JPS6136988A - Semiconductor laser of single axis mode - Google Patents
Semiconductor laser of single axis modeInfo
- Publication number
- JPS6136988A JPS6136988A JP59159824A JP15982484A JPS6136988A JP S6136988 A JPS6136988 A JP S6136988A JP 59159824 A JP59159824 A JP 59159824A JP 15982484 A JP15982484 A JP 15982484A JP S6136988 A JPS6136988 A JP S6136988A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- phase shift
- semiconductor laser
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
- H01S5/1243—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】 (発明の分野) 本発明は分布帰還形半導体レーザに関する。[Detailed description of the invention] (Field of invention) The present invention relates to a distributed feedback semiconductor laser.
(従来技術の説明)
光フアイバ通信による長距離・大容量伝送実験が進めら
れている。2 Gb/ sといった高速、あるいは10
0 kmi越えるような長距離のシステムを実現するた
めには、光フアイバ内の波長分散による伝送波形歪の影
響を避けるため、光源としての半導体レーザには単一軸
モード動作が要求される。(Description of Prior Art) Long-distance, large-capacity transmission experiments using optical fiber communications are underway. High speeds such as 2 Gb/s or 10
In order to realize a long-distance system exceeding 0 km, a semiconductor laser as a light source is required to operate in a single-axis mode in order to avoid the influence of transmission waveform distortion due to wavelength dispersion within the optical fiber.
これまで、内部に波長選択のだめの回折格子を形成した
分布帰還形半導体レーザ(以下DFB LDと略す)、
あるいは分布ブラッグ(Bragg )反射形半導体レ
ーザ等が急ピッチで開発が進められているo InGa
AsPを用いたDPB LDでは、高出力動作、2 o
b/ s変調時での巣−軸モード動作等の良好な特性が
得られている0今後DFB LD を実用化して行く
のには、信頼性の向上、そして生産歩留りの向上が重要
となる0特にDFBLDI/fiしては、ブラッグ波長
には発振する軸モードが存在せずその両側の波長の軸モ
ードが同程度の発振閾値を有するため複数の軸モードで
発振し易く安定な単一軸モードで動作する素子が得られ
る歩留シを悪くするという大きな問題が存在する。従来
その対策として、板屋等が、昭和58年度電子通信学会
総合全国大会講演論文集分冊4の944で報告している
様な、両端面の反射率を違えることによシブラッグ波長
の両側の軸モードの発振閾値に差をつける等の方法が用
いられていたが、最近セカルテジ目等によシ昭和59年
度電子通信学会総合全国大会講演論文集の分冊4.10
18で報告されている様に、DFBLDのほぼ中央に、
回折格子の位相が変化する領域を設けることによシブラ
ッグ波長での発振を可能にする方法が提案され実験が報
告されている。この方法は、ブラック波長の軸モードの
発振閾値が小さい等の特長を有しておシ、有望であるが
、回折格子の位相を変化させるために電子ビーム露光を
行なわなければならず、回折格子の作製に時間がかかシ
量産的でないという欠点を有していたOガスレーザを光
源とする2光束干渉露光法による回折格子の作製方法は
、短時間に、大きな面積に回折格子を作製することがで
きるため、この方法を、前述した途中に位相変化が回折
格子の作製に適用できればDFB Ll)の生産性を向
上させることができる。Until now, distributed feedback semiconductor lasers (hereinafter abbreviated as DFB LD), which have a diffraction grating for wavelength selection inside,
Alternatively, distributed Bragg reflective semiconductor lasers are being developed at a rapid pace.
DPB LD using AsP has high power operation, 2 o
Good characteristics such as nest-axis mode operation during b/s modulation have been obtained.In order to put DFB LD into practical use in the future, it will be important to improve reliability and production yield. In particular, with DFBLDI/fi, there is no axial mode that oscillates at the Bragg wavelength, and the axial modes of the wavelengths on both sides have similar oscillation thresholds, so it is easy to oscillate in multiple axial modes and it is a stable single axial mode. A major problem exists in that it reduces the yield of working devices. Conventionally, as a countermeasure against this problem, as reported by Itaya et al. in Proceedings of the 1981 National Conference of the Institute of Electronics and Communication Engineers, Volume 4, 944, the axial modes on both sides of the Sibrag wavelength were Methods such as making a difference in the oscillation threshold of
As reported in 18, approximately in the center of DFBLD,
A method to enable oscillation at the Sibrag wavelength by providing a region where the phase of the diffraction grating changes has been proposed and experiments have been reported. This method has the advantage of having a small oscillation threshold for the axial mode of the black wavelength and is promising, but it requires electron beam exposure to change the phase of the diffraction grating. The method of fabricating a diffraction grating using the two-beam interference exposure method using an O gas laser as a light source has the disadvantage of being time-consuming and not suitable for mass production. Therefore, if this method can be applied to the production of a diffraction grating in which the phase is changed during the process described above, the productivity of DFB Ll) can be improved.
(発明の目的)
本発明の目的は素子特性、及び生産性に優れた内部に位
相シフト領域を有する分布帰還形半導体レーザを提供す
ることにある。(Object of the Invention) An object of the present invention is to provide a distributed feedback semiconductor laser having an internal phase shift region with excellent device characteristics and productivity.
