JPS6136782B2 - - Google Patents

Info

Publication number
JPS6136782B2
JPS6136782B2 JP14048582A JP14048582A JPS6136782B2 JP S6136782 B2 JPS6136782 B2 JP S6136782B2 JP 14048582 A JP14048582 A JP 14048582A JP 14048582 A JP14048582 A JP 14048582A JP S6136782 B2 JPS6136782 B2 JP S6136782B2
Authority
JP
Japan
Prior art keywords
ultramarine
stable
zinc
ultramarine blue
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14048582A
Other languages
Japanese (ja)
Other versions
JPS5930863A (en
Inventor
Tomo Kimura
Fukuji Suzuki
Yoshio Asaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP14048582A priority Critical patent/JPS5930863A/en
Publication of JPS5930863A publication Critical patent/JPS5930863A/en
Publication of JPS6136782B2 publication Critical patent/JPS6136782B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、安定な群青及びその製造法に関し、
さらに詳しくは、群青粒子の表面硫黄が亜鉛化合
物で封鎖されてなる安定な新規群青、及び、群青
を亜鉛化合物で処理するか、該処理に続いて焼成
するか、又は該焼成に続いて水に分散後乾燥する
安定な群青の新規製造法に関する。 群青(ぐんじよう)は、通常やゝ赤味のある美
しい青色を呈する無機顔料であつて、古くは天然
の瑠璃石から作られたが最近ではもつぱら人工的
に製造されている。群青は硫黄を含むアルミニウ
ムケイ酸ナトリウムであり、一般に下記の組成式
で表わされている。 Na(8〜9)Al6Si6O24S(2〜4) 群青は親水性、疎油性の組成物であり、空気中
で約250℃までは安定であり、イオン交換能と触
媒能を有する。群青中の硫黄の一部は活性なラジ
カル型であり、この硫黄のラジカルの状態や酸化
の状態の違いにより群青の色調に変化を生じ、上
述の赤味のある青色のほかに、紫色を帯びたもの
や緑色を帯びたものが存在する。 群青は、建材、塗料、印刷インキ、絵の具、
紙、繊維製品、化粧品、洗剤等多方面にわたつて
青色の着色剤とし使用されており、その色相が極
めて鮮明であり、人畜に無害であることから、近
来重要視されている。 しかし、群青には着色剤として重大な欠陥があ
る。すなわち、群青は、アルカリには概して安定
であるが、酸に対して極めて弱く、ラジカル硫酸
と酸の反応により酸性下において硫化水素を発生
しながら徐々に分解して退色し白色となる。ま
た、群青は粉砕等の機械的せん断力や熱によつて
も硫化水素を発生する。かくして発生した硫化水
素は二次的にアルミニウム等の容器材料を変質さ
せたり、また、化粧品などの分野で製品を変臭さ
せるといつた問題をひき起す。 従来、このような欠点を解消するために、群青
の安定性を改善する幾つかの提案がされている。
最近のものとして、例えば、群青をケイ酸ナトリ
ウム及び有機酸で処理して表面に不定形シリカを
形成させる方法(特開昭54−95632号公報)や、
群青の表面に耐酸性重合体被膜を形成させる方法
(特公昭50−27483号公報)などがある。これら従
来法は群青の耐酸性をそれなりに改善するが、し
かしまた十分であるとは言えない。 本発明者らは、前記の事情にかんがみ十分な耐
酸性を有する安定な群青を開発すべく鋭意研究を
重ねた結果、ケイ酸アルカリと亜鉛化合物とで複
合処理した群青において、酸性下での硫化水素の
発生が有効に抑止されている事実を知り、さらに
検討を進めたところ、意外にも亜鉛化合物の単独
処理だけでも顕著な抑止効果があることを見出
し、本発明に到達した。 すなわち、本発明は安定な群青及びその製造法
を提供することを目的とし、その要旨はそれぞれ
下記の通りである。 (1) 群青粒子の表面硫黄が亜鉛化合物で封鎖され
ている安定な群青。 (2) 群青を水性媒質中において亜鉛化合物で処理
する安定な群青(「製品A」という。)の製造
法。 (3) 前記(2)の処理に続いて、処理生成物を焼成す
る一層安定な群青(「製品B」という。)の製造
法。 (4) 前記(3)の焼成に続いて、焼成物を水に分散後
約10〜105℃で乾燥する水分散性の良好な安定
な群青(「製品C」という。)の製造法。 製品B及び製品Cは、いずれも群青粒子の表面
硫黄が亜鉛化合物で封鎖されており、前記第1項
の特定発明の安定な群青に包含されるものであ
る。 本発明において封鎖とは、群青の粒子表面を亜
鉛化合物で被覆することによつて群青粒子表面の
ラジカル硫黄と亜鉛化合物が化学反応し、一部又
は全部のラジカル硫黄のラジカル性が取除かれる
ことをいう。封鎖された場合、群青粒子中の全硫
黄量に変化はなく、ラジカル硫黄の一部がラジカ
ル性からイオン性へ変わる。このラジカル硫黄の
減少は後述のESRスペクトルにより確認するこ
とができる。 本発明にかかる安定な群青は、酸、熱、機械的
せん断力に安定で、これらの作用により分解して
実質上硫化水素を発生することがないから、この
ものを例えば酸性下において使用してもアルミニ
ウム等の容器材料を変質させたり、化粧品を変臭
させることもない。このような改質に加えて、製
品Bにあつては、表面硫黄が封鎖されており、し
かも焼成の結果粒子表面が酸化亜鉛で被覆されて
いるため、安定性が一段と向上する。製品Cは、
水に分散後特定の温度に乾燥することにより約2
重量%の水が含まれるため、水分散性が良好にな
つている。このような安定な群青は従来の群青に
おける使用上の制約が除かれるため広範な用途に
使用されることが期待される。 本発明についてさらに詳述する。 本発明にかかる安定な群青は群青粒子の表面硫
黄が亜鉛塩で封鎖されており、このことはESR
(電子スピン共鳴)により確認することができ
る。表面硫黄とは群青の結晶格子の表面に存在す
るラジカル型硫黄のことで、このものは、結晶格
子の内部に存在する硫黄(ラジカル硫黄を含
む。)と異なり、他の物質に対して様々の型の活
性を持ち易い。この活性な表面硫黄が酸、熱、機
械的せん断力の作用を受けて分解し硫化水素を発
生するわけであるが、表面硫黄が亜鉛化合物と結
合し封鎖されると、群青は安定化され、酸等が作
用しても分解が起らず硫化水素の発生が抑止され
る。しかし、表面硫黄が封鎖されても、群青本来
の特性には変化はなく、安定化群青は未処理のも
のとの間に色調、基本構造等において差異がな
い。 本発明にかかる安定な群青は粉体であり、その
粒度は格別制限的でないが、常0.1〜20μ、好ま
しくは青色のもので0.3〜2μ、赤味がかつた青
色のもので2〜10μである。表面硫黄を封鎖して
いる亜鉛化合物は、処理で用いるそれと同じであ
り、安定化の目的を達するものであれば、無機
系、有機系を問わない。亜鉛錯体もこのような亜
鉛化合物に含めることができる。例えば、塩化亜
鉛、水酸化亜鉛、酸化亜鉛、硫酸亜鉛、硝酸亜
鉛、酢酸亜鉛、クエン酸亜鉛等の1種又は2種以
上を挙げることができる。 ただ亜鉛化合物は処理の過程において一部又は
全部が変化することがあり、例えば塩化亜鉛は苛
性アルカリの存在下でその一部が水酸化亜鉛に変
化し、またこのものは焼成により酸化亜鉛に変化
するから、この場合には安定な群青に存在する亜
鉛化合物と現に処理に使用した亜鉛化合物とは異
なる種類のものとなる。 本発明の安定な群青における亜鉛化合物の存在
量は、実用的見地から適宜決めることができ、亜
鉛として約0.1〜20重量%、好ましくは〜8重量
%である。0.1重量%未満では群青に有効な安定
性を付与することができず、逆に20重量%を越え
ると群青本来の色調を損うことになる。表面硫黄
の封鎖は亜鉛化合物だけで達成されるが、所望に
より適量のケイ酸アルカリや高分子物質を共存さ
せてもよい。かかる高分子物質としては、水溶性
又は水不溶性のものが挙げられ、ポリビニルアル
コール、ポリアクリル酸、ポリエチレングリコー
ル、ポリビニルピロリドン、ポリアミド、ポリ酢
酸ビニル、ポリアクリル酸エステルを例示するこ
とができる。 本発明にかかる安定な群青は、群青粒子の表面
硫黄が亜鉛化合物で封鎖されているものであれ
ば、その存在形態のいかんを問わない。したがつ
て、単離された粉体の形であるものは、もちろ
ん、水性媒質中の分散体の形でも、また、他の物
質との混合体の形であつても、およそ群青粒子の
表面硫黄が亜鉛化合物で封鎖され安定化された群
青が存在しておれば、本発明の対象物であること
に変りはない。 本発明の製造法で使用される出発原料の群青は
粉体であり、十分に粉砕された微粉末が好まし
い。通常粒度約0.1〜20μのものが用いられる。 亜鉛化合物は表面硫黄封鎖剤として使用される
ものであり、こうした亜鉛化合物としては、前記
のように、塩化亜鉛、水酸化亜鉛、酸化亜鉛、硫
酸亜鉛、硝酸亜鉛、酢酸亜鉛、クエン酸亜鉛等を
挙げることができる。これらの1種又は2種以上
を用いることができる。 このような群青粉末を水性媒質中に分散させて
亜鉛化合物で処理する。水性媒質の代表的なもの
は水であるが、適宜これに適当量の他の水性溶
媒、例えばメチルアルコール、エチルアルコー
ル、アセトン等を添加してもよい。普通、群青に
対し約1〜10倍量、好ましくは約4〜6倍量の水
性媒質を加えてよく撹拌し均一に分散させてスラ
リーにする。この際分散剤を添加したり、超音波
を用いて分散を促進することができる。スラリー
は、群青の性質上、好ましくはアルカリ性に保た
れる。上記の分散は室温で行つてよいが、後続の
