JPS6136113A - Circulation manufacture and device for silicon molded shape - Google Patents

Circulation manufacture and device for silicon molded shape

Info

Publication number
JPS6136113A
JPS6136113A JP9813385A JP9813385A JPS6136113A JP S6136113 A JPS6136113 A JP S6136113A JP 9813385 A JP9813385 A JP 9813385A JP 9813385 A JP9813385 A JP 9813385A JP S6136113 A JPS6136113 A JP S6136113A
Authority
JP
Japan
Prior art keywords
section
silicon
mold
casting
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9813385A
Other languages
Japanese (ja)
Other versions
JPS646130B2 (en
Inventor
デイーテル・ヘルムライヒ
コルト・ゲツセルト
ハンス・デイーテル・ミレル
ヘルムート・ツアウハール
ゲオルク・プリーヴアツセル
レオンハルト・シユミツトハンマー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heliotronic GmbH
Original Assignee
Heliotronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliotronic GmbH filed Critical Heliotronic GmbH
Publication of JPS6136113A publication Critical patent/JPS6136113A/en
Publication of JPS646130B2 publication Critical patent/JPS646130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Silicon Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、鋳型を順次供給部から鋳造部へ運搬して、溶
融ケイ素を満たし、ケイ素の方向性凝固が生じた後に冷
却部に移し、最後に取出すことから成る、結晶学的に望
ましい配向を有する単結晶の結晶帯域から成る、柱状構
造のケイ素成形体の循環製造方法及びその装置に関する
DETAILED DESCRIPTION OF THE INVENTION The invention consists in transporting the mold sequentially from a supply section to a casting section, filling it with molten silicon, transferring it to a cooling section after directional solidification of the silicon has taken place, and finally removing it. The present invention relates to a method and apparatus for the cyclical production of a silicon molded body having a columnar structure, which is composed of a single-crystal crystal zone having a crystallographically desirable orientation.

結晶学的に好ましい配向を有する単結晶の結晶帯域から
成る柱状構造の多結晶ケイ素は、ソーラー電池基材とし
て、従来のエネルギーキャリヤに競合し得る、光電池テ
クニックを用いた発電手段という点でますます重要視さ
れている。西ドイツ特許公開第2508803号明細書
から公知のこの材料は牛連続鋳造法を用いる西ドイツ特
許公開第2745247号により製造することができる
Polycrystalline silicon, which has a columnar structure consisting of single-crystalline bands with favorable crystallographic orientation, is becoming increasingly attractive as a solar cell substrate and as a means of generating electricity using photovoltaic techniques, which can compete with conventional energy carriers. It is considered important. This material, which is known from DE 25 08 803, can be produced according to DE 2 745 247 using the bovine continuous casting method.

この方法では、鋳造部において鋳型に注入された溶融ケ
イ素は200〜1000℃の垂直温度勾配を受けて、硬
化を生ずる。ケイ素が完全に凝固した時に、鋳型を冷却
部でさらに冷却し、この冷却後に搬出するが、この間に
供給部から他の鋳型を鋳造部に運搬し、溶融ケイ素を充
填する。この方法自体は効果的であるが、鋳型の温度勾
配を調節するために、鋳造部にかなり高価な加熱製造が
必要である。さらに、鋳造部が全凝固プロセス中に他の
工程に対して完全に遮断されるので、この方法によって
運転される装置の生産速度は、ケイ素の凝固速度によっ
て決定される成る速度まで上昇するにすぎガい。
In this method, molten silicon poured into a mold in the casting section is subjected to a vertical temperature gradient of 200 to 1000 DEG C., resulting in hardening. When the silicon is completely solidified, the mold is further cooled in the cooling section, and after this cooling, it is taken out. During this time, another mold is transported from the supply section to the casting section and filled with molten silicon. Although this method is effective in itself, it requires fairly expensive heated fabrication of the casting in order to adjust the temperature gradients in the mold. Furthermore, since the casting section is completely isolated from other steps during the entire solidification process, the production rate of equipment operated by this method can only increase to a rate determined by the solidification rate of the silicon. Guy.

この技術状態から出発した本発明の課題は、柱状構造の
ケイ素成形体の循環鋳造を低い装置費用及び高い生産速
度で可能にする方法を提供することである。
Starting from this state of the art, the object of the present invention is to provide a method which makes it possible to circularly cast silicon shaped bodies having a columnar structure with low equipment costs and high production rates.

との評題は、供給部から鋳造部に入る各鋳型を溶融ケイ
素の供給前に、20°〜1550℃の温度に加熱し、溶
融ケイ素の充填後に、ケイ素が凝固する前に鋳型を結晶
化部に移し、とこでケイ素が方向性エネルギー除去によ
る方向性凝固を生じ、この凝固中にケイ素の自由表面が
、凝固過程の終了まで少なくとも一部溶融状態に維持さ
れること、及び結晶化部でケイ素が完全に凝固した後に
、鋳型を冷却部に移すことを特徴とする方法によって解
決される。
Each mold entering the casting section from the supply section is heated to a temperature of 20° to 1550°C before supplying molten silicon, and after filling with molten silicon, the mold is crystallized before the silicon solidifies. the silicon undergoes directional solidification by directional energy removal, and during this solidification the free surface of the silicon is maintained at least partially in a molten state until the end of the solidification process; The problem is solved by a method characterized in that the mold is transferred to a cooling section after the silicon has completely solidified.

この方法を実施するだめの装置は次の点を特徴とする:
すなわち加熱装置によって囲繞され、ケイ素の取り出し
が可能である溶融るつぼを収容した、排気可能で真空気
密な鋳造部であって、外気から真空気密な遮断装置によ
って分離された、溶融るつぼに連通ずる少なくとも1つ
の装入チャンネルと、鋳型を鋳造位置に移動させる鋳型
受は台とを備えた鋳造部菖鋳型内にあるケイ素の露出面
にエネルギーを供給するエネルギー源と、このエネルギ
ー源と向い合ったエネルギー除去装置とを備えた、鋳造
部に接続した少なくとも1つの結晶化部;鋳造部に連通
ずるが、真空気密な遮断装置によって鋳造部から分離さ
れる少なくとも1つの供給部寥鋳型を望ましい部に移動
させる運搬手段i及びガス供給及び排出パイプから成る
ことを特徴としている。
The device for carrying out this method is characterized by:
i.e. an evacuable, vacuum-tight casting part containing a melting crucible surrounded by a heating device and from which silicon can be removed, at least one part communicating with the melting crucible separated from the outside air by a vacuum-tight isolation device. A casting section having a charging channel and a mold holder for moving the mold into the casting position; an energy source for supplying energy to the exposed silicon surfaces in the mold; and an energy source facing the energy source. at least one crystallization section connected to the casting section, having a removal device; at least one supply section communicating with the casting section, but separated from the casting section by a vacuum-tight shutoff device; moving the mold to the desired section; It is characterized in that it consists of a conveying means i and gas supply and discharge pipes.

この方法と装置を図1と2に関連して、さらに詳細に説
明する:両図において類似する機能には、同じ参照記号
を与える。
The method and apparatus will be explained in more detail in connection with FIGS. 1 and 2: similar features in both figures are given the same reference symbols.

この方法に用いる鋳型1(図面には図式によってのみ示
す)は基本的には、最初に挙げた特許文献から公知であ
る。この鋳型は一般には、例えば黒鉛、窒化ケイ素また
は炭化ケイ素のような、ケイ素に安定な材料から製造さ
れた、好ましくは長方形の内部横断面を有する、大でい
は一面が開口した中空体であり、このサイズは収容すべ
き溶融ケイ素量によって定まる。この内部サイズは凝固
したケイ素から、任意に縁取りした後に、−辺の長さが
100〜1100■、好ましくは600〜500朝の長
方形または方形の横断面を有する成形体が得られるよう
に選択するのが合目的である;生成物の目標高さは15
0〜250gであることが望ましい。鋳型のケイ素と接
触する面に、例えばケイ素、炭化ケイ素、窒化ケイ素、
黒鉛、石英または他の適切なセラミック材料から成るラ
イニングまたは被覆を備えることも有効であるとわかっ
ている。開口を通してエネルギーが供給される時に、開
口に対応する境界面から本質的にエネルギーが放出され
る鋳型が特に有利に用いられる。例えば中空シリンダー
形鋳型の側面は底部表面よりも良好な断熱性を有するこ
とが望ましい。
The mold 1 used in this method (shown only diagrammatically in the drawing) is known in principle from the first-mentioned patent documents. The mold is generally a hollow body, preferably open on one side, with a preferably rectangular internal cross-section, made of a silicon-stable material, such as graphite, silicon nitride or silicon carbide. , the size of which is determined by the amount of molten silicon to be accommodated. This internal size is selected in such a way that, after optional edging, a molded body is obtained from the solidified silicon with a rectangular or square cross section with a side length of 100 to 1100 cm, preferably 600 to 500 cm. The target height of the product is 15
It is desirable that it is 0-250g. For example, silicon, silicon carbide, silicon nitride,
It has also proven useful to provide a lining or coating of graphite, quartz or other suitable ceramic materials. Molds are particularly advantageously used in which when energy is supplied through the aperture, energy is essentially released from the interface corresponding to the aperture. For example, it is desirable that the sides of a hollow cylindrical mold have better thermal insulation properties than the bottom surface.

