の問題を解決し、非晶質合金を容
易に種々の成形品に加工する方法を提供するもの
である。 すなわち、本発明の方法は、所定寸法の非晶質
合金の薄板と熱可塑性樹脂膜とを積層し、この積
層体に対して上記樹脂の軟化温度以上、融点以下
の温度での成形工程(以下、単に成形工程とい
う)および上記樹脂の融点以上の温度でかつ上記
非晶質合金の結晶化温度以下の温度において0.1
ないし5Kg/cm2の加圧下に保持して融着させる工
程(以下、単に融着工程という)をこの順序を変
えて施すことよりなる。これによつて、非晶質合
金の好ましい特性を有する軽量で高剛性のラミネ
ート成形品が得られる。 上記成形工程と融着工程の順序は任意でよい
か、非晶質合金の薄板と樹脂膜とが融着していな
くても成形を実施しうる場合は、成形工程を先に
するとよい。しかしながら、非晶質合金の薄板と
樹脂膜とを多層に重ねてから成形するときは、そ
のまま成形すると層にすれが生じて成形品の品質
を損う恐れがある。また、やや複雑な形状の成形
品を製造するときにも同様の恐れがある。このよ
うな場合に、融着工程を先に行ない、先ず単純な
予備成形品、例えば板状成形品あるいは簡単な中
間成形品を製造し、その後に成形工程を実施して
所望形状の成形品を得るが、その後必要に応じて
再度融着工程を加えれば、より広範な形状の成形
品が得られる。 本発明の方法で非晶質合金の薄板と積層する熱
可塑性樹脂膜は、多くの種類のものが使用でき
る。その理由は、溶湯急冷法で製造した非晶質合
金の表面は、自由凝固面およびロール冷却面とも
に細かい凹凸を有するので、濡れ性の優れた樹脂
を用いることによつてアンカー効果が得られ、合
金薄板と樹脂膜とは強固に密着しうるためであ
る。しかしながら、好ましくは熱可塑性樹脂とし
て無機質材料に融着しうるものを使用する。ただ
し、非晶質合金は高温で徐々に結晶化し、その好
ましい特性を失う傾向があり、また結晶化温度よ
りもかなり低い温度でも脆化することがある。し
たがつて、使用する樹脂の融点は200℃以下であ
ることが好ましい。そのような樹脂の例として、
例えばエチレン―酢酸ビニルコポリマー(商標名
Modic―E1OOH:三菱油化株式会社製あるいは
商標名Bond Fast E:小西株式会社製)、および
共重合ナイロン等があげられる。 これらの樹脂は一般に厚さ4〜250μmの膜状
にして使用するが、溶剤または分散剤に溶解また
は分散して非晶質合金薄板にに塗布してもよい。 本発明で使用する非晶質合金としては、例えば
次のものがあげられる。:Fe40Ni40P14B6
Fe80P13C7、Fe76Si10B14、Fe62.4Ni15.6Si10B12
Fe78Si10B12、Fe81B13.5Si3.5C2、Fe6Co74B20およ
びFe5Co70Si15B10。 非晶質合金の薄板と熱可塑性樹脂膜との積層
は、該合金薄板と樹脂膜とを予め所定の寸法にし
て目的の厚さになるまで交互に積重ねることによ
り行なうが、積層したものの上下両面は一般に樹
脂膜で形成する。ただし、必要により上下両面の
一方もしくは両方を合金薄板としても差つかえな
い。こうして得た積層体何組かをさらに積層して
もよく、このとき後記実施例1に示すように、目
的成形品の形状に応じて各組の積層体を互に方向
をずらして積層してもよい。 巾の狭い非晶質合金リボンを用いて、寸法の大
きい成形品を製造するに、後記実施例2に示すよ
うに樹脂膜の間に合金リボンを複数本巾方向に並
列させて積層する。このとき、樹脂膜を介して上
下方向に重なり合う積層合金薄板のリボンの長手
方向を互にほぼ直交させるようにすれば、得られ
た成形品に特に良好な磁気シールド効果を付与す
ることができる。 こうして積層した積層体を成形するには、例え
ば該積層体を曲げ加工によつて型へ挿入したり型
へ押しつけたりして行なう。このとき、成形温度
は樹脂の軟化点例えば約50℃以上、融点以下でな
ければならない。この温度範囲で樹脂は外力によ
り容易に変形し、また非晶質合金も曲げ変形し、
積層体を所望形状に成形できる。 積層体の融着は、樹脂の融点(一般に100〜240
℃))以上の温度でかつ非晶質合金の結晶化温度
(一般に350〜500℃)以下の温度において0.1ない
し5Kg/cm2の加圧下に1ないし10分間保持するこ
とにより行なう。加圧を行なうのは非晶質合金と
濡れ性を良くするためである。この融着を非晶質
合金の結晶化温度以下で行なうことは特に重要で
ある。さもないと非晶質合金が結晶化して脱化
し、所望の高剛性の成形品を得ることができな
い。したがつて、融着は通常100〜240℃で行な
う。融着後の積層体は加圧状態のまま冷却し、樹
脂が固化してから常圧にもどして成形品または予
備成形品を得る。 本発明の方法で得られる非晶質合金と熱可塑性
樹脂とからなるラミネート成形品は、従来の金属
材料からなる成形品に比べ軽量かつ剛性に優れて
いる。この優れた性質を次に試験例で詳しく説明
する。 試験例 1 溶湯急冷法で製造したFe40Ni40P14B6の組成を
有する厚さ25μm、巾10mmの非晶質合金リボン2
と厚さ25μmの市販の熱可塑性樹脂のエチレン―
酢酸ビニルコポリマー(Modic―E100H)のシー
ト1とを第1図に示すように交互に10層に積重
ね、この積層体を樹脂の融点以上かつ非晶質合金
の結晶化温度より低い100〜240℃に加熱した金型
中で1Kg/cm2の加圧下に3分間保持したのち、金
型温度を加圧状態のままで40℃まで冷却し、常圧
に戻して厚さ1.7mmの積層板を得た。 この積層板から巾10mm、長さ200mmの試験片を
切出し、曲げ弾性率(ヤング率)を測定して次
式: 曲げ剛性=1/12×E×b×t3 〔式中、Eはヤング率(Kg/mm2) bは板巾(mm) tは板厚(mm) を表わす。〕 で表わされる一般的計算法で曲げ剛性を求めたと
ころ、表1に示すように8200Kg×mm2の値が得られ
た。本試験例の積層板は、これと同等の曲げ剛性
を有する厚さ約0.8mmの鋼板に比べて重量が約半
分に軽量化された。
The present invention relates to a method for manufacturing a laminate molded product in which a ribbon or thin plate of an amorphous alloy is sandwiched between thermoplastic resin films and then molded and fused. Amorphous alloys include, for example, chromium, cobalt,
It is an amorphous alloy in which one or more of nickel, etc. is the basic component, and one or more of phosphorus, carbon, silicon, molybdenum, boron, etc. is added as an auxiliary component. Since this alloy is amorphous, it has characteristic electrical, magnetic, chemical, and mechanical properties that cannot be obtained from ordinary metal materials. For example, amorphous alloys have a very large magnetic shielding effect. However, due to problems with the cooling rate, amorphous alloys are currently only available in thin plates with a thickness of about 100 μm or less, and there is a problem that they lack rigidity and are difficult to deform plastically. The present invention solves the above problems and provides a method for easily processing amorphous alloys into various molded products. That is, the method of the present invention involves laminating thin plates of amorphous alloy with predetermined dimensions and a thermoplastic resin film, and subjecting this laminate to a molding process (hereinafter referred to as , simply referred to as the molding step) and at a temperature above the melting point of the resin and below the crystallization temperature of the amorphous alloy.