処理との関係上、約90℃に保持して行うこともで
きる。 均一に分散したスラリーに対し、亜鉛化合物を
固体又は水溶液の形でよく撹拌しながら徐々に添
加する。亜鉛化合物の添加量は、被処理群青に対
し亜鉛として約0.1〜20重量%、好ましくは約2
〜8重量%である。約0.1重量%未満では群青に
十分な安定性を付与することができず、逆に約20
重量%を越えると群青本来の色調を損うことにな
る。この際、スラリーPHをアルカリ性に保持する
のが好ましく、特に亜鉛化合物を酸性水溶液とし
て添加するときは、好ましくは苛性アルカリ、炭
酸アルカリ等を用いてPHをアルカリ側へ調整す
る。本発明の目的に反さない限り、ケイ酸アルカ
リや水溶性高分子物質、例えばポリビニルアルコ
ール、ポリアクリル酸、ポリエチレングリコー
ル、ポリビニルピロリドン等、さらに、水不溶性
高分子物質、例えばポリアミド、ポリ酢酸ビニ
ル、ポリアクリル酸エステル等の1種又はそれ以
上を併用してもよい。 亜鉛化合物で処理してから、場合により傾しや
して水を除去した後、通常の方法で別、乾燥し
て処理生成物を取得する。得られた安定な群青
(製品A)は群青粒子の表面硫黄が亜鉛化合物で
封鎖されており、酸、熱、機械的せん断力に対し
高い安定性を示す。 かくして得られた製品Aを焼成すると、極めて
高度な安定性を有する焼成群青(製品B)が得ら
れる。前記したように、製品Bでは活性な表面硫
黄が封鎖されており、しかも、焼成な結果粒子表
面が酸化亜鉛で被覆されているため、酸、熱、機
械的せん断力に対する安定性が一層向上してい
る。焼成は約110〜250℃、特に好ましくは約200
℃において、約0.5〜24時間、特に好ましくは約
3〜7時間にわたつて行われる。焼成群青の製品
Bでは、前記のように、粒子表面が酸化亜鉛で被
覆されているが、当初の処理にどの種類の亜鉛化
合物を用いても、アルカリ側で処理する限りは焼
成後はひとしく実質上酸化亜鉛になる。 かくして、製品Bは焼成を経由したことにより
安定性が一段と向上し、一般用途向けには極めて
有用な顔料特性を具備している。ただ、焼成によ
り水分が除かれて吸着能が増大しているため、製
品Bを化粧品などの分野に用いると、時に有効成
分や香料成分が不必要に吸着されることがある。 そこで、製品Bを、さらに水に分散後一定の含
水状態になるよう約10〜105℃に乾燥して、適度
に水を含ませると、過度な吸着能が緩和され、そ
れでいて酸、熱、機械的せん断力に対する極めて
高度な安定性を有する群青(製品C)が得られ
る。 製品Cを得るには、焼成物(製品B)に対し、
約3〜6倍量の水を加えて十分撹拌し均一に分散
させ、次いで、通常の方法で別、乾燥する。こ
の工程の目的は焼成物に適度の水を含ませること
にあるから、乾燥は一定の含水状態になる限度に
とどめるべく約10〜105℃の温度で適当な時間乾
燥する。乾燥後の含水率は製品の使用目的に応じ
適宜決めることができるが、約105℃で乾燥して
得られた製品Cは約2重量%の水を含み極めて良
好な水分散性を示す。 次に、本発明を実施例により説明するが、本発
明はこれにより限定されるものではない。 実施例 1 群青粉末100部を水500部中に撹拌しながら加え
均一に分散させ、このスラリーを90℃に加温し苛
性ソーダによりPH10に保持した。別に塩化亜鉛8
部を水50部に溶かした塩化亜鉛水溶液を撹拌しな
がら前記のスラリーに徐々に添加した。添加中も
スラリーのPHが8〜10になるように調整した。2
時間撹拌後、傾しやし、処理物を2回水洗し、次
いで過、乾燥して安定な群青105部を得た。 得られた安定な群青についてESR(電子スピ
ン共鳴)の所見から、群青粒子の表面硫黄が亜鉛
化合物で封鎖されていることが確証された。すな
わち、未処理群青についてESRスペクトルを室
温にて測定したところg値2.029付近に幅広く高
いラジカル硫黄のピークが検出された。これに対
し上記安定な処理群青では同位置に未処理群青で
測定されたスペクトルの4/5の大きさをもつたラ
ジカル硫黄のピークが観測された。このピークの
大きさの減少は本発明の安定な群青において表面
ラジカル硫黄が亜鉛化合物によつて封鎖されてい
ることを示している。 ここに得られた群青は、安定であり、後述の硫
化水素検知法及び銀プレート黒化試験の結果が示
すように、耐酸性及び耐熱性において未処理のも
の等に比し極めて優れていた。 下記の表に記載した条件で、実施例1と同様な
処理操作を行つて安定な群青を得た。
The present invention relates to a stable ultramarine blue and a method for producing the same,
More specifically, a new stable ultramarine is formed by sealing the surface sulfur of ultramarine particles with a zinc compound, and the ultramarine is treated with a zinc compound, the treatment is followed by firing, or the firing is followed by water. This article relates to a new method for producing stable ultramarine blue that involves drying after dispersion. Gunjio is an inorganic pigment that usually exhibits a beautiful blue color with a reddish tinge.It was originally made from natural lapis lazuli, but recently it has been produced artificially. Ultramarine is sodium aluminum silicate containing sulfur, and is generally represented by the following compositional formula. Na (8-9) Al 6 Si 6 O 24 S (2-4) Ultramarine has a hydrophilic and oleophobic composition, is stable in air up to about 250℃, and has excellent ion exchange and catalytic abilities. have Some of the sulfur in ultramarine is in the active radical form, and differences in the radical state and oxidation state of this sulfur cause changes in the color tone of ultramarine, and in addition to the reddish blue mentioned above, it also has a purple tinge. There are some that are yellowish and some that are greenish. Ultramarine is used in building materials, paints, printing inks, paints,
It is used as a blue coloring agent in a wide range of applications such as paper, textile products, cosmetics, detergents, etc., and has been gaining importance in recent years because its hue is extremely clear and it is harmless to humans and animals. However, ultramarine blue has serious deficiencies as a colorant. That is, ultramarine blue is generally stable against alkalis, but extremely weak against acids, and as a result of the reaction between radical sulfuric acid and acid, hydrogen sulfide is generated under acidic conditions, and the color gradually decomposes and fades to white. Ultramarine blue also generates hydrogen sulfide when subjected to mechanical shearing force such as crushing or heat. The hydrogen sulfide generated in this way causes problems such as secondarily deteriorating container materials such as aluminum and causing odor to products in the field of cosmetics and the like. In order to overcome these drawbacks, several proposals have been made to improve the stability of ultramarine.
Recent examples include, for example, a method of treating ultramarine blue with sodium silicate and an organic acid to form amorphous silica on the surface (Japanese Patent Application Laid-open No. 1983-95632);