本発明による方法では、充填すべき空の各鋳型は、好ま
しくは2部に、すなわち挿入部3と予熱部4に分割され
た供給部2に挿入する。鋳型は先ず最部に挿入部6に入
り、ここで任意に不活性ガスまたは不活性ガス混合物を
混合することによって、空気を排気して、適当な作用圧
力を通常は10−3〜” ””mbarの間に調節し、
次に挿入部6から遮断要素5、例えば真空すべり弁によ
って分離されている予熱部4に移す。ここで鋳型1を鋳
造プロセスに望ましい温度にする。すなわち先ず最初に
約150°〜350℃において予備乾燥し、次に約5°
〜300°〜2000℃において、好ましくは1500
°〜1300℃において加熱して、残留する揮発性不純
物を除去する。この過程は真空下または、例えは水素、
窒素筺たはアルゴンのような不活性ガス下で実施するの
が好ましい。次に鋳型を20°〜1550℃、好ましく
は850°〜1650℃の実際の作用温度にする。この
場合に主として20°〜850℃という低い温度範囲を
選択して、ケイ素を特に選速に冷却することが望ましい
、また温度ショックに充分に耐える材料製の鋳型が有効
である。
In the method according to the invention, each empty mold to be filled is inserted into a feed section 2 which is preferably divided into two parts, ie into an insertion section 3 and a preheating section 4 . The mold first enters the insert 6 at the very end, where the air is evacuated and a suitable working pressure is established, usually from 10-3 to 10-3, optionally by mixing with an inert gas or inert gas mixture. adjusted between mbar,
It is then transferred from the insert 6 to the preheating section 4, which is separated by a shut-off element 5, for example a vacuum slide valve. The mold 1 is now brought to the desired temperature for the casting process. That is, first pre-drying at about 150° to 350°C, then drying at about 5°C.
~300°~2000°C, preferably 1500°C
Heating at ~1300°C removes remaining volatile impurities. This process can be carried out under vacuum or with hydrogen, for example.
Preferably, it is carried out under a nitrogen blanket or an inert gas such as argon. The mold is then brought to the actual working temperature of 20° to 1550°C, preferably 850° to 1650°C. In this case, it is desirable to cool the silicon at a particularly selective rate, mainly in the low temperature range of 20 DEG to 850 DEG C., and it is effective to use a mold made of a material that can sufficiently withstand temperature shocks.

例えば、1500°〜1700℃−村るm発によって(
例えば西ドイツ特許公開第2956164号明細書によ
る)、または結晶化プロセス中に溶融表面方向に不純物
を特に効果的に偏析させることによって付加的な精製作
用を行うために、鋳造ケイ素を完全な溶融状態に維持す
べきであるときには、1650℃以上の鋳型温度、特に
ケイ素の融点以上の鋳型高度が望ましい。このような場
合には、例えば窒化ケイ素のような、特に安定な材料か
ら作られた、あるいは少なくともこのような材料で内張
りまたは被覆した鋳型を用いることが一般に必要である
。予熱及び加熱のためには、鋳型上に有利に配置された
、好ましくは黒鉛または炭化ケイ素で作られた放射加熱
要素の使用が有効だと実証されているが、この他の加熱
方法、例えば抵抗または誘導加熱方法の使用も原則とし
て考えられる。
For example, by firing from 1500° to 1700°C (
(e.g. according to DE 29 56 164 A1) or in order to carry out an additional refining action by particularly effective segregation of impurities in the direction of the molten surface during the crystallization process, the cast silicon is brought to a completely molten state. A mold temperature of 1650° C. or above, especially a mold height above the melting point of silicon, is desirable when it is to be maintained. In such cases, it is generally necessary to use a mold made of a particularly stable material, such as silicon nitride, or at least lined or coated with such a material. For preheating and heating, the use of radiant heating elements advantageously arranged on the mold, preferably made of graphite or silicon carbide, has proven effective, but other heating methods, e.g. Alternatively, the use of induction heating methods is also conceivable in principle.

予熱後に、鋳型を供給部2から、遮断要素例えば真空す
ベシ弁6によってこの部から隔離された鋳造部7へ移す
;この移動作業中に同じ圧力条件が内部を支配するよう
にする。鋳造部7には溶融るつぼ8がある。この溶融る
つぼは通常中空シリンダー状であり、鋳型よりも高い位
置にあるのが望ましく、溶融ケイ素9を注ぎ出しによっ
て放出するために、本発明の好ましい態様によると、傾
斜可能なものである。ケイ素に安定な材料、好ましくは
ケイ素から作られたこの溶融るつIrは鋳造部7の内側
に備えられた加熱装置を用いて、直接加熱されるのが望
ましいが、これを囲繞する、電導性材料好捷しくは黒鉛
製の第二加熱るっほによって誘導加熱されることも望ま
しい。この第二るつぼも傾斜可能であり、その一部が1
本またはそれ以上の誘導コイルの内側に配置されている
。熱の損失を最少にするために、約10〜2004さの
1個またはそれ以上の電気絶縁層と断熱層を加熱るつけ
とコイルの間に挿入するのが有利である。
After preheating, the mold is transferred from the feed section 2 to the casting section 7, which is separated from this section by a shut-off element, for example a vacuum valve 6, so that the same pressure conditions prevail inside during this transfer operation. The casting section 7 has a melting crucible 8 . This melting crucible is usually in the form of a hollow cylinder, preferably located above the mold and, according to a preferred embodiment of the invention, tiltable in order to release the molten silicon 9 by pouring. This molten crucible Ir made from a silicon-stable material, preferably silicon, is preferably heated directly using a heating device provided inside the casting section 7, but it is preferably heated directly using a heating device provided inside the casting section 7. It is also desirable that the material be heated by induction using a second heating element preferably made of graphite. This second crucible is also tiltable, with a part of it being 1
A book or more is placed inside the induction coil. In order to minimize heat losses, it is advantageous to insert one or more electrically insulating and thermally insulating layers of about 10 to 2004 mm between the heating lamp and the coil.

溶融るつぼは好ましくは、例えば適当に加熱される黒鉛
または炭化ケイ素プレートから作られた、装入または鋳
造中は除孝することのできる、傾斜可能な断熱層または
放射とLターによって、上方及び/または下方から任意
に断熱または加熱することが可能である。
The melting crucible is preferably insulated from above and/or by means of a tiltable insulation layer or a radiator, made for example from suitably heated graphite or silicon carbide plates, which can be removed during charging or casting. Alternatively, it is possible to optionally insulate or heat from below.

時には必要になる、使用済み溶融るつぼの交換を容易に
するために、加熱るつほに底部から上方へ拡大した円錐
状側壁と垂直方向に可動な底部を備えることが有効だと
実証されている。収納場所には溶融るつぼの設置及び除
去のためのそれ自身の真空気密な接近手段をその外壁に
備えるのが望ましい。
To facilitate the replacement of used melting crucibles, which is sometimes necessary, it has proven effective to provide heating crucibles with conical side walls that widen upward from the bottom and a vertically movable bottom. . Preferably, the storage area has its own vacuum-tight access means for installing and removing the melting crucible on its outer wall.

通常は粒状から塊状である(平均粒度は典型的に約1〜
150mm)、装入すべきケイ素を装入チャンネルから
溶融るつほに供給する。通常はダクト状の装入チャンネ
ルは、被溶融材料を外部から鋳造部へ供給するだめのゲ
ートから、溶融るつは開口の上方の、るつぼ充填に適し
た位置にまで通ずる。
Usually granular to agglomerated (average particle size typically between about 1 and
150 mm), the silicon to be charged is fed into the molten melt through the charging channel. A charging channel, usually duct-like, leads from the gate of the reservoir for supplying the material to be melted from the outside into the casting section to a position suitable for filling the crucible above the opening.