This consists of carrying out a step of holding and fusing under a pressure of 5 to 5 kg/cm 2 (hereinafter simply referred to as a fusing step) by changing this order. This results in a lightweight and highly rigid laminate molded article having the favorable properties of an amorphous alloy. The above-mentioned molding step and fusion step may be performed in any order, or if molding can be carried out even if the amorphous alloy thin plate and resin film are not fused, the molding step may be performed first. However, when amorphous alloy thin plates and resin films are laminated in multiple layers and then molded, if they are molded as is, there is a risk that the layers will rub and the quality of the molded product will be impaired. Further, there is a similar possibility when manufacturing a molded product having a somewhat complicated shape. In such cases, the fusion process is performed first to produce a simple preform, such as a plate-shaped molded product or a simple intermediate molded product, and then the molding process is performed to produce the molded product in the desired shape. However, if a fusing step is then added again as necessary, molded products of a wider range of shapes can be obtained. Many types of thermoplastic resin films can be used to laminate the amorphous alloy thin plate in the method of the present invention. The reason for this is that the surface of an amorphous alloy manufactured by the molten metal quenching method has fine irregularities on both the free solidification surface and the roll cooling surface, so by using a resin with excellent wettability, an anchor effect can be obtained. This is because the thin alloy plate and the resin film can be tightly adhered to each other. However, it is preferable to use thermoplastic resins that can be fused to inorganic materials. However, amorphous alloys tend to gradually crystallize and lose their favorable properties at high temperatures, and may also become brittle at temperatures well below the crystallization temperature. Therefore, the melting point of the resin used is preferably 200°C or lower. Examples of such resins include:
For example, ethylene-vinyl acetate copolymer (trade name
Examples include Modic-E1OOH (manufactured by Mitsubishi Yuka Co., Ltd. or trade name Bond Fast E (trade name: manufactured by Konishi Co., Ltd.)), and copolymerized nylon. These resins are generally used in the form of a film with a thickness of 4 to 250 μm, but they may also be dissolved or dispersed in a solvent or dispersant and applied to an amorphous alloy thin plate. Examples of the amorphous alloy used in the present invention include the following. : Fe 40 Ni 40 P 14 B 6 ,
Fe 80 P 13 C 7 , Fe 76 Si 10 B 14 , Fe 62 .4 Ni 15 .6 Si 10 B 12 ,