(発明の構成)
本発明によれば、半導体基板上に活性層および前記活性
層に隣接し一方の面が周期的凹凸形状を為す光ガイド層
とを含む半導体層が形成され、かつ前記活性層と前記光
ガイド層とが除去された部分に前記活性層及び前記光ガ
イド層とは異なる屈折率の半導体層が形成された位相シ
フト領域が共振器のほぼ中央部に位置し形成されている
ことを特徴とする単一軸モード半導体レーザが得られる
。(Structure of the Invention) According to the present invention, a semiconductor layer including an active layer and an optical guide layer adjacent to the active layer and having a periodically uneven shape on one surface is formed on a semiconductor substrate, and A phase shift region in which a semiconductor layer having a refractive index different from that of the active layer and the optical guide layer is formed in a portion where the optical guide layer and the optical guide layer are removed is located approximately in the center of the resonator. A single-axis mode semiconductor laser is obtained.
(第1の実施例)
(支)
第1回は本発明の第1の実施例を示す埋め込み形の分布
帰還形半導体レーザの斜視図である。第2図に示すプロ
セスの順序に従って製作法を説明すると、第2図(al
に示すように(001)面のn形InP基板1 (8n
ドープ+ lXl0 tm )の上に、液相エピタキ
シャル成長によ5n形InPバツフア層2(厚さ3μm
、Snドープ、キャリア濃度5×l Q ”cm−3)
、InGaAsT’活性層3(ノンドープ、厚さ0.1
μm2発光波長にして1.55μm組成)、p形InG
a、AsP光ガイド層4(厚さ0.15μm、Znドー
プ、キャリア濃度lX10 c1++)を連続して積〜
する。次に第2図(blの如く表面に4倍に希釈したA
Z1350 フォトレジストを600Orpmの回転
速度で塗布し、回折格子用レジスト膜100を形成した
のち、発振波長3250XのHe −Cd ガスレーザ
を用い、三光束干渉露光で周期2350Xのフォトレジ
スト回折格子101ヲ格子の繰り返しが(11,0)方
向になるようにして形成する(第2図(C) )、次に
HBr系のエツチング液で光ガイド層4をエツチングし
回折格子200を形成する(第2図(dl ) O次に
第2図(clの如く幅約4μmのストライプ]11
が第2図の紙面に対し垂直方向に形成されたフォトレジ
ストパターン110 ′t−形成したのち、ストライプ
111の部分の光ガイド層4と、活性層3を硫酸系のエ
ツチング液で除去し、位相シフト領域120を形成する
(第2図1fl ) o次に第2回目の液相工ビタキシ
ャル成長で全体’(rp形InPクラッド層5ヶ形成す
る(第2図(g))−これで本実施例の基本となる構造
の多層膜ウェノ)が出来たわけだが、素子特性の高性能
化、即ち発振閾値の低減、微分量子効率の増大をはかる
ため、次に埋め込みへテロ構造を形成するO筆者等によ
)、エレクトロニジX0レターズ(Electroni
cs Letters )誌第18巻22号(1982
年発行)の953頁から954頁で報告された二重チャ
ンネルブレーナ埋め込み形(DC−PBH)半導体レー
ザの構造を形成するには第2図fh)の斜視図に示すよ
うに、幅10μm。(First Embodiment) (Support) The first part is a perspective view of a buried distributed feedback semiconductor laser showing a first embodiment of the present invention. The manufacturing method will be explained according to the process order shown in Figure 2.
As shown in (001) plane n-type InP substrate 1 (8n
A 5n-type InP buffer layer 2 (3 μm thick
, Sn doped, carrier concentration 5×l Q”cm−3)
, InGaAsT' active layer 3 (non-doped, thickness 0.1
1.55 μm composition in μm2 emission wavelength), p-type InG
a, AsP light guide layer 4 (thickness 0.15 μm, Zn doped, carrier concentration lX10 c1++) is laminated continuously ~
do. Next, as shown in Figure 2 (bl), 4 times diluted A
Z1350 photoresist was applied at a rotation speed of 600 Orpm to form a resist film 100 for a diffraction grating, and then a photoresist diffraction grating 101 with a period of 2350X was formed by three-beam interference exposure using a He-Cd gas laser with an oscillation wavelength of 3250X. The light guide layer 4 is formed so that the repetition is in the (11,0) direction (FIG. 2(C)), and then the optical guide layer 4 is etched using an HBr-based etching solution to form a diffraction grating 200 (FIG. 2(C)). dl) O Next, Figure 2 (stripe with a width of about 4 μm like cl) 11
After forming a photoresist pattern 110't-, which is perpendicular to the plane of the paper in FIG. Shift region 120 is formed (FIG. 2, 1fl) o Next, the entire structure is formed by the second liquid phase bitaxial growth (five rp-type InP cladding layers are formed (FIG. 2 (g)) - this completes the actual implementation. The basic structure of the multilayer film (weno) was completed, but in order to improve the performance of the device characteristics, that is, to reduce the oscillation threshold and increase the differential quantum efficiency, the authors and others next formed a buried heterostructure. yo), Electronici X0 Letters (Electroni
cs Letters) Magazine Vol. 18 No. 22 (1982
In order to form the structure of a double channel buried brainer (DC-PBH) semiconductor laser reported in pages 953 to 954 of 2010 (published in 2013), a width of 10 μm is shown in the perspective view of FIG. 2fh).
深さ3μmの2本の平行な溝を間に幅1.5μmのメサ
スト2イプ52を挾んで(110)方向に平行に形成し
たのち、液相エピタキシャル成長で、第2図(ilに示
すようにp形InP電流ブロック層6(平坦部での厚さ
0.5μm、Znドープ、キャリア濃度1×10 口
)、n形InP電流閉じ込め層7(平坦部での厚さ0.