装入チャンネルは任意に振動可能なダクト状である、す
なわち装入チャンネルは可動であり、充填中の作用位置
から溶融プロセス中の静止位置まで移動し得る。装入チ
ャンネルは鋳造部の外側で装入した、溶融るつぼへゲー
トを介して供給すべき      ′材料を運搬し、ゲ
ートで放出するための運搬手段を有することもできる。
The charging channel is optionally oscillatory and duct-like, ie it is movable and can be moved from an active position during filling to a rest position during the melting process. The charging channel can also have conveying means for conveying the material charged outside the casting section, to be fed via the gate to the melting crucible, and for discharge at the gate.

これに関連して、溶融るつほを一段階で充填するのでは
なく、少量ずつ徐々に充填するのが有効だと判明してい
る。このことは装入チャンネルを小さくすることができ
、同時に溶融るつぼの高度な充填度が得られることを意
味する。
In this connection, it has been found to be advantageous not to fill the molten melt in one step, but to gradually fill it in small quantities. This means that the charging channel can be made smaller and at the same time a high degree of filling of the melting crucible is obtained.

例えば西ドイツ特許公開第2933164号明細書また
は西ドイツ特許公開第2729464号明細書に従って
、前精製段階からすでに溶融物としてケイ素が得られる
場合には、溶融状態でケイ素を溶融るつほに供給するこ
とも原則的には可能である。
If the silicon is already obtained as melt from a pre-purification step, for example according to DE 29 33 164 or DE 2 729 464, it is also possible to feed the silicon in molten state to the melting point. In principle it is possible.

このような場合には、鋳型に直接、すなわち溶融るつほ
を介在させることなく充填するように配慮するとともで
きる。
In such a case, consideration may be given to filling the mold directly, ie, without intervening a melting melt.

固体のケイ素を装入する場合には、溶融るっほを150
℃〜1300℃の温度に維持するのが望ましい。
When charging solid silicon, 150 ml of molten Ruho
It is desirable to maintain a temperature between 1300°C and 1300°C.

石英溶融るつぼの場合には、700°〜1500℃の温
度を選択するのが望ましい。この温度範囲では、材料が
機械的応力に対する抵抗の点で比較的望ましい性質を有
することを経験が示しているからである。すでに存在す
る溶融物にすなわち溶融ケイ素に装入物を加える場合に
は、るつぼの中味全体の凝固を避けるように供給量とる
つ/!温度を調節することが有利だと判明している、さ
もない場合には、凝固時のケイ素の体積増加のためにる
つぼ壁が大きな機械的応力にさらされることになる。
In the case of quartz melting crucibles, it is advisable to choose a temperature between 700° and 1500°C. This is because experience has shown that in this temperature range the material has relatively desirable properties in terms of resistance to mechanical stress. When adding the charge to an already existing melt, i.e. to molten silicon, the feed rate should be adjusted in such a way as to avoid solidification of the entire contents of the crucible. It has proven advantageous to regulate the temperature, otherwise the crucible wall would be exposed to high mechanical stresses due to the volume increase of the silicon during solidification.

再装入を行う時に、必要に応じてドーパントを添加する
こともできる。
A dopant can also be added as necessary when recharging.

一般に、溶融プロセス中に鋳造部は0.1〜100mb
ar 、好ましくは1〜2 D mbarの圧力に調節
される。特に上方から溶融物の表面方向に不活性ガスを
供給することを有利である。
Generally, during the melting process the casting part is 0.1-100mb
ar, preferably a pressure of 1-2 D mbar. It is particularly advantageous to feed the inert gas from above towards the surface of the melt.

溶融るつぼ内の材料が完全に溶融状態になった時または
この直前に、鋳型1は供給部2から鋳造部7に移し、そ
こで鋳型受は台10に置き、次に溶融ケイ素を充填する
。鋳造距離が長くなシすぎるのを避けるために、一般に
は鋳型を溶融ケイ素9が溶融るつぼ8から放出される場
所に近づける。
When or just before the material in the melting crucible is completely molten, the mold 1 is transferred from the supply section 2 to the casting section 7, where the mold receiver is placed on a platform 10 and then filled with molten silicon. To avoid too long casting distances, the mold is generally placed close to where the molten silicon 9 is discharged from the melting crucible 8.

このために、適当な支持面を有する入れ子犬の、望まし
くは回転可能の軸を設けて、鋳型が昇降できるようにす
る。このことは大ていの場合に、例えばホラ・ξ−また
はダクトのよう々付加的な手段を鋳造プロセス中に用い
る必要がないことを意味する。
For this purpose, a preferably rotatable shaft of the container with a suitable support surface is provided so that the mold can be raised and lowered. This means that in most cases it is not necessary to use additional means during the casting process, such as for example holes or ducts.

鋳造ゾロセス上鋳型を中央の縦軸のまわシに好ましくは
約10〜60回転/分の速度で回転させるのが有利であ
る。このようにすると、鋳型が受ける熱的及び機械的応
力を減することができる。同時に、鋳型壁とケイ素溶融
物の間の接触面に短期間内に固体ケイ素層12が形成さ
れるので、鋳型内の残りの溶融ケイ素は、云わば、固体
ケイ素のるつぼによって囲繞されるようになる。このこ
とは特に、るつは壁とケイ素溶融物の間の反応によって
不純物が形成されるリスクを減することに役立つ。
It is advantageous to rotate the casting mold on a central longitudinal shaft, preferably at a speed of about 10 to 60 revolutions per minute. In this way, the thermal and mechanical stresses to which the mold is subjected can be reduced. At the same time, a solid silicon layer 12 forms within a short period of time at the interface between the mold wall and the silicon melt, so that the remaining molten silicon in the mold is, as it were, surrounded by a crucible of solid silicon. Become. This serves in particular to reduce the risk of impurities being formed by reactions between the melt and the silicon melt.

熱溶融物を注入する時に熱溶融物によって鋳型が過熱さ
れるのを避けるために、アイスキューブの原理によって
、いわゆる犠牲片を例えば鋳型のライニングとして用い
ることができる。これらの犠牲片はそれ自体が溶融して
、溶融物から熱をうばうものである。
In order to avoid overheating of the mold by the hot melt when pouring it, a so-called sacrificial piece can be used, for example, as a lining of the mold, according to the ice cube principle. These sacrificial pieces melt themselves and carry away heat from the melt.

溶融ケイ素が注入された時に、これが完全に凝固する前
に、鋳型を鋳型骨は台10から除去して、結晶化部11
に移す。この作業に最も適した瞬間は、高度な熱放射の
結果として溶融物の表面に凝固したケイ素の完全なりラ
ストが形成されたときである。このクラストは溶融物を
運搬するときの溶融物のこぼれを阻止すると同時に、不
純物から溶融物を保護するものである。
When the molten silicon is injected and before it completely solidifies, the mold is removed from the mold base 10 and the crystallized part 11 is removed.
Move to. The most suitable moment for this work is when a complete crust of solidified silicon has formed on the surface of the melt as a result of high thermal radiation. This crust prevents spillage of the melt during transportation and protects the melt from impurities.

結晶化部11で、ケイ素自体から形成されたこのクラス
トの少なくとも一部は再溶解する;すでに凝固したケイ
素12が完全に再溶解することは大でいの場合不必要で
ある。エネルギー源としては、例えば黒鉛または炭化ケ
イ素加熱要素としての放射熱源を用いるのが望ましい。
In the crystallization zone 11, at least a portion of this crust formed from the silicon itself is redissolved; a complete redissolution of the already solidified silicon 12 is not necessary in most cases. As energy source it is preferred to use a radiant heat source, for example as a graphite or silicon carbide heating element.

これは鋳型の開口の上方に配置されて、ケイ素の露出表
面にエネルギーを放射する。例えば抵抗加熱または誘導
加熱のよう力加熱方法を用いて、ケイ素表面を加熱する
ことももちろん可能でおる。
It is placed above the mold aperture and radiates energy onto the exposed surface of the silicon. It is of course also possible to heat the silicon surface using force heating methods, for example resistance heating or induction heating.