Fe78Si10B12 , Fe81B13.5Si3.5C2 , Fe6Co74B20 and Fe5Co70Si15B10 . _ _ _ _ _ _ _ _ Lamination of the amorphous alloy thin plate and the thermoplastic resin film is carried out by making the alloy thin plate and the resin film to predetermined dimensions and stacking them alternately until the desired thickness is achieved. Both surfaces are generally formed of resin films. However, if necessary, one or both of the upper and lower surfaces may be made of thin alloy plates. Several sets of the laminates obtained in this way may be further laminated, and in this case, as shown in Example 1 below, each set of laminates is stacked with their directions shifted from each other depending on the shape of the desired molded product. Good too. To manufacture a large-sized molded product using a narrow amorphous alloy ribbon, a plurality of alloy ribbons are stacked in parallel in the width direction between resin films, as shown in Example 2 below. At this time, if the longitudinal directions of the ribbons of the laminated alloy thin plates that overlap in the vertical direction with the resin film interposed are made to be substantially perpendicular to each other, a particularly good magnetic shielding effect can be imparted to the obtained molded product. The laminate thus laminated is molded by, for example, inserting or pressing the laminate into a mold by bending. At this time, the molding temperature must be higher than the softening point of the resin, such as about 50° C., and lower than the melting point. In this temperature range, resin easily deforms due to external force, and amorphous alloys also bend and deform.
The laminate can be molded into a desired shape. The melting point of the resin (generally 100 to 240
C)) and below the crystallization temperature of the amorphous alloy (generally 350 to 500 DEG C.) and held under a pressure of 0.1 to 5 kg/ cm2 for 1 to 10 minutes. The reason for applying pressure is to improve wettability with the amorphous alloy. It is particularly important that this fusion be performed at a temperature below the crystallization temperature of the amorphous alloy. Otherwise, the amorphous alloy will crystallize and deoxidize, making it impossible to obtain a molded product with the desired high rigidity. Therefore, fusion bonding is usually carried out at 100-240°C. The fused laminate is cooled under pressure, and after the resin has solidified, the pressure is returned to normal to obtain a molded or preformed product. A laminate molded product made of an amorphous alloy and a thermoplastic resin obtained by the method of the present invention is lighter and more rigid than a molded product made of conventional metal materials. This excellent property will be explained in detail in the following test examples. Test Example 1 Amorphous alloy ribbon 2 with a thickness of 25 μm and a width of 10 mm having a composition of Fe 40 Ni 40 P 14 B 6 manufactured by a molten metal quenching method.
and commercially available thermoplastic ethylene with a thickness of 25 μm.
Sheets 1 of vinyl acetate copolymer (Modic-E100H) are alternately stacked in 10 layers as shown in Figure 1, and the laminate is heated at 100 to 240°C above the melting point of the resin and below the crystallization temperature of the amorphous alloy. After holding the mold under a pressure of 1 kg/cm 2 for 3 minutes in a heated mold, the mold temperature was cooled to 40°C while the pressure remained, and the pressure was returned to normal to form a 1.7 mm thick laminate. Obtained. A test piece with a width of 10 mm and a length of 200 mm was cut out from this laminate, and its bending elastic modulus (Young's modulus) was measured using the following formula: Bending rigidity = 1/12 x E x b x t 3 [In the formula, E is Young's modulus] Ratio (Kg/mm 2 ) b is the board width (mm) t is the board thickness (mm). ] When the bending rigidity was determined using the general calculation method shown in Table 1, a value of 8200 Kg×mm 2 was obtained. The weight of the laminate in this test example was reduced to about half that of a steel plate with a thickness of about 0.8 mm and having the same bending rigidity.