There is a method of forming an acid-resistant polymer film on the surface of ultramarine (Japanese Patent Publication No. 50-27483). Although these conventional methods improve the acid resistance of ultramarine to a certain extent, they are also not sufficient. In view of the above circumstances, the present inventors have conducted intensive research to develop a stable ultramarine blue with sufficient acid resistance. After learning of the fact that hydrogen generation is effectively suppressed, we conducted further studies and unexpectedly discovered that treatment alone with a zinc compound has a significant suppressive effect, leading to the present invention. That is, the present invention aims to provide a stable ultramarine blue and a method for producing the same, and the gist thereof is as follows. (1) Stable ultramarine blue in which the surface sulfur of ultramarine particles is sequestered with zinc compounds. (2) A method for producing stable ultramarine blue (referred to as "Product A"), which involves treating ultramarine blue with a zinc compound in an aqueous medium. (3) A method for producing a more stable ultramarine blue (referred to as "Product B"), which comprises firing the treated product following the treatment in (2) above. (4) A method for producing stable ultramarine blue with good water dispersibility (referred to as "Product C"), in which, following the firing in (3) above, the fired product is dispersed in water and then dried at about 10 to 105°C. Product B and Product C both have ultramarine particles whose surface sulfur is capped with a zinc compound, and are included in the stable ultramarine of the specific invention described in item 1 above. In the present invention, blocking means that by coating the surface of the ultramarine particles with a zinc compound, the radical sulfur on the surface of the ultramarine particles and the zinc compound chemically react, and the radical nature of some or all of the radical sulfur is removed. means. When sequestered, the total amount of sulfur in the ultramarine particles remains unchanged, and a portion of the radical sulfur changes from radical to ionic. This reduction in radical sulfur can be confirmed by the ESR spectrum described below. The stable ultramarine blue according to the present invention is stable against acid, heat, and mechanical shearing force, and does not decompose due to these actions and substantially does not generate hydrogen sulfide. Therefore, it can be used, for example, under acidic conditions. It does not alter the quality of container materials such as aluminum, nor does it cause odor to cosmetics. In addition to such modification, in the case of Product B, the surface sulfur is blocked and the particle surfaces are coated with zinc oxide as a result of calcination, so that the stability is further improved. Product C is
Approximately 2
Since it contains % by weight of water, it has good water dispersibility. Such a stable ultramarine blue is expected to be used in a wide range of applications because the restrictions on the use of conventional ultramarine blues are removed. The present invention will be explained in further detail. In the stable ultramarine blue according to the present invention, the surface sulfur of the ultramarine particles is sequestered with zinc salt, which indicates that the ESR
(electron spin resonance). Surface sulfur is radical sulfur that exists on the surface of the ultramarine crystal lattice, and unlike the sulfur (including radical sulfur) that exists inside the crystal lattice, this sulfur has various effects on other substances. Easy to have type activity. This active surface sulfur decomposes under the action of acid, heat, and mechanical shearing force and generates hydrogen sulfide, but when the surface sulfur combines with zinc compounds and becomes sequestered, the ultramarine is stabilized. Decomposition does not occur even when an acid or the like acts on it, and the generation of hydrogen sulfide is suppressed. However, even if the surface sulfur is blocked, there is no change in the original characteristics of ultramarine, and there is no difference in color tone, basic structure, etc. between stabilized ultramarine and untreated ultramarine. The stable ultramarine according to the present invention is a powder, and its particle size is not particularly limited, but is usually 0.1 to 20 