加熱要素はケイ素の融点以上約1300℃まで、好まし
くは1460°〜1480℃の温度に維持するのが望ま
しい。殆んど垂直方向のエネルギー流を生ずるために一
結局、温度勾配を生ずるために一エネルギー源に対立す
る鋳型面すなわち底部面には、エネルギーを放出する機
会が与えられる。これは例えば、液状またはガス状冷却
剤が流れる、鋳型底部と接触した黒鉛、銅または鉄製の
熱交換面を用いる熱放射または熱交換によって行うこと
ができる。例えば冷却水を用いる冷却によるエネルギー
除去は、D、1〜5祁/分、特に1〜2晒/分の結晶化
速度が得られるようなエネルギー供給になるように調節
するのが好ましい。すでに説明したように、殆んど水平
な結晶化面の発達は鋳型の側面を断熱することによって
促進され得る。
The heating element is desirably maintained at a temperature above the melting point of silicon up to about 1300°C, preferably between 1460° and 1480°C. To create a nearly vertical energy flow, the mold face or bottom face facing one energy source is given the opportunity to release energy, resulting in a temperature gradient. This can be done, for example, by heat radiation or heat exchange using heat exchange surfaces made of graphite, copper or iron in contact with the mold bottom, through which a liquid or gaseous coolant flows. For example, the energy removal by cooling using cooling water is preferably adjusted so that the energy supply is such that a crystallization rate D of 1 to 5 per minute, particularly 1 to 2 per minute is obtained. As previously discussed, the development of nearly horizontal crystallization planes can be promoted by insulating the sides of the mold.

結晶化中は、全ケイ素が殆んど、すなわち約80〜95
チが凝固するまで、ケイ素の露出部の少なぐとも一部が
溶融状態であるようにヒーターを用いて維持する。次に
加熱要素の温度を徐々に、好1しくは0.1〜b によって鋳型の露出表面上のケイ素が徐々に凝固し始め
る。この方法は凝固プロセス中に溶融ケイ素が凝固した
ケイ素によって封入され、凝固中に体積が増加する結果
として生成物及び/または鋳型中に熱による誘導応力、
き裂またはその他の機械的損傷が生ずるのを阻止する。
During crystallization, the total silicon is mostly, i.e. about 80-95
A heater is used to maintain at least a portion of the exposed silicon in a molten state until the silicon solidifies. The temperature of the heating element is then gradually increased, preferably from 0.1 to b, so that the silicon on the exposed surfaces of the mold begins to gradually solidify. This method is characterized in that during the solidification process the molten silicon is encapsulated by the solidified silicon and thermally induced stress in the product and/or mold as a result of the volume increase during solidification.
Prevent cracks or other mechanical damage from occurring.

鋳型をその垂直軸のまわりに回転させることによって、
結晶化に望ましい影響を与えることもできる。
By rotating the mold around its vertical axis,
It is also possible to have a desired influence on crystallization.

結晶化中に、望ましくは約5〜100 mbarの真空
または不活性ガス雰囲気を結晶化部に維持する。
During crystallization, a vacuum or inert gas atmosphere of preferably about 5 to 100 mbar is maintained in the crystallization section.

溶融物表面に不活性ガス流を流して、発生すると思われ
る、ケイ素または一酸化炭素のような、ガス状不純物を
除去することが特に有利だと実証されている。
It has proven particularly advantageous to pass a stream of inert gas over the melt surface to remove any gaseous impurities, such as silicon or carbon monoxide, which may occur.

ケイ素が完全に凝固したときに、焼もどし過程をケイ素
に施して、材料中の応力を減じ、同時に温度分布を均一
にする。原則として、この段階は結晶化部11において
行うことも可能であるが、結晶化部11に連結する冷却
部16に鋳型を移すことがさらに有利である。
When the silicon is completely solidified, a tempering process is applied to the silicon to reduce the stress in the material and at the same time to homogenize the temperature distribution. In principle, this step could also be carried out in the crystallization section 11, but it is more advantageous to transfer the mold to the cooling section 16, which is connected to the crystallization section 11.

この冷却部は2つの部分、すなわち焼もどし部14と急
冷部15に分けるのが望ましい。鋳型は最初に焼もどし
部14に入る。焼もどし部14と結晶化部11の間の遮
断要素は一般には必要ではない。凝固したケイ素12は
ここで、好ましくは0.5°〜30℃/分の冷却速度で
焼もどされて、900゜1300℃の温度になる。この
段階中に、鋳型内のケイ素は一般に底部からはもはや冷
却されず、ケイ素の露出表面に放射されるエネルギーが
結晶化部で用いられる値の約10〜50%だけ減少する
This cooling section is preferably divided into two sections: a tempering section 14 and a quenching section 15. The mold first enters the tempering section 14. A blocking element between the tempering section 14 and the crystallization section 11 is generally not necessary. The solidified silicon 12 is then tempered to a temperature of 900° to 1300° C., preferably at a cooling rate of 0.5° to 30° C./min. During this stage, the silicon in the mold is generally no longer cooled from the bottom and the energy radiated to the exposed surfaces of the silicon is reduced by about 10-50% of the value used in the crystallization section.

結晶化部におけると同様に、エネルギーは例えば抵抗ま
たは誘導加熱系のような、適当々熱源から供給されるが
、例えば黒鉛まだは炭化ケイ素加熱要素から成る放射ヒ
ーターによってエネルギーを供給するのが好ましい。
As in the crystallization section, energy is supplied from any suitable heat source, such as, for example, a resistive or inductive heating system, but preferably by a radiant heater, for example consisting of a graphite or silicon carbide heating element.

必要な温度に達したときに一温度は例えば高温計のよう
な、好ましくは非接触性温度測定器具を用いて、装置全
体にわたってモニターする一鋳型をさらに急冷部15に
移す。この急冷部は焼もどし部14から真空気密彦遮断
要素16によって隔離されている。凝固したケイ素はこ
こで、この部から最終的に放出されるときの圧力と温度
条件になる。ケイ素を放出するためには、700℃以下
の温度が適当だと実証されている。との第一の理由はこ
の温度ではケイ素が塑性変形可能な温度範囲である70
0°〜900℃の範囲外の状態であること、第二の理由
は、例えば鋳型のような黒鉛製補助装置に、酸化性ガス
(例えば、空気)が侵入したときに、装置が燃焼する危
険性がこの温度では小さいことである。冷却は非酸化性
zrガス流特に窒素またはアルザン流を用いて行うのが
望ましい。このガス流は鋳型上を流れ、任意に容器内を
循環し、外部で冷却される。さらに、冷却剤が質流する
、鋳型底部と接触した熱交換面によって冷却効果が高め
られる。焼もどし済みの鋳型を装入した時に焼もどし部
の圧力と大体同じに調節された急冷部の圧力を、急冷作
業開始時に、大気圧捷で高めることができる。焼もどし
工程と急冷工程は原則として、1つの部で実施すること
ができるが、この場合には結晶化部からこの部を遮断す
る真空気密な要素が不可欠である。700℃の制限温度
に達したときに、急冷部の換気を行うことができる。
When the required temperature is reached, the temperature is monitored throughout the apparatus, preferably using a non-contact temperature measuring instrument, such as a pyrometer.The mold is further transferred to the quenching section 15. This quenching section is separated from the tempering section 14 by a vacuum-tight barrier element 16. The solidified silicon is now at the pressure and temperature conditions under which it will ultimately be released from this section. Temperatures below 700° C. have been demonstrated to be suitable for releasing silicon. The first reason is that this temperature is within the temperature range in which silicon can be plastically deformed.
The second reason is that the temperature is outside the range of 0° to 900°C.If oxidizing gas (e.g., air) enters graphite auxiliary equipment, such as a mold, there is a danger that the equipment will catch fire. The reason is that the temperature is small at this temperature. Preferably, the cooling is carried out using a non-oxidizing ZR gas flow, especially a nitrogen or Alzan flow. This gas stream flows over the mold and optionally circulates within the vessel and is cooled externally. Furthermore, the cooling effect is enhanced by the heat exchange surface in contact with the mold bottom, through which the coolant flows. The pressure in the quenching section, which is adjusted to be approximately the same as the pressure in the tempering section when the tempered mold is charged, can be increased by atmospheric pressure at the start of the quenching operation. In principle, the tempering step and the quenching step can be carried out in one section, but in this case a vacuum-tight element is essential, which isolates this section from the crystallization section. When the temperature limit of 700°C is reached, the quenching section can be ventilated.