【表】 また上記の金型温度と、樹脂と非晶質合金リボ
ンの接着面の剪断引張り強さとの関係を調べたと
ころ、100〜240℃の金型温度範囲で30〜60Kg/cm2
以上の良好な剪断引張り強さが得られた。 さらに、熱可塑性樹脂シートの厚さを変えて接
着面の剪断引張り強さとの関係を調べたところ、
シートの厚さ4〜250μmの範囲で30〜60Kg/cm2
以上の良好な剪断引張り強さが得られた。 試験例 2 溶湯急冷法で製造したFe40Ni38Mo4B18の組成を
有する厚さ25μm、巾10mmの非晶質合金リボン
と、厚さ80μm、寸法1550×150mmの市販フイル
ム状熱可塑性樹脂エチレン―酢酸ビニルコポリマ
ー(Modic―E100H)のシーートを用いた。これ
らのリボン2とシート1を第2図に示すように交
互に10層積重ねた。このとき、非晶質合金リボン
2は各々150mmの長さのものを15本並べて、樹脂
シート1の間に挾むようにして積層した。この積
層体を140℃に加熱した金型にセツトして3Kg/
cm2で3分間加圧したのち、加圧状態のままで金型
を40℃まで冷却し、常圧に戻して積層体を得た。 このようにして得られた厚さ1.7mmの積層板か
ら、巾10mm、長さ200mmの試験片を切り出して曲
げ剛性を測定した。その結果約9000Kg/mm2の曲げ
剛性値が得られた。これと同等の曲げ剛性を有す
る厚さ約0.8mmの鋼板と比較して、本試験例の積
層板は重量が約半分に軽量化された。 次に本発明の成形品の製造方法を実施例に基づ
いて詳しく説明する。 実施例 1 溶湯急冷法で製造したたFe76Si10B14の組成を
有する厚さ25μm、巾50mmの非晶質合金薄帯と、
厚さ80μm、寸法50×100mmの市販のフイルム状
熱可塑性樹脂のエチレン―酢酸ビニルコポリマー
(Modic―E100H)のシートを用いた。第3図A
に示すとおり、この薄帯2を2枚の樹脂シートの
間に挾んだ積層体3を2組作成し、これらの積層
体3,3を十字形に交差させて重ねたのち、60℃
の温度で曲げ加工して第3図B,Cに示すように
金型4に挿入し、140℃で1Kg/cm2の加圧下に3
分間保持した。この成形品を加圧状態のまま40℃
まで冷却して第3図Dに示す箱型ケース5を得
た。 このようにして作成した箱型ケース5の箱と蓋
を作り、はわ合せて磁気シールドボツクスとして
使用したところ、優れた磁気シールド効果を有し
ていた。 実施例 2 (1) 溶湯急冷法で製造したFe76Bi10B14の非晶質
合金リボンと厚さ80μm、寸法150×150mmの市
販フイルム状熱可塑性樹脂エチレン酢酸ビニル
コポリマー(Modic―E100H)のシートを用い
た。第4図に示すとおり、非晶質合金リン2は
各々長さ150mmとしたものを横に並べて3枚の
樹脂シートの間に積層した積層体3を2組作成
し、さらにこの積層体3,3を合金リボンの長
手方向が互に直交するように重ね合せた。 この積層体を140℃に加熱した金型にセツト
し、3Kg/cm2で3分間加圧したのち、加圧状態
のまま金型を40℃まで冷却してから常圧に戻し
て積層板を得た。 このようにして得られた厚さ0.5mm、寸法150
×150mmの積層板を70℃に加熱した直径40mmの
鋼製ロールのロール面に締めつけて円筒形に成
形したのち、重ね代5mmの部分を140℃に加熱
したことでここで1Kg/cm2に加圧しながら3分
間保持した。その後40℃まで冷却して直径40
mm、長さ150mmの円筒状成形品を得た。 (2) 上記(1)で製造した、非晶質合金の厚さが合計
50μmの円筒状成形品を使用し、その磁気シー
ルド効果を測定した。測定はASTMの試験法
にに準じて、ヘルムホルツコイル内に上記円筒
を置き、該円筒内側での磁場Hとヘルムホルツ
コイルから発生させた磁場Hoを測定し、磁気
シールド係数S=Ho/Hを求めることにより
行なつた。この測定は直流磁場と交流磁場(60
Hz)の両者について行なつたところ、いずれの
場合も本実施例の円筒状成形品は50以上の高い
磁気シールド係数を示した。 一般に磁気シールド材の効果は、そのシール
ド材を構成する金属板の厚さが大きいほど良好
であるが、金属板の厚さが等しい場合には、よ
り薄い金属板を何枚か重ねて用い、そしてそれ
らの重なりの間隔を大きくしたが磁気シールド
効果が高まるとともにシールド材の剛性も大き
くなる。このような事実に照して、本発明の方
法で製造した成形品は非晶質合金自体が優れた
磁気シールド効果を有するばかりでなく、非晶
質合金薄板と樹脂膜の組合せが磁気シールド効
果を高めるための上記要件を完全に満すもので
ある。さらに上記実施例2のように、各非晶質
合金薄板層を形成する合金リボンの長手方向を
変化させて、各方向の磁力線を遮蔽すれば、成
形品の磁気シールド効果を一層高めることがで
きる。したがつて、本発明の方法で製造した成
形品は、従来の非晶質合金で織つた磁気シール
ド材成形品に比べて数倍のシールド効果を有
し、しかもはるかに高剛性であつた。 さらに本発明の方法で製造した成形品は、非
晶質合金および熱可塑性樹脂の他に、電磁シー
ルド効果を有する低抵抗性の金属材料も組合せ
て使用すれば、磁気シールド効果と電磁シーー
ルド効果とを兼備した成形品とすることができ
る。 以上説明したとおり、本発明は非晶質合金の特
性を生かした成形品を得るための容易な方法を提
供したもので、この方法で得られる成形品は磁気
シールド用部品その他の種々の分野に応用しうる
優れた成形品である。