μm, preferably 0.3 to 2 μm for blue ones, and 2 to 10 μm for reddish blue ones. be. The zinc compound that sequesters surface sulfur is the same as that used in the treatment, and it does not matter whether it is inorganic or organic as long as it achieves the purpose of stabilization. Zinc complexes can also be included in such zinc compounds. For example, one or more of zinc chloride, zinc hydroxide, zinc oxide, zinc sulfate, zinc nitrate, zinc acetate, zinc citrate, etc. can be used. However, some or all of the zinc compounds may change during the treatment process; for example, zinc chloride partially changes to zinc hydroxide in the presence of caustic alkali, and this substance changes to zinc oxide when fired. Therefore, in this case, the zinc compound present in the stable ultramarine blue and the zinc compound actually used in the treatment are of different types. The amount of the zinc compound present in the stable ultramarine of the present invention can be appropriately determined from a practical standpoint, and is approximately 0.1 to 20% by weight, preferably ~8% by weight as zinc. If it is less than 0.1% by weight, effective stability cannot be imparted to ultramarine blue, and if it exceeds 20% by weight, the original color tone of ultramarine blue will be impaired. Although surface sulfur can be blocked only by the zinc compound, if desired, an appropriate amount of alkali silicate or polymeric substance may be present. Examples of such polymeric substances include water-soluble or water-insoluble substances, such as polyvinyl alcohol, polyacrylic acid, polyethylene glycol, polyvinylpyrrolidone, polyamide, polyvinyl acetate, and polyacrylic acid ester. The stable ultramarine blue according to the present invention may be in any form as long as the surface sulfur of the ultramarine particles is blocked with a zinc compound. Therefore, in the form of an isolated powder, as well as in the form of a dispersion in an aqueous medium or as a mixture with other substances, approximately the surface of the ultramarine particles As long as ultramarine blue in which sulfur is sequestered with a zinc compound and stabilized exists, it is still an object of the present invention. The starting material ultramarine used in the production method of the present invention is a powder, and a sufficiently pulverized fine powder is preferable. Usually, particles with a particle size of about 0.1 to 20 microns are used. Zinc compounds are used as surface sulfur sequestrants, and as mentioned above, zinc chloride, zinc hydroxide, zinc oxide, zinc sulfate, zinc nitrate, zinc acetate, zinc citrate, etc. can be mentioned. One or more of these can be used. Such ultramarine powder is dispersed in an aqueous medium and treated with a zinc compound. A typical aqueous medium is water, but an appropriate amount of another aqueous solvent such as methyl alcohol, ethyl alcohol, acetone, etc. may be added thereto as appropriate. Usually, an aqueous medium is added in an amount of about 1 to 10 times, preferably about 4 to 6 times, the amount of ultramarine blue, and stirred well to uniformly disperse it to form a slurry. At this time, dispersion can be promoted by adding a dispersant or using ultrasonic waves. The slurry is preferably kept alkaline due to the nature of ultramarine. The above-mentioned dispersion may be carried out at room temperature, but it can also be carried out at a temperature of about 90°C for the sake of subsequent processing. A zinc compound is gradually added to the uniformly dispersed slurry in the form of a solid or an aqueous solution while stirring well. The amount of zinc compound added is about 0.1 to 20% by weight of zinc, preferably about 2% by weight based on the treated ultramarine.
~8% by weight. If it is less than about 0.1% by weight, sufficient stability cannot be imparted to ultramarine;