図2に図示しだ実施態様によると、本発明による方法を
実施するだめの装置内に、傾斜可能な装入ユニットを備
えた溶融るつは8、るつほの下の面内に回転台のように
配置された鋳型受は台10、結晶化部11及び焼もどし
部14が唯一つの鋳造塔17の内部にまとめて配置され
ており、各部自体は図1の機能説明と同様に構成されて
いる。鋳造塔17は供給・搬出ゲート18によって装入
・搬出ライン19に連結している。鋳型1は最初に挿入
部6に入り、次に真空気密な遮断要素20によって挿入
部から分離されている移動部21に入る。ここから、一
方では空の鋳型が鋳造塔17に供給されることができ、
他方では凝固したケイ素で満たされ、鋳造塔から放出さ
れた鋳型がさらに急冷部15に運搬される。空の鋳型の
場合には、移動部21が予熱部の作業(図1による)す
なわち加熱及び作用温度と圧力の確立を行う。他方では
、充填された鋳型が一般にはさら妬、できるかぎり迅速
に急冷部に運搬されるため、この鋳型が加熱されるべき
空の鋳型に対して移動部を遮断することはない。
According to the embodiment shown in FIG. 2, a melting crucible 8 with a tiltable charging unit is provided in the vessel apparatus for carrying out the method according to the invention, and a turntable is provided in the plane below the melting box. In the mold receiver arranged as shown in FIG. ing. The casting tower 17 is connected to a charging/discharging line 19 by a supply/discharging gate 18 . The mold 1 first enters the insert 6 and then into the transfer part 21 which is separated from the insert by a vacuum-tight blocking element 20 . From here, on the one hand, empty molds can be fed to the casting tower 17;
On the other hand, the mold filled with solidified silicon and discharged from the casting tower is conveyed further to the quenching section 15 . In the case of an empty mold, the moving part 21 performs the work of the preheating part (according to FIG. 1), ie heating and establishing the working temperature and pressure. On the other hand, the filled mold is generally conveyed as quickly as possible to the quenching section, so that this mold does not block the transfer section with respect to the empty mold to be heated.

鋳造塔17へのまたは鋳造塔17からの鋳型の供給また
は放出は、例えば水平に移動する滑りフォーク22を用
いて行うことができる。供給された空の鋳型は鋳型受は
台10に入り、図1で述べた方法と同様に、通常は入れ
子犬の回転可能なシャフトによって、溶融ケイ素9が溶
融るつぼ8から放出される場所1で上昇する。鋳型が充
填されたときに、鋳型は出発位置まで戻り、さらに次の
回転可能な位置すなわち結晶化部に運ばれ、ここでケイ
素は方向性凝固を行う、前回の鋳造プロセスから任意に
そこに存在する、すでに完全凝固ケイ素12で満たされ
た鋳型は回転運動によって同時に、焼もどし部14に移
されるが、900℃〜1700℃の温度にすでに焼もど
されたケイ素を含んで、焼もどし部存在する鋳型は鋳型
受は台10に達し、そこから移動部21に放出され、次
に急冷部15に放出される。新しい、適当に用意された
空の鋳型は、移動部21を通ってから、鋳造塔内の空の
鋳型受は台10を占有することができる。
The molds can be fed into or discharged from the casting tower 17 by means of horizontally moving sliding forks 22, for example. The supplied empty mold enters the mold holder 10 and is placed at a location 1 where molten silicon 9 is ejected from the melting crucible 8, usually by a rotatable shaft of the holder, similar to the method described in FIG. Rise. When the mold is filled, it is returned to its starting position and then transported to the next rotatable position, i.e. the crystallization section, where the silicon, present at any time from the previous casting process, undergoes directional solidification. The mold, already filled with fully solidified silicon 12, is simultaneously transferred by a rotary movement to a tempering section 14, which contains silicon already tempered to a temperature of 900° C. to 1700° C. The mold reaches the mold holder 10 and is discharged from there to a moving section 21 and then to a quenching section 15. After a new, suitably prepared empty mold has passed through the transfer station 21, the empty mold receiver in the casting tower can occupy the platform 10.

図1と2に示した、本発明による方法を実施するための
装置は、もちろん、本発明の考えから逸脱するとと々く
、多くの点で改良可能である。とのことは特に、最も時
間を要するため生産速度を決定する工程に対して、平行
してまたは連続的に作動する幾つかの部を設けた装置に
特にいえるととである。従って、例えば供給部、結晶化
部、焼もどし部または急冷却を幾つか備えた態様も可能
である。これに関連して、鋳造工程と結晶化工程が密接
に連結していないという事実も、有利な結果を有してい
る。
The apparatus for carrying out the method according to the invention, which is shown in FIGS. 1 and 2, can of course be modified in many respects, departing from the idea of the invention. This is especially true for machines with several parts working in parallel or in succession, for the most time-consuming and therefore determining process of production rate. For example, embodiments with several feed sections, crystallization sections, tempering sections or rapid cooling are also possible. In this connection, the fact that the casting and crystallization steps are not closely coupled also has advantageous consequences.

この方法では、全ての部を同時に鋳型で占めることが可
能であり、各工程を平行して実施することが可能である
ことが、この方法の特別な利点である。本発明の好まし
い実施態様は、同時に実施、(22> することのできる次の手段を含んでいる:溶融るつぼに
装入された固体ケイ素が溶融する間に、新しい鋳型を挿
入部に挿入し、他の鋳型を予熱部で加熱する。同時に、
結晶化部には凝固したケイ素を含む鋳型が存在し、焼も
どし部には、中味が約900°〜1300℃に焼もどさ
れている鋳型が存在し、急冷部では、焼もどされたケイ
素を含む他の鋳型が放出状態に調節されている。この最
後に挙げた鋳型が装置から放出される時に、全ての鋳型
はそれまでに占めていた位置を空け、次の部に移動する
。加熱された鋳型は予熱部から鋳型受は台に運ばれ、こ
の間に溶融されたケイ素を満たされ、次に結晶化部に入
る、結晶化部をそれまで占めていた鋳型は焼もどし部傾
移される。結晶化が行われている間に、溶融るつぼ内で
新しいケイ素が溶融する。この工程中に、鋳型受は台は
図2による配置の場合には、空いてい々ければならない
が、図1による配置の場合には鋳型によって占められる
A particular advantage of this method is that all parts can be occupied by the mold at the same time and that the steps can be carried out in parallel. A preferred embodiment of the invention includes the following steps which may be carried out simultaneously: inserting a new mold into the insert while the solid silicon charged in the melting crucible is melting; Heat the other molds in the preheating section.At the same time,
In the crystallization part there is a mold containing solidified silicon, in the tempering part there is a mold whose contents have been tempered to about 900°C to 1300°C, and in the quenching part, the tempered silicon is Other templates containing the template are conditioned for release. When this last-mentioned mold is discharged from the device, all molds vacate their previously occupied positions and move to the next section. The heated mold is transported from the preheating section to the mold holder, during which it is filled with molten silicon, and then enters the crystallization section, where the mold that previously occupied the crystallization section is moved to the tempering section. It will be done. While crystallization is taking place, new silicon is melted in the melting crucible. During this process, the mold holder must be emptied in the arrangement according to FIG. 2, but is occupied by the mold in the arrangement according to FIG.

しかし、原則として、この好ましい各部同時占有は必ら
ずしも実現する必要のないものである。
However, in principle, this preferred simultaneous occupancy of parts does not necessarily have to be realized.

鋳型を目的の部に移すためには、当業者が熟知の、この
目的のだめの公知の運搬手段を考慮することができる。
In order to transfer the mold to the destination, consideration can be given to the known conveyance means for this purpose, which are familiar to the person skilled in the art.

例えば運搬スライダ、スライディングフォーク、または
多くの場合に、回転プラットフォームを使用することが
できる。適切な解決法は、個々に制御可能々ローラー・
ラインの使用である。このローラーラインは必要に応じ
て始動し、選択された特定鋳型の望ましい移動を可能に
するものである。コンベヤーベルトの使用は、工程が正
確に同調して実施されることを必要とするので、あまシ
望ましくない。
For example, conveying slides, sliding forks or, in many cases, rotating platforms can be used. A suitable solution is the use of individually controllable rollers.
This is the use of lines. This roller line is activated as needed to allow the desired movement of the particular mold selected. The use of conveyor belts is less desirable because it requires the processes to be carried out in precise synchronization.