5μrl、Teドープ1 キャリア濃度2×10 の
)、p形InP埋め込み層8(平坦部での厚さ1.5μ
m、Znドーグ、キャリア濃度1X10 cM )、
及びp形InQaAsPキャップ層9(平坦部での厚さ
05μm、 Znドープ、キャリア濃度lXl0
Cm を発光波長にして1.2μm組成)を形成する
。以上でエピタキシャル成長を終える。After two parallel grooves with a depth of 3 μm were formed parallel to the (110) direction with a mesast 2 groove 52 with a width of 1.5 μm sandwiched between them, the grooves were formed by liquid phase epitaxial growth as shown in Fig. 2 (il). P-type InP current blocking layer 6 (thickness at flat part 0.5 μm, Zn doped, carrier concentration 1×10
), n-type InP current confinement layer 7 (thickness at flat part 0.
5 μrl, Te doped 1, carrier concentration 2×10
), p-type InP buried layer 8 (thickness 1.5μ at flat part)
m, Zn dog, carrier concentration 1×10 cM),
and p-type InQaAsP cap layer 9 (thickness at flat part 05 μm, Zn doping, carrier concentration lXl0
A composition of 1.2 μm is formed with Cm as the emission wavelength. This completes the epitaxial growth.
次に電極形成プロセスによシ第1図に示すようにp側に
はSiO□膜60全60幅10μmの電流注入域61を
設けてその上にCr/Aup側電極70を形成し、n側
にはAu/Ge/Nin側電極71を形成する。位相シ
フト領域120がほぼ中央に位置するようにして、長さ
約250μmに襞間しチップにする。Next, in the electrode formation process, as shown in FIG. 1, a current injection region 61 with a width of 10 μm for the total 60 SiO□ films 60 is provided on the p side, and a Cr/Aup side electrode 70 is formed thereon. An Au/Ge/Nin side electrode 71 is formed thereon. The chip is folded to a length of approximately 250 μm with the phase shift region 120 located approximately at the center.
チップをダイアモンドヒートシンクに融着して素子特性
を調べた。発振閾値は20mA、微分量子効率は片面当
シ18チでおったO最大CW動作温度は110℃であっ
た0最火光出力は室温で30 mWであった。これらの
動作出力および動作温度範囲で発振波長は1.550μ
m付近であり軸モードのホッピングが生じることがなく
単一軸モードで動作した。発振波長の温度依存性は0.
9X/℃であった。The chip was fused to a diamond heat sink and the device characteristics were investigated. The oscillation threshold was 20 mA, and the differential quantum efficiency was 18 cm per side.The maximum CW operating temperature was 110°C.The maximum optical output was 30 mW at room temperature. The oscillation wavelength is 1.550μ in these operating output and operating temperature ranges.
It operated in a single-axis mode without axial mode hopping. The temperature dependence of the oscillation wavelength is 0.
It was 9X/°C.
以上の様に、良好な素子特性が得られたが、この様な特
性を有する素子が得られる歩留シも80%近いという良
好な結果が得られた。As described above, good device characteristics were obtained, and the yield of devices having such characteristics was also close to 80%, which was a good result.
以上の様な良好な素子特性及び歩留)が得られたのは位
相シフト領域120を設けたことによる。The reason why the above-mentioned good device characteristics and yield were obtained was because the phase shift region 120 was provided.
即ち、前述した、セカルテジョ等が電子ビーム露光法で
グレーテングの位相をシフトさせた分布帰還形半導体レ
ーザと同じ効果が位相シフト領域120によシ実現され
るからである。それは次の様に説明される。活性層3と
光ガイド層4を含む全体の光導波路の実効的屈折率71
a?fは波長1.55μmの光に対し約33である。
これに対し、位相シフト領域120はInPの半導体層
で構成されておシ、この領域の実効的屈折率72シは3
.20である。回折格子200の周期Δ、 235o
Xに対応するブラッグ波長λBはλ8=′71eFF×
2Aで与えられ、1.5510μmとなる。この波長の
光が長さしの位相シフト領域120に入るとこの領域の
実効屈折率が3.20と小さいことから、位相シフト領
域】20ヲ出る時には、同じ長さLの活性層3と光ガイ
ド層4が形成された光導波路を進む場合に比べ光の波の
位相φが
だけ遅れることになるOLが4μmのときφは0.52
πとなる。即ち、ブラッグ波長の光が4μmの位相シフ
ト領域120を通過すると、位相シフト領域120がな
い場合に比べ約−だけ光の位相クツトが生じることにな
夛、セカルテジョ等が電子ビ位相シフト機構を有する分
布帰還形半導体レーザは、宇高等が昭和59年度電子通
信学会総合全国大会講演論文集分冊4の1017で報告
している様に、ブラック波長での発振が可能とな)、又
発振波長と他の軸モードとの間の閾値利得差が大きくと
れることから安定な単一軸モードで動作する素子が得ら
れる歩留シが高くなる。従って第1図に示す本発明の第
1の実施例の素子の特性が良好で、単一軸モード動作の
素子の歩留夛が高い理由は、からと言える。That is, the same effect as that of the distributed feedback semiconductor laser described above in which Sekartejo et al. shifted the phase of the grating using the electron beam exposure method can be achieved by the phase shift region 120. It is explained as follows. Effective refractive index 71 of the entire optical waveguide including the active layer 3 and the optical guide layer 4
a? f is about 33 for light with a wavelength of 1.55 μm.
On the other hand, the phase shift region 120 is composed of an InP semiconductor layer, and the effective refractive index 72 of this region is 3.
.. It is 20. Period Δ of diffraction grating 200, 235o
The Bragg wavelength λB corresponding to X is λ8='71eFF×
It is given by 2A and becomes 1.5510 μm. When light of this wavelength enters the phase shift region 120 of length L, the effective refractive index of this region is as small as 3.20. When the OL is 4 μm, the phase φ of the light wave is delayed by 0.52 compared to when the light wave travels through an optical waveguide in which the guide layer 4 is formed.