[Table] We also investigated the relationship between the above mold temperature and the shear tensile strength of the adhesive surface between the resin and the amorphous alloy ribbon, and found that it was 30 to 60 kg/cm 2 in the mold temperature range of 100 to 240°C.
The above-mentioned good shear tensile strength was obtained. Furthermore, we investigated the relationship between the thickness of the thermoplastic resin sheet and the shear tensile strength of the adhesive surface.
30-60Kg/ cm2 for sheet thickness 4-250μm
The above-mentioned good shear tensile strength was obtained. Test Example 2 An amorphous alloy ribbon with a thickness of 25 μm and a width of 10 mm having a composition of Fe 40 Ni 38 Mo 4 B 18 manufactured by a molten metal quenching method and a commercially available thermoplastic film film with a thickness of 80 μm and dimensions of 1550 x 150 mm. A sheet of ethylene-vinyl acetate copolymer (Modic-E100H) was used. These ribbons 2 and sheets 1 were alternately stacked in 10 layers as shown in FIG. At this time, 15 amorphous alloy ribbons 2 each having a length of 150 mm were lined up and stacked so as to be sandwiched between the resin sheets 1. This laminate was set in a mold heated to 140℃ and weighed 3Kg/
After pressurizing at cm 2 for 3 minutes, the mold was cooled to 40° C. while still being pressurized, and returned to normal pressure to obtain a laminate. A test piece with a width of 10 mm and a length of 200 mm was cut out from the 1.7 mm thick laminate thus obtained, and its bending rigidity was measured. As a result, a bending stiffness value of approximately 9000 Kg/mm 2 was obtained. Compared to a steel plate with a thickness of about 0.8 mm that has the same bending rigidity, the weight of the laminate in this test example was reduced to about half. Next, the method for manufacturing a molded article of the present invention will be explained in detail based on Examples. Example 1 An amorphous alloy ribbon with a thickness of 25 μm and a width of 50 mm having a composition of Fe 76 Si 10 B 14 manufactured by a molten metal quenching method,
A sheet of commercially available film-like thermoplastic resin ethylene-vinyl acetate copolymer (Modic-E100H) with a thickness of 80 μm and dimensions of 50×100 mm was used. Figure 3A
As shown in the figure, two sets of laminates 3 were prepared by sandwiching the thin ribbon 2 between two resin sheets, and after stacking these laminates 3 and 3 in a criss-cross pattern, they were heated at 60°C.
It is bent at a temperature of
Hold for minutes. This molded product was heated to 40°C while it was still under pressure.