本発明の方法によって得られたケイ素ブロックは結晶学
的に好ましい配向を有する単結晶の結晶帯域から成る柱
状構造を有し、0.°〜100+mn、典型的には1〜
60簡の平均粒度を得ることが通常可能である。縁部分
を除去したときに、このブロックはすぐれたソーラー電
池基材を構成し、この基材によると10〜17チ程度の
効率が得られている。
The silicon blocks obtained by the method of the invention have a columnar structure consisting of a single crystalline zone with a crystallographically preferred orientation, with 0. °~100+mn, typically 1~
It is usually possible to obtain an average particle size of 60 pieces. When the edges are removed, this block constitutes an excellent solar cell substrate with efficiencies on the order of 10-17 inches.

実施例 図2に相当する装置において、水冷式精錬鋼壁を有する
鋳造塔内の傾斜可能な、誘導加熱石英溶融るつぼ(高さ
約60Dtan、直径約500+nm、肉厚約8胡)に
、ケイ素塊(粒度約5〜150mm)を傾斜可能なシャ
ベル機構を備えた装入チャンネルによって、徐々に少量
ずつ(約5〜20に9ずつ)加えて、はぼ完全に充填し
た。この装入物が一部溶解した後、新たにケイ素を少量
ずつ(約5〜20〜ずつ)加え、全体で約100に、の
ケイ素が溶融されるまでにした。この溶融過程中、るつ
ぼを約1420°〜1480℃の温度範囲に保持し、最
終的に1460℃の溶融温度(高温計によって測定)に
達した。アルゴン流を下方に流した容器内の圧力は10
mbarであった。
EXAMPLE In an apparatus corresponding to FIG. 2, a silicon lump is placed in a tiltable, induction-heated quartz melting crucible (height: about 60 Dtan, diameter: about 500+ nm, wall thickness: about 8 mm) in a casting tower with water-cooled refined steel walls. (particle size approx. 5-150 mm) was added gradually in small portions (approx. 5-20 in 9 increments) by means of a charging channel with a tiltable shovel mechanism until it was almost completely filled. After this charge had partially melted, additional silicon was added in small portions (approximately 5 to 20 increments) until a total of approximately 100 silicon had been melted. During this melting process, the crucible was maintained at a temperature range of approximately 1420° to 1480°C, ultimately reaching a melting temperature of 1460°C (measured by pyrometer). The pressure inside the container with the argon flow flowing downward is 10
It was mbar.

同時に、方形の内側横断面を有し、内側を約6助厚さの
粗大結晶性最高後ケイ素プレートで内張すした、鋳型と
して作用する、中空黒鉛シリンダー(内側高さ約280
鯛、内側縁長さ約430m、側壁の断熱材を含めた外径
約750+nm)を、装入・放出ラインの、外気から真
空気密なフラップにょって隔離された挿入部に押し入れ
た。空気が排除され、作用圧力が確立したときに(約1
0−1〜10−3mbar)、運搬スライダによって鋳
型をさらに、装入・放出ラインの移動部に運搬した。こ
の部はすでに空気を排除され、挿入部から水冷式真空す
べ9弁によって分離されている。
At the same time, a hollow graphite cylinder (with an internal height of about 280 m
A sea bream (inner edge length approximately 430 m, outer diameter including side wall insulation approximately 750+ nm) was pushed into the insertion section of the charging/discharging line, which was isolated from the outside air by a vacuum-tight flap. When air is removed and working pressure is established (approximately 1
0-1 to 10-3 mbar), the mold was further conveyed by means of a conveying slide to the moving part of the charging and discharging line. This section has already been purged of air and separated from the insertion section by a water-cooled vacuum valve.

鋳型の上方に配置され、鋳型の横断面に相当した形状を
有する、加熱式黒鉛放射加熱プレートを用いて、鋳型を
約250℃に約60分間維持し、真空乾燥させた。次に
加熱要素の温度を約1500℃に高めて、鋳型をさらに
60分間加熱した。次に、鋳型の温度を約1100℃に
下げて、鋳造塔内のアルゴン圧に相当する、約10 m
barのアルゴン圧を確立した。
Using a heated graphite radiation heating plate placed above the mold and having a shape corresponding to the cross section of the mold, the mold was maintained at about 250° C. for about 60 minutes and vacuum dried. The temperature of the heating element was then increased to approximately 1500°C and the mold was heated for an additional 60 minutes. The temperature of the mold is then lowered to about 1100°C and the temperature is reduced to about 10 m
An argon pressure of bar was established.

溶融るつぼに装入したケイ素はこの間に完全に溶融した
。この時点で、鋳型をさらに移動部からスライディング
フォークによって、鋳造塔の鋳型受は台まで運搬した。
The silicon charged in the melting crucible completely melted during this time. At this point, the mold was further transported from the moving section to the mold holder of the casting tower by a sliding fork.

水冷式の入れ子犬回転シャフトに連結し、付加的ガ断熱
材を有する黒鉛皿である、この受は台を目的の鋳造位置
に達するまで上方に移動させた。次に溶融るつぼを傾斜
させ、溶融ケイ素を、約10回転/分で回転している鋳
型に圧入した。
This receiver, a graphite pan with additional gas insulation, connected to a water-cooled insert rotating shaft, moved the platform upward until the desired casting position was reached. The melting crucible was then tilted and the molten silicon was forced into the mold which was rotating at approximately 10 revolutions per minute.

鋳型が完全に充填されたときに、溶融るつぼをその最初
の位置に戻して、固体ケイ素を再装入することができる
。鋳型をまだ回転させながら、注入位置から戻し、注入
したケイ素の表面が凝固したケイ素の薄い層で榎われる
まで、鋳型受は台中に留置した。凝固ケイ素層でケイ素
表面が覆われた時点で、鋳型を回転台によって、結晶化
部に移した。
When the mold is completely filled, the melting crucible can be returned to its initial position and reloaded with solid silicon. While the mold was still rotating, it was moved back from the injection position and the mold holder remained in the bench until the surface of the injected silicon was coated with a thin layer of solidified silicon. Once the silicon surface was covered with a solidified silicon layer, the mold was transferred to the crystallization section by means of a rotating table.

ここで、黒鉛放射ヒーター(温度約1440℃)を用い
てケイ素の露出表面を上方から再び完全に溶融し、鋳型
底部は水冷式銅プレートによって冷却した。約215胴
深さ捷でのケイ素溶融物は、約1.0111I+I/分
の結晶化速度において、約240分後には完全に結晶化
した。結晶化工程の最後の方で、すなわち存在するケイ
素の約90%が凝固したときに、露出ケイ素面も凝固す
るまで、放射ヒーターの温度を約0.5’乃ゆ速度で低
下させた。結晶化の間、鋳型を約10回転/分で回転さ
せ、最終段階では約1回転/分で回転させた。同時に、
軽いアルゴン流をケイ素表面に流した。
Here, the exposed surface of the silicon was again completely melted from above using a graphite radiant heater (temperature of about 1440° C.), and the bottom of the mold was cooled by a water-cooled copper plate. The silicon melt at a depth of about 215 was completely crystallized after about 240 minutes at a crystallization rate of about 1.0111 I+I/min. Toward the end of the crystallization process, when about 90% of the silicon present had solidified, the temperature of the radiant heater was reduced at a rate of about 0.5' until the exposed silicon surfaces had also solidified. During the crystallization, the mold was rotated at approximately 10 revolutions/min and in the final stage at approximately 1 revolution/min. at the same time,
A light stream of argon was passed over the silicon surface.

完全に凝固したケイ素を含む鋳型を次にさらに、回転台
を用いて焼もどし位置にまで運搬し、底部かもはや冷却
されなくなるまで、そこに留置した。
The mold containing fully solidified silicon was then further transported to the tempering position using a turntable and left there until the bottom was no longer cooled.

鋳型の開口部のすぐ上に設値゛シた放射ヒーターの温度
を約2.5℃/分の速度で、最初に設定した値から低下
させ、結晶化部の最終温度に対応して、1260℃まで
低下させ、次にヒーターを完全に切った。約90分後に
、鋳型内の温度は約950℃に低下し、温度分布は大体
均一であった。
The temperature of a radiant heater set just above the opening of the mold was lowered at a rate of about 2.5°C/min from the initially set value to 1260°C, corresponding to the final temperature of the crystallization zone. ℃ and then the heater was turned off completely. After about 90 minutes, the temperature within the mold had dropped to about 950° C., and the temperature distribution was generally uniform.

このときに、鋳型を鋳造部から取り出すことができた。At this time, the mold could be removed from the casting section.