It becomes π. That is, when light at the Bragg wavelength passes through the 4 μm phase shift region 120, the phase of the light is shifted by approximately - compared to the case without the phase shift region 120. Distributed feedback semiconductor lasers are capable of oscillation at the black wavelength (as reported by Utaka in Proceedings of the 1986 Institute of Electronics and Communication Engineers of Japan Comprehensive National Conference, Vol. 4, 1017), and the oscillation wavelength and other Since the difference in threshold gain between the single-axis mode and the single-axis mode can be large, the yield of devices operating in a stable single-axis mode is increased. Therefore, the reason why the device according to the first embodiment of the present invention shown in FIG. 1 has good characteristics and the yield of devices operating in a single axis mode is high can be said to be because.
(第2の実施例)
第3図は本発明の第2の実施例を示す斜視図である。第
1図に示す第1の実施例と異なる点は回折格子200が
直接基板1に形成されている点である。また第1回目の
液相エピタキシャル長でn形のInGaAsP光ガイド
層4、活性層3.p形InPクラッド層5まで積層し、
活性層3.光ガイド層4を4μmの長さで除去した位相
シフト領域】20ヲ形成したのち、第2回目の成長で埋
め込み形の構造を形成すれば良いので、成長回数が1回
少くなるという利点がある。発振特性、および歩留り等
は第1の実施例と同様な結果が得られた。(Second Embodiment) FIG. 3 is a perspective view showing a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that the diffraction grating 200 is formed directly on the substrate 1. In addition, the n-type InGaAsP optical guide layer 4, the active layer 3. Laminated up to p-type InP cladding layer 5,
Active layer 3. After forming the phase shift region 20 in which the optical guide layer 4 is removed with a length of 4 μm, it is sufficient to form a buried structure in the second growth, which has the advantage of reducing the number of growths by one. . Results similar to those of the first example were obtained in terms of oscillation characteristics, yield, etc.
(第3の実施例)
第4図は本発明の第3の実施例を示す埋め込み形の分布
帰還形半導体レーザの斜視図である。作製の順を追って
構造を説明すると、(001)面のn形InP基板1の
表面に発振波長3250XのIIe −Cdガスレーザ
金用いて<1.10>方向に周期2350Xで深さ約1
000X凹凸が繰り返される回折格子200を形成する
。次に<110>方向に垂直に幅4μm、深さ1,5μ
mの分離溝100をsho、マスク及びB「−メタノー
ルエツチング液を用いて形成する。(Third Embodiment) FIG. 4 is a perspective view of a buried type distributed feedback semiconductor laser showing a third embodiment of the present invention. To explain the structure in the order of fabrication, a IIe-Cd gas laser with an oscillation wavelength of 3250X is used on the surface of a (001)-plane n-type InP substrate 1 to a depth of approximately 1 in the <1.10> direction with a period of 2350X.
A diffraction grating 200 in which 000X unevenness is repeated is formed. Next, perpendicular to the <110> direction, the width is 4 μm and the depth is 1.5 μm.
A separation groove 100 of m is formed using a mask and a methanol etching solution.
この一部に分離溝100が形成された回折格子基板に、
液相エピタキシャル成長でn形InGaAsP 光ガ
イド層4(厚さ0.15μm、3nドープ、キャリア濃
度5XIOeM 、発光波長にして1,3μm組成)、
ノンドープInGaAsP活性層3(厚さ0.11tm
、発光波長にして1.55μm組成)、片影InPク
ラッド層5(厚さ1μm、Znドープ、キャリア濃度1
×10 cfn )を連続して積層する。分離溝10
0が形成された部分では光ガイド層4と、活性層3は平
坦部と分離溝100の底とで分離して形成されろ。A diffraction grating substrate with a separation groove 100 formed in a part thereof,
N-type InGaAsP light guide layer 4 (thickness 0.15 μm, 3n doping, carrier concentration 5XIOeM, composition of 1.3 μm in terms of emission wavelength) by liquid phase epitaxial growth,
Non-doped InGaAsP active layer 3 (thickness 0.11 tm
, composition of 1.55 μm in terms of emission wavelength), one-sided InP cladding layer 5 (thickness 1 μm, Zn doping, carrier concentration 1
×10 cfn) are successively laminated. Separation groove 10
In the portion where 0 is formed, the light guide layer 4 and the active layer 3 are formed to be separated by the flat portion and the bottom of the separation groove 100.
これで本実施例の基本となる構造の多層膜ウェハができ
たが、素子特性の高性能化、即ち発振閾値の低減、微分
量子効率の増大等をはかるために、次に埋め込みへテロ
構造を形成する。筆者等によりエレクトロニクス・レタ
ーズ(ElectronicsLetters )誌第
18巻22号(1982年発行)の953負から954
頁で報告された二重チャンネルブレーナ埋め込み形(D
C−PI3H)千纒体レーザの構造な形成するには幅1
0/Jm、深さ3μmの平行な2本の溝50,51を間
に幅約1,5μmのメサストライプ52k<11.0)
方向に平行に形成したのち液相エピタキシャル成長でp
形InP電流ブロック層6(平坦部での厚さ0.5μm
、Znドープ。This completed a multilayer film wafer with the basic structure of this example, but in order to improve the performance of the device characteristics, that is, reduce the oscillation threshold, increase the differential quantum efficiency, etc., we next created a buried heterostructure. Form. From 953 negative to 954 in Electronics Letters, Vol. 18, No. 22 (published in 1982) by the authors, etc.
Dual channel brainer embedded type (D
C-PI3H) Width 1 to form the structure of the cylindrical laser
0/Jm, mesa stripe 52k<11.0) with a width of about 1.5 μm between two parallel grooves 50 and 51 with a depth of 3 μm.