If it exceeds this weight percentage, the original color tone of ultramarine blue will be lost. At this time, it is preferable to keep the slurry PH alkaline, and especially when adding the zinc compound as an acidic aqueous solution, the PH is preferably adjusted to the alkaline side using caustic alkali, alkali carbonate, or the like. Unless contrary to the purpose of the present invention, alkali silicates, water-soluble polymeric substances such as polyvinyl alcohol, polyacrylic acid, polyethylene glycol, polyvinylpyrrolidone, etc., and water-insoluble polymeric substances such as polyamide, polyvinyl acetate, etc. One or more types of polyacrylic esters may be used in combination. After treatment with a zinc compound, optionally decanting to remove water, the product is dried separately in a conventional manner to obtain a treated product. The obtained stable ultramarine blue (Product A) has the surface sulfur of the ultramarine particles blocked with a zinc compound, and exhibits high stability against acids, heat, and mechanical shearing forces. When product A thus obtained is fired, a fired ultramarine (product B) having an extremely high degree of stability is obtained. As mentioned above, in Product B, the active surface sulfur is blocked, and the particle surface is coated with zinc oxide as a result of sintering, so the stability against acids, heat, and mechanical shearing forces is further improved. ing. Firing at about 110-250℃, particularly preferably about 200℃
C. for about 0.5 to 24 hours, particularly preferably about 3 to 7 hours. In fired ultramarine product B, the particle surface is coated with zinc oxide as described above, but no matter what type of zinc compound is used in the initial treatment, as long as the treatment is carried out on the alkaline side, the particles are essentially the same after firing. Becomes zinc oxide. Thus, product B has further improved stability due to the firing process, and has extremely useful pigment properties for general use. However, since moisture is removed by baking and the adsorption capacity is increased, when Product B is used in cosmetics and other fields, active ingredients and fragrance ingredients may sometimes be unnecessarily adsorbed. Therefore, if Product B is further dispersed in water and then dried at a temperature of approximately 10 to 105°C to a certain level of water content, and then soaked with water appropriately, the excessive adsorption capacity can be alleviated, and yet An ultramarine blue (product C) is obtained which has a very high degree of stability against shear forces. To obtain product C, for the fired product (product B),
Approximately 3 to 6 times the amount of water is added and thoroughly stirred to ensure uniform dispersion, and then separated and dried in a conventional manner. Since the purpose of this step is to impregnate the fired product with an appropriate amount of water, drying is carried out at a temperature of about 10 to 105°C for an appropriate period of time in order to keep the moisture content to a certain level. The moisture content after drying can be appropriately determined depending on the intended use of the product, but Product C obtained by drying at about 105°C contains about 2% by weight of water and exhibits extremely good water dispersibility. Next, the present invention will be explained by examples, but the present invention is not limited thereto. Example 1 100 parts of ultramarine blue powder was added to 500 parts of water with stirring and uniformly dispersed, and the slurry was heated to 90°C and maintained at pH 10 with caustic soda. Separately, zinc chloride 8
An aqueous solution of zinc chloride dissolved in 50 parts of water was gradually added to the slurry with stirring. During addition, the pH of the slurry was adjusted to 8 to 10. 2
After stirring for an hour, the slanted palm and treated product were washed twice with water, filtered and dried to obtain 105 parts of stable ultramarine blue. ESR (electron spin resonance) findings on the obtained stable ultramarine blue confirmed that the surface sulfur of the ultramarine particles was blocked by zinc compounds. That is, when the ESR spectrum of untreated ultramarine was measured at room temperature, a broad and high radical sulfur peak was detected around the g value of 2.029. On the other hand, in the stable treated ultramarine, a radical sulfur peak with a size 4/5 of the spectrum measured for untreated ultramarine was observed at the same position. The decrease in the magnitude of this peak indicates that the surface radical sulfur in the stable ultramarine blue of the present invention is blocked by the zinc compound. The ultramarine blue obtained here was stable, and as shown by the results of the hydrogen sulfide detection method and silver plate blackening test described below, it was extremely superior in acid resistance and heat resistance to untreated products. A stable ultramarine blue was obtained by carrying out the same processing operations as in Example 1 under the conditions listed in the table below.