このために、回転台を用いて鋳型を特に鋳型受は台に移
し、ここから、スライディングフォークを用いて移動部
に移し、ここからさらに運搬スライダによって、装入・
搬出ラインの急冷部に直接運搬した。冷却部にアルゴン
流を満たし、大気圧に調節した。アルゴン雰囲気を絶え
ず循環させ、外部熱交換器によって冷却した。この結果
、(2B) 約150分間以内に、温度を700℃より低く、低下さ
せるととができた。次に冷却装置を切り、急冷却部を開
放した。鋳型を取り出し、空気中で最後にさらに冷却し
てからケイ素ブロックを取り出した。
For this purpose, the mold, in particular the mold holder, is transferred to a stand using a rotary table, from there it is transferred using a sliding fork to a transfer section, and from there it is loaded and loaded using a transport slide.
It was transported directly to the quenching section of the unloading line. The cooling section was filled with a flow of argon and adjusted to atmospheric pressure. The argon atmosphere was constantly circulated and cooled by an external heat exchanger. As a result, (2B) the temperature was lowered to below 700° C. within about 150 minutes. Next, the cooling device was turned off and the quenching section was opened. The mold was removed and the silicon block was removed after a final further cooling in air.

得られたブロックを上方にのこ引きして、10×10c
rnの横断面を有する個々のブロックを得、次にこれを
ソーラー電池の実際の出発物質として用いるウェファに
分割した。これから得られたソーラー電池は10〜16
%の効率を有した。
Saw the resulting block upwards to form a 10x10c
Individual blocks with a cross section of rn were obtained which were then divided into wafers used as the actual starting material for solar cells. The solar cells obtained from this are 10-16
% efficiency.

挿入部、移動部(予熱部として)、結晶化部及び急冷却
を空まだは充填した鋳型で同時に占有し、溶融るつぼ内
でケイ素を同時に溶融することによって、4時間毎に装
置から完成ケイ素ブロックを含む鋳型を取り出すことが
できるように、プロセスを実施することができた。各部
における滞留時間は最も時間のかかる工程、通常は溶融
工程または結晶化工程、に合わせて調節した。
By simultaneously occupying the insertion section, the transfer section (as a preheating section), the crystallization section and the quenching section with an empty or filled mold, and simultaneously melting the silicon in the melting crucible, the finished silicon block is removed from the device every 4 hours. The process could be carried out such that the mold containing the mold could be removed. The residence time in each part was adjusted to the most time consuming step, usually the melting or crystallization step.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の方法を実施するための製造の可能な実施
態様の平面図であり、 図2はこのような装置の他の可能な実施態様を図示する
ものである。 1・・・鋳型      9・・・溶融ケイ素2・・・
供給部    10・・・鋳型受は台7・・・鋳造部 
   11・・・結晶化部8・・・溶融るつtぽ
FIG. 1 is a plan view of a possible embodiment of manufacture for carrying out the method of the invention, and FIG. 2 illustrates another possible embodiment of such a device. 1... Mold 9... Molten silicon 2...
Supply section 10...Mold holder is stand 7...Casting section
11...Crystallization part 8...Melting melting point

Claims (1)

【特許請求の範囲】 1)鋳型を次々に供給部から鋳造部に運搬し、溶融ケイ
素を満たし、ケイ素の方向性凝固が生じた後に冷却部に
移し、最後に鋳型を取り出すことから成る、結晶学的に
好ましい配向を有する単結晶の結晶帯域から成る柱状構
造のケイ素成形体の循環製造方法において、供給部から
鋳造部に入る各鋳型を、溶融ケイ素を注入する前に20
°〜1550℃の温度にし、鋳型にケイ素が充填された
後ケイ素が完全に凝固する前に鋳型を結晶化部に移し、
ここでケイ素は方向性エネルギーの放出により方向性凝
固を生じるが、この凝固の際に凝固工程が終了するまで
、エネルギー供給によつてケイ素の露出面を少なくとも
一部溶融状態に維持し、結晶化部でケイ素が完全に凝固
した後に鋳型を冷却部まで運搬することを特徴とする方
法。 2)供給部、結晶化部及び冷却部を同時に鋳型が占有す
ることを特徴とする特許請求の範囲第1項記載の方法。 3)ケイ素の方向性凝固の間0.1〜5mm/分の結晶
化速度を維持することを特徴とする特許請求の範囲第1
項または第2項記載の方法。 4)結晶化部において、凝固したケイ素を含む鋳型を回
転させることを特徴とする特許請求の範囲第1項〜第6
項のいずれか1項に記載の方法。 5)凝固したケイ素を0.5°〜30℃/分の冷却速度
で、900°〜1300℃に焼もどし、次に700℃以
下の温度に急冷し、続いて取り出すことを特徴とする特
許請求の範囲第1項〜第4項のいずれか1項記載の方法
。 6)加熱装置によつて囲繞された、ケイ素の取り出しが
可能である溶融るつぼを収容した排気可能で真空気密な
鋳造部であつて、外気からゲートによつて分離された、
溶融るつぼに連通する少なくとも1つの装入チャンネル
と、鋳型を鋳造位置に移動させる鋳型受け台とを備えた
鋳造部;鋳型内にあるケイ素の露出面にエネルギーを供
給するエネルギー源と、このエネルギー源に対向するエ
ネルギー除去装置とを有し鋳造部に接続した少なくとも
1つの結晶化部;鋳造部に連通するが、真空気密な遮断
装置によつて鋳造部から分離された少なくとも1つの供
給部;鋳型を望ましい部に移動させる運搬手段;及びガ
ス供給および排出パイプから成ることを特徴とするケイ
素成形体の循環装置。 7)供給部を挿入部と予熱部に分割したことを特徴とす
る特許請求の範囲第6項記載の装置。 8)冷却部を焼もどし部と急冷部に分割したととを特徴
とする特許請求の範囲第6項または第7項記載の装置。 9)溶融るつぼならびに下部面内の回転台様の鋳型受け
台、結晶化部及び焼もどし部が、移動部を介して装入・
搬出ラインに連結した鋳造塔内に配置されていることを
特徴とする特許請求の範囲第6項〜第8項のいずれか1
項に記載の装置。 10)最も時間のかかる工程に対して幾つかの部が平行
にまたは順次に作動するように設けられていることを特
徴とする特許請求の範囲第6項〜第9項のいずれか1項
に記載の装置。
[Scope of Claims] 1) A crystallization method comprising: 1) transporting molds one after another from a supply section to a casting section, filling them with molten silicon, transferring them to a cooling section after directional solidification of the silicon has taken place, and finally removing the molds. In a process for the cyclical production of columnar structured silicon bodies consisting of single-crystal crystalline zones with a scientifically preferred orientation, each mold entering the casting section from the feed section is heated for 20 minutes before being injected with molten silicon.
° ~ 1550 ° C., after the mold is filled with silicon and before the silicon is completely solidified, the mold is transferred to the crystallization section,
Here, the silicon undergoes directional solidification due to the release of directional energy, and during this solidification, the exposed surface of the silicon is maintained at least partially in a molten state by the energy supply until the solidification process is completed, and the silicon is crystallized. A method characterized by transporting the mold to a cooling section after the silicon has completely solidified in the cooling section. 2) The method according to claim 1, characterized in that the mold occupies the supply section, the crystallization section and the cooling section at the same time. 3) A crystallization rate of 0.1 to 5 mm/min is maintained during the directional solidification of silicon.
or the method described in paragraph 2. 4) Claims 1 to 6, characterized in that in the crystallization section, a mold containing solidified silicon is rotated.
The method described in any one of paragraphs. 5) A patent claim characterized in that the solidified silicon is tempered to 900° to 1300°C at a cooling rate of 0.5° to 30°C/min, then rapidly cooled to a temperature of 700°C or less, and subsequently removed. The method according to any one of the ranges 1 to 4. 6) an evacuable, vacuum-tight casting containing a melting crucible from which silicon can be removed, surrounded by a heating device and separated from the outside air by a gate;
a casting station having at least one charging channel communicating with the melting crucible and a mold cradle for moving the mold to a casting position; an energy source for supplying energy to exposed silicon surfaces within the mold; at least one crystallization section connected to the casting section and having an energy removal device opposite the casting section; at least one feed section communicating with the casting section but separated from the casting section by a vacuum-tight isolation device; 1. A circulation device for silicon molded bodies, characterized in that it comprises a conveying means for moving the silicon molded bodies to a desired location; and gas supply and discharge pipes. 7) The apparatus according to claim 6, wherein the supply section is divided into an insertion section and a preheating section. 8) The apparatus according to claim 6 or 7, characterized in that the cooling section is divided into a tempering section and a quenching section. 9) The melting crucible, the rotary table-like mold holder in the lower surface, the crystallization part and the tempering part are charged and
Any one of claims 6 to 8, characterized in that the casting tower is disposed within a casting tower connected to a discharge line.
Equipment described in Section. 10) According to any one of claims 6 to 9, characterized in that several parts are provided to operate in parallel or sequentially for the most time-consuming process. The device described.
JP9813385A 1984-07-25 1985-05-10 Circulation manufacture and device for silicon molded shape Granted JPS6136113A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3427465.0 1984-07-25
DE19843427465 DE3427465A1 (en) 1984-07-25 1984-07-25 METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF SILICONE MOLDED BODIES