After forming parallel to the direction, p is formed by liquid phase epitaxial growth.
InP type current blocking layer 6 (thickness at flat part 0.5 μm
, Zn doped.
キャリア濃度IX1.Oon )、n形1nP電流閉
じ込め;−7(平坦部での厚て0.5μm、 Teド
ープ。Carrier concentration IX1. Oon ), n-type 1nP current confinement; -7 (0.5 μm thick at flat part, Te doped.
キャリア温度2X10 an )、p形InP埋め込み
層8(平坦部での厚さ1.5μm、Znドープ、キャリ
ア観度lX10 crn )およびp形InGa人sr
’Fヤップ層9(平坦部での厚さ0.5μm、 Z
n ドープ、キャリアa度lXl0 cm +発光波
長にして1.2μm組成)を第4図に示す形で順次&層
すれば良い。carrier temperature 2×10 an ), p-type InP buried layer 8 (thickness 1.5 μm at flat part, Zn doping, carrier visibility l×10 crn ), and p-type InGa layer sr
'F Yap layer 9 (thickness 0.5 μm at flat part, Z
n doped, carrier a degree lXl0 cm + composition of 1.2 μm in terms of emission wavelength) may be sequentially layered in the form shown in FIG.
次に電極形成プロセスによりp側にはS’O! 960
を用い幅10μnlの電流注入領域61を設けてその上
にCr/Aup詞1に極70を形成し、n側にはAu
/ Ge / N i n 9111電極71を形成す
る。分離溝100が#ミホ中夫に位置するようにして長
さ約250μmに骨間しチップにする。これが第4図に
示す斜視図である。このチップをダイアモンドヒートシ
ンクにp側電極70の方を下側にして素子特性を調べた
。発振閾値は18mA、微分量子効率は片面当シ17%
でおった。最大CW動作温度は110℃であった。最大
光出力は室温で30 mWであ夛、これらの動作光出力
域及び動作温度域で発振波長は1.550μm付近で単
一軸モードで動作し、軸モードのホッピングは生じなか
った。発振波長の温度依存性は0.9X/’Cであった
。以上の様な良好な素子特性が得られる歩留シは80t
sと良好な結果が得られた。Next, in the electrode formation process, S'O! 960
A current injection region 61 with a width of 10 μnl is provided using a Cr/Au layer 1, and a pole 70 is formed on the Cr/Au layer 1 on the n-side.
/Ge/N in 9111 electrode 71 is formed. The separation groove 100 is positioned at #MihoNakao, and the bone is made into a chip with a length of about 250 μm. This is the perspective view shown in FIG. This chip was placed on a diamond heat sink with the p-side electrode 70 facing downward, and device characteristics were investigated. The oscillation threshold is 18mA, and the differential quantum efficiency is 17% per side.
It happened. The maximum CW operating temperature was 110°C. The maximum optical output was 30 mW at room temperature, and in these operating optical output and operating temperature ranges, the oscillation wavelength was around 1.550 μm, and the device operated in a single-axis mode, with no axial mode hopping. The temperature dependence of the oscillation wavelength was 0.9X/'C. The yield rate for obtaining the above-mentioned good device characteristics is 80t.
Good results were obtained.
良好な素子特性及び高い歩留りが得られたのは分離溝1
00′t−設けたことによるO即ち前述したセカルテジ
璽等が電子ビーム露光法でグレーテングの位相を7フト
させた分布帰還形半導体レーザと同じ効果が分離溝10
0によって実現されるからである。それは第1の実施例
の場合と同様に説明される!ことによりλ/4シフトが
実現されているからと言える。Good device characteristics and high yield were obtained with isolation trench 1.
The separation groove 10 has the same effect as a distributed feedback semiconductor laser in which the phase of the grating is increased by 7 feet using the electron beam exposure method.
This is because it is realized by 0. It is explained in the same way as in the first embodiment! This can be said to be because a λ/4 shift is realized.
(第4の実施例)
第5図は本発明の第4の実施例を示す斜視図である。第
4図に示す第3の実施例と異なる点は分離溝100の形
状が三角形になっている点である。(Fourth Embodiment) FIG. 5 is a perspective view showing a fourth embodiment of the present invention. The difference from the third embodiment shown in FIG. 4 is that the separation groove 100 has a triangular shape.
塩酸系のエツチング液を用いると分離溝100の側面は
InP基板10面に対し約30°傾いた面が得られ、又
Br−メタノールのエツチング液を用いれば約54°傾
いた面が得られる。これらの分離溝200の側面は用い
るエツチング液によって決まってしまう面であるので、
分離溝100ヲ形成する場合の再現性が非常に良くなる
。If a hydrochloric acid based etching solution is used, a side surface of the separation groove 100 is inclined at about 30 degrees with respect to the surface of the InP substrate 10, and if a Br-methanol etching solution is used, a surface inclined at about 54 degrees is obtained. Since the side surfaces of these separation grooves 200 are determined by the etching solution used,
The reproducibility when forming the separation grooves 100 is greatly improved.
分離溝100の形状がどのような形をしていようと、位
相シフ)1実現するには分離溝100の内部とその外側
で活性層3と光ガイド層4とが分離して形成されていれ
ば良い。また分離溝100の幅は、本発明の実施例では
4μmとしたが、±50%のばらつきがあっても位相シ
フトの効果が期待できるので、2μmから6μm程度の
範囲にあれば良い。Regardless of the shape of the separation groove 100, in order to realize the phase shift (1), the active layer 3 and the light guide layer 4 must be formed separately inside and outside the separation groove 100. Good. Further, the width of the separation groove 100 was set to 4 μm in the embodiment of the present invention, but since a phase shift effect can be expected even if there is a variation of ±50%, it is sufficient that the width is in the range of about 2 μm to 6 μm.