The box-shaped case 5 shown in FIG. When the box and lid of the box-shaped case 5 thus produced were made and used as a magnetic shielding box, it had an excellent magnetic shielding effect. Example 2 (1) An amorphous alloy ribbon of Fe 76 Bi 10 B 14 produced by a molten metal quenching method and a commercially available film-like thermoplastic resin ethylene vinyl acetate copolymer (Modic-E100H) with a thickness of 80 μm and dimensions of 150 x 150 mm were used. A sheet was used. As shown in FIG. 4, two sets of laminates 3 were prepared by arranging amorphous alloy phosphors 2 each having a length of 150 mm and laminating them between three resin sheets. 3 were stacked so that the longitudinal directions of the alloy ribbons were perpendicular to each other. This laminate was set in a mold heated to 140°C, and pressurized at 3 kg/cm 2 for 3 minutes.The mold was then cooled to 40°C while still under pressure, and then returned to normal pressure to remove the laminate. Obtained. Thickness 0.5 mm, dimensions 150 thus obtained
A 150mm x 150mm laminate was pressed onto the roll surface of a 40mm diameter steel roll heated to 70°C to form a cylindrical shape, and then the 5mm overlap portion was heated to 140°C to yield 1Kg/ cm2 . The pressure was maintained for 3 minutes. After that, it is cooled to 40℃ and the diameter is 40℃.
A cylindrical molded product with a length of 150 mm and a length of 150 mm was obtained. (2) The total thickness of the amorphous alloy manufactured in (1) above
A 50 μm cylindrical molded product was used to measure its magnetic shielding effect. The measurement follows the ASTM test method, placing the above cylinder inside a Helmholtz coil, measuring the magnetic field H inside the cylinder and the magnetic field Ho generated from the Helmholtz coil, and calculating the magnetic shielding coefficient S = Ho / H. This was done by doing this. This measurement is performed in a DC magnetic field and an AC magnetic field (60
Hz), the cylindrical molded product of this example showed a high magnetic shielding coefficient of 50 or more in both cases. Generally, the effectiveness of a magnetic shielding material is better as the thickness of the metal plates that make up the shielding material increases, but if the thickness of the metal plates is the same, several thinner metal plates are stacked and used. Although the interval between these overlaps is increased, the magnetic shielding effect increases and the rigidity of the shielding material also increases. In light of these facts, in the molded product manufactured by the method of the present invention, not only the amorphous alloy itself has an excellent magnetic shielding effect, but also the combination of the amorphous alloy thin plate and the resin film has an excellent magnetic shielding effect. This fully satisfies the above requirements for increasing the Furthermore, as in Example 2 above, by changing the longitudinal direction of the alloy ribbon forming each amorphous alloy thin plate layer and shielding magnetic lines of force in each direction, the magnetic shielding effect of the molded product can be further enhanced. . Therefore, the molded product manufactured by the method of the present invention had several times the shielding effect and much higher rigidity than the conventional magnetic shield material molded product woven from an amorphous alloy. Furthermore, the molded product manufactured by the method of the present invention can have a magnetic shielding effect and an electromagnetic shielding effect if a low-resistance metal material that has an electromagnetic shielding effect is used in combination with the amorphous alloy and thermoplastic resin. It can be made into a molded product that has both. As explained above, the present invention provides an easy method for obtaining molded products that take advantage of the characteristics of amorphous alloys, and the molded products obtained by this method can be used in various fields such as magnetic shielding parts. It is an excellent molded product that can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験例1の積層板の積層状態を示す
図、第2図は試験例2の積層板の積層状態を示す
図、第3図A,B,Cは実施例1の成形品の成形
工程の説明図、第3図Dは実施例1の成形品の斜
視図、第4図は実施例2の成形品の製造に用いた
積層板の積層状態を示す図である。 1…熱可塑性樹脂膜、2…非晶質合金薄板、3
…一組の積層板、4…金型、5…成形品。
Fig. 1 is a diagram showing the laminated state of the laminate of Test Example 1, Fig. 2 is a diagram showing the laminated state of the laminate of Test Example 2, and Fig. 3 A, B, and C are of the molded product of Example 1. An explanatory view of the molding process, FIG. 3D is a perspective view of the molded product of Example 1, and FIG. 4 is a diagram showing the laminated state of the laminated plates used for manufacturing the molded product of Example 2. 1... Thermoplastic resin film, 2... Amorphous alloy thin plate, 3
...a set of laminates, 4...mold, 5...molded product.