Publications (2)

Publication Number Publication Date
JPS6136113A true JPS6136113A (en) 1986-02-20
JPS646130B2 JPS646130B2 (en) 1989-02-02

Family

ID=6241559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9813385A Granted JPS6136113A (en) 1984-07-25 1985-05-10 Circulation manufacture and device for silicon molded shape

Country Status (8)

Country Link
US (1) US4769107A (en)
EP (1) EP0172426B1 (en)
JP (1) JPS6136113A (en)
AT (1) ATE62717T1 (en)
AU (1) AU570811B2 (en)
CA (1) CA1263293A (en)
DE (2) DE3427465A1 (en)
ZA (1) ZA853990B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531610A1 (en) * 1985-09-04 1987-03-05 Wacker Chemitronic METHOD AND DEVICE FOR PRODUCING SILICON RODS
DE4018967A1 (en) * 1990-06-13 1991-12-19 Wacker Chemitronic Polycrystalline silicon blocks with column crystallised structure
JPH07247197A (en) * 1994-03-09 1995-09-26 Fujitsu Ltd Semiconductor device and its production
DE19854838A1 (en) * 1998-11-27 2000-05-31 Bayer Solar Gmbh Directed solidified multicrystalline silicon and method for its production
AU2003277041A1 (en) * 2002-09-27 2004-04-19 Astropower, Inc. Methods and systems for purifying elements
US7465351B2 (en) * 2004-06-18 2008-12-16 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7691199B2 (en) * 2004-06-18 2010-04-06 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7344594B2 (en) * 2004-06-18 2008-03-18 Memc Electronic Materials, Inc. Melter assembly and method for charging a crystal forming apparatus with molten source material
US7243578B2 (en) * 2005-12-14 2007-07-17 Scott Burwell Skateboard tool
JP2008156166A (en) * 2006-12-25 2008-07-10 Sumco Solar Corp Method for casting and cutting silicon ingot
CN101307487B (en) * 2007-05-16 2010-05-19 佳科太阳能硅(厦门)有限公司 Directional solidification method and its device for continuous production for polycrystalline silicon ingot
TW201019480A (en) * 2008-08-27 2010-05-16 Bp Corp North America Inc High temperature support apparatus and method of use for casting materials
TW201012978A (en) * 2008-08-27 2010-04-01 Bp Corp North America Inc Apparatus and method of use for a casting system with independent melting and solidification
WO2012074934A1 (en) * 2010-11-30 2012-06-07 Rec Silicon Inc. Feedstock melting and casting system and process
PL224286B1 (en) * 2011-08-17 2016-12-30 Polycor Spółka Z Ograniczoną Odpowiedzialnością Method of synthesis of raw material of corundum in the form of polycrystalline block for growing crystals of sapphire and a device for implementing this method
CN112011827A (en) * 2019-05-31 2020-12-01 东泰高科装备科技有限公司 Device and method for manufacturing high-purity arsenic rod

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1176125A (en) * 1955-10-12 1959-04-07 Degussa Process for pouring a melt under reduced pressure and installation for its implementation
FR1188576A (en) * 1956-11-17 1959-09-23 Heraeus Gmbh W C Operating process of a vacuum induction melting plant
CH414955A (en) * 1961-09-04 1966-06-15 Asea Ab Device for moving in and out of molds
US3567526A (en) * 1968-05-01 1971-03-02 United Aircraft Corp Limitation of carbon in single crystal or columnar-grained nickel base superalloys
US3601179A (en) * 1970-01-23 1971-08-24 Pennwalt Corp Multichamber directional solidification vacuum casting furnance
US3771586A (en) * 1972-02-22 1973-11-13 United Aircraft Corp Apparatus for continuous casting of directionally solidified articles
DE2508803C3 (en) * 1975-02-28 1982-07-08 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Process for the production of plate-shaped silicon crystals with a columnar structure
DE2745247C3 (en) * 1977-10-07 1980-03-13 Wacker-Chemitronic Gesellschaft Fuer Elektronik-Grundstoffe Mbh, 8263 Burghausen Process and device for the semi-continuous production of silicon moldings
DE2914506A1 (en) * 1979-04-10 1980-10-16 Siemens Ag METHOD FOR PRODUCING LARGE-SCALE, PLATE-SHAPED SILICON CRYSTALS WITH A COLUMNAR STRUCTURE
DE2925679A1 (en) * 1979-06-26 1981-01-22 Heliotronic Gmbh METHOD FOR PRODUCING SILICON RODS
DE3310827A1 (en) * 1983-03-24 1984-09-27 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING COARSE CRYSTALLINE SILICON
GB2139916A (en) * 1983-05-19 1984-11-21 Mobil Solar Energy Corp EFG Apparatus
US4647437A (en) * 1983-05-19 1987-03-03 Mobil Solar Energy Corporation Apparatus for and method of making crystalline bodies
US4665970A (en) * 1985-11-20 1987-05-19 O.C.C. Company Limited Method of producing a metallic member having a unidirectionally solidified structure

Also Published As

Publication number Publication date
EP0172426A2 (en) 1986-02-26
AU570811B2 (en) 1988-03-24
CA1263293C (en) 1989-11-28
CA1263293A (en) 1989-11-28
DE3427465A1 (en) 1986-01-30
JPS646130B2 (en) 1989-02-02
DE3582536D1 (en) 1991-05-23
ZA853990B (en) 1986-01-29
EP0172426B1 (en) 1991-04-17
US4769107A (en) 1988-09-06
AU4519485A (en) 1986-01-30
EP0172426A3 (en) 1988-05-04
ATE62717T1 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
JPS6136113A (en) Circulation manufacture and device for silicon molded shape
US4175610A (en) Process and apparatus for the semicontinuous production of silicon moldings
US7867334B2 (en) Silicon casting apparatus and method of producing silicon ingot
US5254300A (en) Process for casting silicon blocks of columnar structure
EP2640874B1 (en) Apparatus and method for directional solidification of silicon
JPH1111924A (en) Production of polycrystalline semiconductor ingot and apparatus therefor
CN102197169A (en) Apparatus and method of use for casting system with independent melting and solidification
CN102084037A (en) Systems and methods for growing monocrystalline silicon ingots by directional solidification
US3895672A (en) Integrated furnace method and apparatus for the continuous production of individual castings
CN102066249A (en) Method and apparatus for purifying metallurgical grade silicon by directional solidification and for obtaining silicon ingots for photovoltaic use
JP2014527013A (en) Liquid-cooled heat exchanger
US4834832A (en) Process and apparatus for the manufacture of silicon rods
CN105862124A (en) Apparatus and methods for producing silicon-ingots
US9410266B2 (en) Process for producing multicrystalline silicon ingots by the induction method, and apparatus for carrying out the same
CN102701213B (en) Solar polycrystalline silicon purification equipment employing directional solidification metallurgical method
EP0083205B1 (en) Apparatus for producing castings in a vacuum.
JPS63166711A (en) Production of polycrystalline silicon ingot
JPS62260710A (en) Casting of polycrystalline silicon semiconductor
US20150093231A1 (en) Advanced crucible support and thermal distribution management
JP4408160B2 (en) Vacuum casting heat treatment equipment
KR101394156B1 (en) Apparatus for manufacturing silicon substrate and manufactring method of silicon substrate
KR101355625B1 (en) Apparatus for manufacturing silicon substrate and manufactring method of silicon substrate
JPH08323191A (en) Heat treatment and heat treating device
KR20140048479A (en) Apparatus for manufacturing silicon substrate