(第5の実施例)
第6図は本発明の第5の実施例を示す埋め込み形の分布
帰還形半導体レーザの斜視図である。作製の順を追って
構造を説明すると(001)面のn形1nP基板1の表
面に、 stow腰のストライプをマスクとして1(C
/とH,PO,の混合液を用いて〈1丁0〉方向に平行
な分離メサストライプ300ヲ形成した。(Fifth Embodiment) FIG. 6 is a perspective view of a buried distributed feedback semiconductor laser showing a fifth embodiment of the present invention. To explain the structure in the order of fabrication, a 1(C
/, H, and PO were used to form 300 separated mesa stripes parallel to the <1-0> direction.
(この部分が位相シフト領域に該当する)。次に発振波
長3250XのHe −Cdガスレーザを用いて(11
0)方向に繰り返す周期3250Xで深さ約10001
の回折格子200ヲ形成する。分離メサストライプ30
0の上面には回折格子200が形成される場合と形成さ
れない場合があるが本実施例の構造に関してはそれはど
ちらの場合でも構わない。(This part corresponds to the phase shift region). Next, using a He-Cd gas laser with an oscillation wavelength of 3250X (11
0) direction with a repeating period of 3250X and a depth of about 10001
A diffraction grating 200 is formed. Separated mesa stripe 30
The diffraction grating 200 may or may not be formed on the upper surface of the 0, but it does not matter which case the structure of this embodiment is concerned.
第6図には分離メサストライプ300の上部にも回折格
子200が形成されている例を示した。この一部に分離
メサストライプ300が形成された回折格子基板に、液
相エピタキシャル成長でn形In0aAsP光ガイド層
4(厚さ0.15μm、Snドープ、キャリア濃度5X
10 cm 、発光波長にして1.3μm組成)。FIG. 6 shows an example in which a diffraction grating 200 is also formed above the separation mesa stripe 300. An n-type In0aAsP optical guide layer 4 (thickness 0.15 μm, Sn doped, carrier concentration 5X
10 cm, composition of 1.3 μm in terms of emission wavelength).
ノンドープInGaAsP活性層3(厚さ0.1μm1
発光波長にして1,3μrn組成)、p形InPクラッ
ド層5(厚さ1μm、Znドープ、キャリア濃度1×1
0″−釧 )全連続して積層する。分離メサストライプ
300が形成された部分では光ガイド層4と活性層3は
平坦部と分離メサストライプ300の上部とで分離して
形成される。これで本実施例の基本となる構造の多層膜
ウェハができたが、素子特性の高性能化、即ち発振閾値
の低減、微分量子効率の増大等をはかるために、次に埋
め込みへテロ構造を形成する。筆者等によυエレクトロ
ニクス・レターズ(Electronics Lett
ers)誌第18巻22号(1982年発行)の953
頁から954頁で報告された二重チャンネルブレーナ埋
め込み形(DC−PBH)半導体レーザの構造を形成す
るには幅10μm、深さ3μmの平行な2本の溝50.
51を間に幅約1.5μmのメサストライプs2v<N
o>方向に平行に形成したのち液相エピタキシャル成長
でp形InP電流ブロック層6(平坦部での厚さ0.5
11m、 Znドープ、キャリア濃度IX10cm)
、n形InP電流閉じ込め層7(平坦部での厚さ0.5
μm、Teドープ、キャリア濃度2X10 cm
)、p形InP埋め込み層8(平坦部での厚さ1.5μ
m。Non-doped InGaAsP active layer 3 (thickness 0.1 μm1
(1.3 μrn composition in terms of emission wavelength), p-type InP cladding layer 5 (thickness 1 μm, Zn doping, carrier concentration 1×1
0''-Kushi) All are laminated continuously. In the part where the isolation mesa stripe 300 is formed, the light guide layer 4 and the active layer 3 are formed separated by the flat part and the upper part of the isolation mesa stripe 300. A multilayer film wafer with the basic structure of this example was completed, but in order to improve the performance of the device characteristics, that is, reduce the oscillation threshold, increase the differential quantum efficiency, etc., we next formed a buried heterostructure. Electronics Letts by the authors.
ers) magazine, Vol. 18, No. 22 (published in 1982), 953.
To form the structure of the dual channel buried brainer (DC-PBH) semiconductor laser reported on pages 954 to 954, two parallel grooves 50.
Mesa stripe s2v<N with a width of about 1.5 μm between 51
o> direction, and then a p-type InP current blocking layer 6 (thickness 0.5 in the flat part) is formed by liquid phase epitaxial growth.
11m, Zn doped, carrier concentration IX10cm)
, n-type InP current confinement layer 7 (thickness at flat part 0.5
μm, Te doped, carrier concentration 2X10 cm
), p-type InP buried layer 8 (thickness 1.5μ at flat part)
m.
Znドープ、キャリア濃度lX1OcTR)およびp形
In0aAsPキャップ層9(平坦部での厚さ0.5μ
m、Znドープ、キャリア濃度lXl0 cm +
発光波長にして1.2μm組成)を第6図に示す形で順
次積層すれば良い。次に電極プロセスを行いp側にはS
in、膜60を用い幅10μmの電流注入領域61を設
けてその上にCr/Au p側電極70を形成し、n側
にはAu/Ge/N!n側電極71を形成する。Zn-doped, carrier concentration l
m, Zn doped, carrier concentration lXl0 cm +
(composition of 1.2 μm in terms of emission wavelength) may be sequentially laminated in the form shown in FIG. Next, an electrode process is performed and S
A current injection region 61 with a width of 10 μm is provided using a film 60, a Cr/Au p-side electrode 70 is formed thereon, and an Au/Ge/N! film 60 is formed on the n-side. An n-side electrode 71 is formed.