〔試験法〕[Test method]

(1) 硫化水素検知法 マグネチツクスターラー付き200ml三つ口丸
底フラスコに50ml滴下ロート及び硫化水素を検
知できる簡易型ガス検知管を取付け、検知管を
水硫ポンプにつなぎ、発生する硫化水素ガスを
常に一定圧で吸引する。上記のガス検知管には
直接目盛が印字してあり、0.1〜2.0%の硫化水
素が直読できる。 この測定装置を用いて次の方法で測定する。
三つ口丸底フラスコに群青0.5gを入れ、これ
を5mlのイオン交換水中に均一に分散させる。
次いでロートより1N塩酸5mlを一度に添加
し、マグネチツク スターラーで撹拌する。酸
によつて群青が分散し発生する硫化水素量
(%)を検知管で読む。 (2) 銀プレート黒化試験法 群青と銀プレートとを密閉容器内で2日間80
℃に放置し、その間に発生する硫化水素により
銀プレートが黒化する程度を肉眼で観察する。
ブランク時の銀プレートの色を0とし、未処理
群青の場合の全面黒化を5とし、黒化の程度を
0〜5の範囲で評点する。 〔結果と評価〕 (1) 硫化水素検知法の結果は図面に示すとおりで
ある。本発明の実施例1で得られた製品Aでは
2分経過後硫化水素の検知量は0.5容量%にも
達せず、また、実施例7の製品B、実施例8の
製品Cにあつては約0.2容量%でしかなく、し
かも、製品A〜Cとも2分経過後は硫化水素の
発生がなかつた。これに対し、未処理又はケイ
酸ナトリウム処理の群青にあつては急激に硫化
水素を発生し、2分経過後の検知量が約1.5容
量%にもなり、4分足らずで検知管の目盛一杯
の2.0%に達した。 以上の結果によれば、本発明の安定な群青
は、製品A〜Cいずれみ未処理のもの及び5%
ケイ酸ソーダで処理したものに比し、耐酸性に
おいて極めて優れていることがわかる。 (2) 銀プレート黒化試験において、本発明の実施
例1で得られた群青では評点0(変化なし)で
あるのに対し、未処理群青では評点5(全面黒
化)であつた。この結果によれば、本発明製品
が耐熱性において極めて優れていることがわか
る。 以上を総合すると、本発明の製品のいずれも
は、従来の群青に比較し、耐酸性、耐熱性におい
て極めて優れており、したがつて顕著な安定性を
有することが明らかである。
(1) Hydrogen sulfide detection method Attach a 50ml dropping funnel and a simple gas detection tube that can detect hydrogen sulfide to a 200ml three-neck round bottom flask with a magnetic stirrer, connect the detection tube to a hydrogen sulfide pump, and detect the generated hydrogen sulfide gas. is always aspirated at a constant pressure. The above gas detection tube has a scale printed directly on it, allowing direct reading of 0.1 to 2.0% hydrogen sulfide. Measurement is performed using this measuring device in the following manner.
Place 0.5 g of ultramarine in a three-necked round-bottomed flask and uniformly disperse it in 5 ml of ion-exchanged water.
Next, add 5 ml of 1N hydrochloric acid at once through the funnel, and stir with a magnetic stirrer. The amount (%) of hydrogen sulfide generated when ultramarine is dispersed by acid is read using a detection tube. (2) Silver plate blackening test method Ultramarine blue and silver plate were heated for 2 days at 80°C in a sealed container.
℃, and visually observe the degree of blackening of the silver plate due to hydrogen sulfide generated during that time.
The color of the silver plate at the time of blanking is set as 0, the overall blackening in the case of untreated ultramarine is set as 5, and the degree of blackening is evaluated in the range of 0 to 5. [Results and Evaluation] (1) The results of the hydrogen sulfide detection method are as shown in the drawing. In the product A obtained in Example 1 of the present invention, the detected amount of hydrogen sulfide did not reach even 0.5% by volume after 2 minutes, and in the case of Product B of Example 7 and Product C of Example 8, The amount was only about 0.2% by volume, and in addition, no hydrogen sulfide was generated after 2 minutes in all products A to C. On the other hand, untreated or sodium silicate-treated ultramarine rapidly generates hydrogen sulfide, and the amount detected after 2 minutes reaches approximately 1.5% by volume, and the detection tube reaches the full scale in less than 4 minutes. reached 2.0%. According to the above results, the stable ultramarine of the present invention is untreated and 5%
It can be seen that the acid resistance is extremely superior to that treated with sodium silicate. (2) In the silver plate blackening test, the ultramarine obtained in Example 1 of the present invention received a score of 0 (no change), while the untreated ultramarine received a score of 5 (full blackening). According to these results, it can be seen that the product of the present invention has extremely excellent heat resistance. Taking all the above into account, it is clear that all of the products of the present invention are extremely superior in acid resistance and heat resistance, and therefore have remarkable stability, compared to conventional ultramarine blues.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の安定な群青及び従来の群青に
ついて硫化水素検知法における硫化水素検知量と
検知所要時閲との関係を示す図表である。
The drawing is a chart showing the relationship between the detected amount of hydrogen sulfide and the required detection time in the hydrogen sulfide detection method for stable ultramarine blue of the present invention and conventional ultramarine blue.