Claims (1)

【特許請求の範囲】 1 所定寸法の非晶質合金の薄板と熱可塑性樹脂
膜とを少なくとも一層以上積層し、得られた積層
体を上記樹脂の軟化温度以上、融点以下の温度で
所定形状に成形し、つづいて上記樹脂の融点以上
でかつ上記非晶質合金の結晶化温度以下の温度で
0.1ないし5Kg/cm2の加圧下に保持して融着させ
ることを特徴とするラミネート成形品の製造方
法。 2 非晶質合金の薄板として、非晶質合金リボン
を該リボンの巾方法に所定数並べたものを使用
し、熱可塑性樹脂膜を介して上下に重なり合う該
薄板のリボンの長手方向が互に直交するようにす
る特許請求の範囲第1項記載の方法。 3 非晶質合金薄板と熱可塑性樹脂膜との積層
を、該非晶質合金薄板に溶剤または分散剤に溶解
または分散した熱可塑性樹脂を塗布することによ
り行なう特許請求の範囲第1項記載の方法。 4 所定寸法の非晶質合金の薄板と熱可塑性樹脂
膜とを少なくとも一層以上積層して、得られた積
層体を上記樹脂の融点以上、上記非晶質合金の結
晶化温度以下の温度で0.1ないし5Kg/cm2の加圧
下に保持して融着させたのち、上記樹脂の軟化点
以上、融点以下の温度で所定形状に成形し、該成
形品を再度上記樹脂の融点以上でかつ上記非晶質
合金の結晶化温度以下の温度で0.1ないし5Kg/
cm2の加圧下に1ないし10分間保持して融着させる
ことを特徴とするラミネート成形品の製造方法。 5 非晶質合金の薄板として、非晶質合金リボン
を該リボンの巾方向に所定数並べたものを使用
し、熱可塑性樹脂膜を介して上下に重なり合う該
薄板のリボンの長手方向が互に直交するようにす
る特許請求の範囲第4項記載の方法。 6 非晶質合金薄板と熱可塑性樹脂膜との積層
を、該非晶質合金薄板に溶剤または分散剤に溶解
または分散した熱可塑性樹脂を塗布することによ
り行なう特許請求の範囲第4項記載の方法。
[Claims] 1. Laminating at least one layer of an amorphous alloy thin plate of a predetermined size and a thermoplastic resin film, and shaping the resulting laminate into a predetermined shape at a temperature above the softening temperature and below the melting point of the resin. molding, and then at a temperature above the melting point of the resin and below the crystallization temperature of the amorphous alloy.
A method for producing a laminate molded product, which comprises holding and fusing under a pressure of 0.1 to 5 kg/cm 2 . 2 A predetermined number of amorphous alloy ribbons arranged in the width direction of the ribbons are used as the thin plates of the amorphous alloy, and the longitudinal directions of the ribbons of the thin plates are overlapped vertically with a thermoplastic resin film in between. 2. A method as claimed in claim 1, in which orthogonality is achieved. 3. The method according to claim 1, wherein the amorphous alloy thin plate and the thermoplastic resin film are laminated by applying a thermoplastic resin dissolved or dispersed in a solvent or a dispersant to the amorphous alloy thin plate. . 4 A thin plate of an amorphous alloy of a predetermined size and at least one layer of a thermoplastic resin film are laminated, and the resulting laminate is heated at a temperature of 0.1 or higher than the melting point of the resin and lower than the crystallization temperature of the amorphous alloy. After fusing by holding under pressure of 5 kg/cm 2 to 5 kg/cm 2 , the molded product is molded into a predetermined shape at a temperature higher than the softening point of the resin and lower than the melting point, and the molded product is heated again to a temperature higher than the melting point of the resin and higher than the above non-containing temperature. 0.1 to 5 kg/at a temperature below the crystallization temperature of the crystalline alloy
A method for producing a laminate molded product, which comprises holding the product under pressure of cm 2 for 1 to 10 minutes to fuse it. 5 A predetermined number of amorphous alloy ribbons arranged in the width direction of the ribbons are used as thin plates of amorphous alloy, and the longitudinal direction of the ribbons of the thin plates that overlap vertically through a thermoplastic resin film is mutually aligned. 5. A method as claimed in claim 4 in which orthogonality is achieved. 6. The method according to claim 4, wherein the amorphous alloy thin plate and the thermoplastic resin film are laminated by coating the amorphous alloy thin plate with a thermoplastic resin dissolved or dispersed in a solvent or a dispersant. .