分離メサストライプ300がはは中央に位置するように
して長さ約250μmに骨間しチップにする。The separation mesa stripe 300 is placed in the center to form a chip with a length of about 250 μm.
これが第6図に示す斜視図である。このチップをダイア
モンドヒートシンクにpm電極70の方を下側にして素
子特性を調べた。発振閾値は18 mA 。This is the perspective view shown in FIG. This chip was placed on a diamond heat sink with the pm electrode 70 facing downward, and device characteristics were investigated. The oscillation threshold is 18 mA.
微分童子効率は片面当シ17チであった。最大CW動作
温度は110℃であった。最大光出力は室温で30 m
Wであり、これらの動作光出力域及び動作温度域で発振
波長は1.550μm付近で単一軸モードで動作し、軸
モードのホッピングは生じなかった。The differential doji efficiency was 17 per side. The maximum CW operating temperature was 110°C. Maximum light output is 30 m at room temperature
W, the oscillation wavelength was around 1.550 μm in these operating optical output ranges and operating temperature ranges, and the device operated in a single axial mode, and no axial mode hopping occurred.
発振波長の温度依存性はo、aX/cであった。以上の
様な良好人素子特性が得られる歩留りは80%と良好な
結果が得られた。The temperature dependence of the oscillation wavelength was o, aX/c. Good results were obtained, with a yield of 80% at which the above-mentioned good device characteristics could be obtained.
良好な素子特性及び高い歩留りが38られたのは分離メ
サストライプ300を設けたことによる。即ち前述した
セカルテジョ等が電子ビーム露光法でグレーテングの位
相をシフトさせた分布帰還形半導体レーザと同じ効果が
分離メサストライプ3oOによって実現されるからであ
る。それは第1の実施例の場合と同様に説明されるっ
(第6の実施例)
第7図は本発明の第6の実施例を示すダ(現図である0
第6図に示す第5の実施例と異なる点は分離メサストラ
イプ300の形状が三角形になっている点である〕塩酸
系のエツチング成金用いると分離メサストライプ300
のツ1j面はInP基板1の面に対し約30°傾いた面
がイ0らノ′1、又1(r−メタノールのエツチング液
を用いれば約54°頌いた而がイυられる0これらの分
離メサストライプ300の何+−m+は用いるエツチン
グ液によって決壕ってし捷う1−1であるので、分離メ
ザストラ・rプ300 e形成する場合の再現性が非常
に良くなる。Good device characteristics and high yield were achieved by providing the isolation mesa stripes 300. That is, the separation mesa stripe 3oO can achieve the same effect as the distributed feedback semiconductor laser in which the phase of the grating is shifted by the electron beam exposure method by Sekartejo et al. It will be explained in the same way as in the case of the first embodiment (sixth embodiment).
The difference from the fifth embodiment shown in FIG. 6 is that the shape of the separation mesa stripe 300 is triangular. When hydrochloric acid-based etching is used, the separation mesa stripe 300
The plane 1j is inclined at an angle of about 30 degrees with respect to the plane of the InP substrate 1. Since the number +-m+ of the separated mesa stripe 300 is 1-1, which varies depending on the etching solution used, the reproducibility when forming the separated mesa stripe 300e is very good.
分離メサストライプ300の形状がどのような形をして
いようと、位相シフトを実現するには分離メサストライ
プ300の内部とその外側で活性層3と光ガイド層4と
が分離して形成されていれば良い。また分離メサストラ
イプ300の幅は、本発明の実施例では4μmとしたが
、±50−のばらつきがあっても位相シフトの効果が期
待できるので2μmから6μm程度の範囲にあれば艮い
。Regardless of the shape of the separation mesa stripe 300, in order to realize a phase shift, the active layer 3 and the optical guide layer 4 must be formed separately inside and outside the separation mesa stripe 300. That's fine. Further, the width of the separation mesa stripe 300 was set to 4 μm in the embodiment of the present invention, but since a phase shift effect can be expected even if there is a variation of ±50 −, it is acceptable if the width is in the range of about 2 μm to 6 μm.
(発明の効果)
本発明の分布帰還形半導体レーザは内部にλ/4の位相
シフトラ行う領域120(第3の実施例では分離溝10
0.第5の実施例では分離メサストライプ300がこれ
に相当する)を有することから良好な特性か得られ、安
定な単一軸モードで動作する素子が得られる歩留りが高
いことが特長である。(Effects of the Invention) The distributed feedback semiconductor laser of the present invention has an internal region 120 (separation groove 10 in the third embodiment) in which a phase shifter of λ/4 is performed.
0. In the fifth embodiment, the separation mesa stripe 300 corresponds to this), so good characteristics can be obtained, and the device is characterized in that it has a high yield of obtaining a device that operates in a stable single-axis mode.
また位相シフト機構を形成するのに通常のフォトリング
ラフィ及び二光束干渉露光で済むことから、描画に時間
のかかる電子ビーム露光を用いる必要がなく生産性に優
れることも特長である。また位相シフト領域120の長
さについては、本発明の実施例では4μmとしたが±5
0%程度のばらつき即ち、2knから6μm程度まで変
動しても位相シフトの効果が得られることから、ウェハ
内、ウニへ間での素子特性のばらつきも小さく良好な再
現性が得られた。Furthermore, since ordinary photolithography and two-beam interference exposure are sufficient to form the phase shift mechanism, there is no need to use electron beam exposure, which takes time for drawing, resulting in excellent productivity. Further, the length of the phase shift region 120 was set to 4 μm in the embodiment of the present invention, but ±5 μm.