Claims (1)

【特許請求の範囲】 1 群青粒子の表面硫黄が亜鉛化合物で封鎖され
てなる安定な群青。 2 群青を水性媒質中において亜鉛化合物で処理
することを特徴とする群青粒子の表面硫黄が亜鉛
化合物で封鎖されてなる安定な群青の製造法。 3 群青を水性媒質中において亜鉛化合物で処理
し、次いで処理生成物を焼成することを特徴とす
る群青粒子の表面硫黄が亜鉛化合物で封鎖されて
なる一層安定な群青の製造法。 4 群青を水性媒質中において亜鉛化合物で処理
し、次いで処理生成物を焼成し、さらに焼成物を
水に分散後約10〜105℃で乾燥することを特徴と
する群青粒子の表面硫黄が亜鉛化合物で封鎖され
てなる安定で水分散性の良好な群青の製造法。
[Scope of Claims] 1. Stable ultramarine blue in which surface sulfur of ultramarine particles is blocked with a zinc compound. 2. A method for producing stable ultramarine blue in which the surface sulfur of ultramarine particles is blocked with a zinc compound, characterized by treating ultramarine blue with a zinc compound in an aqueous medium. 3. A method for producing more stable ultramarine blue in which the surface sulfur of ultramarine particles is blocked with a zinc compound, characterized by treating ultramarine blue with a zinc compound in an aqueous medium and then calcining the treated product. 4 Ultramarine blue particles are treated with a zinc compound in an aqueous medium, the treated product is then calcined, and the calcined product is further dispersed in water and then dried at about 10 to 105°C. A method for producing ultramarine blue that is sequestered with water and is stable and has good water dispersibility.
JP14048582A 1982-08-14 1982-08-14 Stable ultramarine and its preparation Granted JPS5930863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14048582A JPS5930863A (en) 1982-08-14 1982-08-14 Stable ultramarine and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14048582A JPS5930863A (en) 1982-08-14 1982-08-14 Stable ultramarine and its preparation