JP56210603A 1981-12-26 1981-12-26 Manufacture of laminated shape consisting of amorphous alloy and thermoplastic resin Granted JPS58112730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210603A JPS58112730A (en) 1981-12-26 1981-12-26 Manufacture of laminated shape consisting of amorphous alloy and thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210603A JPS58112730A (en) 1981-12-26 1981-12-26 Manufacture of laminated shape consisting of amorphous alloy and thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS58112730A JPS58112730A (en) 1983-07-05
JPS6137113B2 true JPS6137113B2 (en) 1986-08-22

Family

ID=16592055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210603A Granted JPS58112730A (en) 1981-12-26 1981-12-26 Manufacture of laminated shape consisting of amorphous alloy and thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS58112730A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622994B2 (en) * 1986-03-31 1994-03-30 平岡織染株式会社 Amorphous metal laminated sheet
JPH0737125Y2 (en) * 1987-03-11 1995-08-23 三井石油化学工業株式会社 Amorphous label for magnetic induction
JPH0737126Y2 (en) * 1987-03-11 1995-08-23 三井石油化学工業株式会社 Amorphous label for magnetic induction
JPH0737127Y2 (en) * 1987-04-02 1995-08-23 三井石油化学工業株式会社 Amorphous label for magnetic induction
CN104704937B (en) * 2012-10-04 2019-01-04 株式会社东芝 Magnetic piece and the display for using magnetic piece

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031594A (en) * 1973-07-23 1975-03-28
JPS5388884A (en) * 1977-01-17 1978-08-04 Mitsui Petrochemical Ind Method for making laminate
JPS53149855A (en) * 1977-06-01 1978-12-27 Hitachi Metals Ltd Laminating of amorphous alloy
JPS5573914A (en) * 1978-11-25 1980-06-04 Tdk Corp Manufacture of core block
JPS55146742A (en) * 1979-02-16 1980-11-15 British Steel Corp Preparation of laminate
JPS5630851A (en) * 1979-08-22 1981-03-28 Sumitomo Aluminium Smelting Co Method of laminating fluorine resin film on aluminum or aluminum alloy plate
JPS5636336A (en) * 1979-08-29 1981-04-09 Matsushita Electric Ind Co Ltd Manufacture of metal sheet laminated core
JPS5693541A (en) * 1979-12-28 1981-07-29 Mitsui Petrochemical Ind Manufacture of laminated structure
JPS56142060A (en) * 1980-04-08 1981-11-06 Toyo Ink Mfg Co Manufacture of laminated board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031594A (en) * 1973-07-23 1975-03-28
JPS5388884A (en) * 1977-01-17 1978-08-04 Mitsui Petrochemical Ind Method for making laminate
JPS53149855A (en) * 1977-06-01 1978-12-27 Hitachi Metals Ltd Laminating of amorphous alloy
JPS5573914A (en) * 1978-11-25 1980-06-04 Tdk Corp Manufacture of core block
JPS55146742A (en) * 1979-02-16 1980-11-15 British Steel Corp Preparation of laminate
JPS5630851A (en) * 1979-08-22 1981-03-28 Sumitomo Aluminium Smelting Co Method of laminating fluorine resin film on aluminum or aluminum alloy plate
JPS5636336A (en) * 1979-08-29 1981-04-09 Matsushita Electric Ind Co Ltd Manufacture of metal sheet laminated core
JPS5693541A (en) * 1979-12-28 1981-07-29 Mitsui Petrochemical Ind Manufacture of laminated structure
JPS56142060A (en) * 1980-04-08 1981-11-06 Toyo Ink Mfg Co Manufacture of laminated board

Also Published As

Publication number Publication date
JPS58112730A (en) 1983-07-05

Similar Documents

Publication Publication Date Title
US20160361897A1 (en) Systems and Methods for Implementing Robust Metallic Glass-Based Fiber Metal Laminates
JP2753739B2 (en) Method for producing aluminum-based alloy foil or aluminum-based alloy fine wire
EP1740734B1 (en) Nano-crystalline steel sheet
KR960014026B1 (en) Metal polypropylene-metal laminate and method of making a shaped sheet article of such a laminate
JPH07299592A (en) Method of making self brazing composite material
JPH11500866A (en) Adhesive laminates used in electrical equipment such as transformers, generators or motors
JPS6137113B2 (en)
JPS61173938A (en) Molded shape
KR940005391A (en) Composite materials, manufacturing methods thereof, and manufacturing methods for composite molded articles
KR20020042108A (en) Corrosion resistance clad metal plate and method for manufacturing thereof
KR20130122750A (en) Glassy nano-materials
US20170090515A1 (en) Bulk metallic glass sheets and parts made therefrom
JP2018056336A (en) Laminate and composite laminate core
US20170087804A1 (en) Bulk metallic glass laminates and methods of fabricating the same
CN110576656B (en) Laminated body for iron core
US5547484A (en) Methods of making metallic glass foil laminate composites
JP4118096B2 (en) Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator
JPS62281108A (en) Magnetic core and its manufacture
JPS61144287A (en) Production of aluminum base composite plate material
JP2013067168A (en) Heat insulating material and mold for molding resin using the same
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
JP2017078244A (en) Glass chopped strand mat and automobile molded ceiling material
JP2022501234A (en) Magnetic steel sheet laminate
JPS60154066A (en) Manufacture of laminated steel plate
JP2021126776A (en) Fiber-reinforced metal molded body and method for producing the same