Since a phase shift effect can be obtained even with a variation of about 0%, that is, a variation from about 2 kn to 6 μm, good reproducibility was obtained with small variations in device characteristics within a wafer and from one wafer to another.
第1図は本発明の第1の実施例を示す斜視図。
第2図は第1の実施例の製造グーセスを示す図、第3図
は本発明の第2の実施例を示す図、第4図は第3の実施
例、第5図は第4の実施例、第6図は第5の実施例、第
7図は第6の実施例をそれぞれ示す図である。
図中%1はn形InP基板、2はn形InPバクファ層
、3は■nGaAsP活性層%4はI nGaAsP導
波路層、、5はp形InPクラッド層、6はp形I n
PM?lLブロック層、7はn形InP電流閉じ込め
層、8はp形InT’埋め込み層、9はp形InGaA
sPキャップ層、200は回折格子、120は位相シフ
ト領域、60は8 io、膜、70はp側電極、71は
n側電極、50,51は平行な2本の浦、52はメサス
トライプ、100は分離溝、300は分離メサストライ
プである。
暉FIG. 1 is a perspective view showing a first embodiment of the present invention. Fig. 2 is a diagram showing the manufacturing process of the first embodiment, Fig. 3 is a diagram showing the second embodiment of the present invention, Fig. 4 is a diagram showing the third embodiment, and Fig. 5 is a diagram showing the fourth embodiment. For example, FIG. 6 shows a fifth embodiment, and FIG. 7 shows a sixth embodiment. In the figure, %1 is an n-type InP substrate, 2 is an n-type InP buffer layer, 3 is an nGaAsP active layer, %4 is an InGaAsP waveguide layer, 5 is a p-type InP cladding layer, and 6 is a p-type InP layer.
PM? 1L block layer, 7 is n-type InP current confinement layer, 8 is p-type InT' buried layer, 9 is p-type InGaA
sP cap layer, 200 is a diffraction grating, 120 is a phase shift region, 60 is an 8 IO film, 70 is a p-side electrode, 71 is an n-side electrode, 50 and 51 are two parallel uras, 52 is a mesa stripe, 100 is a separation groove, and 300 is a separation mesa stripe.暉
Claims (1)
の面が周期的凹凸形状を為す光ガイド層とを少なくとも
含む積層構造が形成され、かつ、前記活性層と前記光ガ
イド層とが除去され、この除去された部分に前記活性層
及び前記光ガイド層とは異なる屈折率の半導体層が形成
された位相シフト領域が共振器のほぼ中央部に位置し形
成されていることを特徴とする単一軸モード半導体レー
ザ。A laminated structure including at least an active layer and a light guide layer adjacent to the active layer and having a periodically uneven shape on one surface is formed on a semiconductor substrate, and the active layer and the light guide layer are removed. and a phase shift region, in which a semiconductor layer having a refractive index different from that of the active layer and the light guide layer is formed in the removed portion, is formed at approximately the center of the resonator. Single-axis mode semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59159824A JPS6136988A (en) | 1984-07-30 | 1984-07-30 | Semiconductor laser of single axis mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59159824A JPS6136988A (en) | 1984-07-30 | 1984-07-30 | Semiconductor laser of single axis mode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6136988A true JPS6136988A (en) | 1986-02-21 |
Family
ID=15702048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59159824A Pending JPS6136988A (en) | 1984-07-30 | 1984-07-30 | Semiconductor laser of single axis mode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6136988A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425494A (en) * | 1987-07-21 | 1989-01-27 | Mitsubishi Electric Corp | Semiconductor laser device and manufacture thereof |
-
1984
- 1984-07-30 JP JP59159824A patent/JPS6136988A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425494A (en) * | 1987-07-21 | 1989-01-27 | Mitsubishi Electric Corp | Semiconductor laser device and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5289484A (en) | Laser diode | |
JP2001308451A (en) | Semiconductor light emitting element | |
US4782035A (en) | Method of forming a waveguide for a DFB laser using photo-assisted epitaxy | |
US5572616A (en) | Waveguide device | |
EP0641053A1 (en) | Method and apparatus for control of lasing wavelength in distributed feedback lasers | |
JPS6343908B2 (en) | ||
JPH0431195B2 (en) | ||
JP2000349394A (en) | Semiconductor laser device | |
JPH05145169A (en) | Semiconductor distributed feedback laser apparatus | |
JPS61190994A (en) | Semiconductor laser element | |
JPS6136988A (en) | Semiconductor laser of single axis mode | |
JPH10242577A (en) | Semiconductor laser and manufacture thereof | |
JP3266728B2 (en) | Manufacturing method of waveguide type optical element | |
JPS6114787A (en) | Distributed feedback type semiconductor laser | |
JP2000244059A (en) | Semiconductor laser device | |
JP3215477B2 (en) | Semiconductor distributed feedback laser device | |
JP2924041B2 (en) | Monolithic integrated semiconductor optical device | |
JP3208860B2 (en) | Semiconductor laser device | |
JPH11307867A (en) | Semiconductor optical integrated element and manufacture thereof | |
JPH0223038B2 (en) | ||
JPH065984A (en) | Semiconductor laser and manufacture thereof | |
JP3927341B2 (en) | Semiconductor laser device | |
JP3075822B2 (en) | Semiconductor distributed feedback laser device | |
JPS6188584A (en) | Distributed feedback type semiconductor laser having phase shift structure | |
JP2947702B2 (en) | Tunable laser device and manufacturing method thereof |