Publications (2)

Publication Number Publication Date
JPS5930863A JPS5930863A (en) 1984-02-18
JPS6136782B2 true JPS6136782B2 (en) 1986-08-20

Family

ID=15269696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14048582A Granted JPS5930863A (en) 1982-08-14 1982-08-14 Stable ultramarine and its preparation

Country Status (1)

Country Link
JP (1) JPS5930863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112681U (en) * 1987-01-14 1988-07-20

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537351B2 (en) * 1986-11-27 1996-09-25 株式会社 資生堂 Modified ultramarine
JPH01208597A (en) * 1988-02-15 1989-08-22 Hitachi Elevator Eng & Service Co Ltd High-place water tank device
EP1172419A1 (en) * 2000-07-13 2002-01-16 Degussa AG Composition containing a pigment and a hydrophobic zeolithe
JP2007023259A (en) * 2005-06-13 2007-02-01 Daiichi Kasei Kogyo Kk Colored material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112681U (en) * 1987-01-14 1988-07-20

Also Published As

Publication number Publication date
JPS5930863A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
TWI490037B (en) Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same
US5011673A (en) Zirconium oxide powder
DE3633309C2 (en) Composition based on zirconia and process for its manufacture
GB2070636A (en) Iron blue nacreous pigments
EP2626464B1 (en) Composition for paper deacidification, process to obtain it and method for its application
JPS6136782B2 (en)
JP2010090002A (en) Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
EP0358821B1 (en) White colored deodorizer and process for producing the same
JP3651017B2 (en) Spherical magnetite particles and method for producing the same
JP2000265154A (en) Lamellar barium sulfate coated with iron oxide and its production
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
US4095994A (en) Soft-settling fluosilicate-treated silica flatting agent
JP3413431B2 (en) Flaky zinc oxide powder and method for producing the same
JP2010090001A (en) Ultraviolet ray shielding dispersion and ultraviolet ray shielding coating composition
JP4401154B2 (en) Black composite iron oxide particles
JP4422529B2 (en) Magnetite particles and method for producing the same
JP2004338995A (en) Particulate-including composite tubular basic magnesium carbonate, its production method, and composition and structure comprising the same
JPS609723B2 (en) cosmetics
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JP2781865B2 (en) Deodorant sheet
JPH01208326A (en) Titania sol
JP2867297B2 (en) Stable lead chromate pigment and method for producing the same
JP2002085980A (en) Manufacturing method of metal-carrying inorganic powder
JPH04122780A (en) Yellow hydrated iron oxide pigment
JPS61146714A (en) Production of fine powder of lower black titanium oxide