JPS613607A - Detection of slip of rolling roll - Google Patents

Detection of slip of rolling roll

Info

Publication number
JPS613607A
JPS613607A JP59123160A JP12316084A JPS613607A JP S613607 A JPS613607 A JP S613607A JP 59123160 A JP59123160 A JP 59123160A JP 12316084 A JP12316084 A JP 12316084A JP S613607 A JPS613607 A JP S613607A
Authority
JP
Japan
Prior art keywords
slip
rolling
current
motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59123160A
Other languages
Japanese (ja)
Inventor
Shunji Fukuda
福田 俊次
Nobumasa Unno
吽野 信政
Akira Sato
晃 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59123160A priority Critical patent/JPS613607A/en
Publication of JPS613607A publication Critical patent/JPS613607A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/08Coiler speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To detect surely and quickly slip by detecting the field currents of DC motors for un-coiler and coiler. CONSTITUTION:The field currents If1 and If2 of the un-coiling and coiling motors change sharply and simultaneously in the same direction when the slip arises between a material to be rolled and a rolling mill. The detection signal from the current detector 24 of the current If1 is inputted to a differentiator 25 and the detection signal from the current detector 27 of the current If2 is inputted to the other differentiator 28. The signals corresponding to the directions of the change in the currents If1, If2 from differentiators 25, 28 are respectively outputted to a multiplier 26 by which the two signals are multiplied. The output from the multiplier is inputted to a polarity discriminator 29. The polarity of the output from the discriminator 29 changes to (+) when the currents If1, If2 change sharply in the same direction upon generation of the slip. The generation of the roll slip is thus electrically, surely and quickly detected in said direction.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は鋼板、フィルム、紙等の被圧延材を連続的に圧
延加工する圧延シヌテムにおいて、圧延ロールと被圧延
材間に生じるスリップ現象を電気的に検出する方法に関
する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is a rolling machine that continuously rolls rolled materials such as steel plates, films, and paper, by electrically reducing the slip phenomenon that occurs between the rolling rolls and the rolled materials. related to a method of detecting

〔発明の背景〕[Background of the invention]

鋼板の冷間圧延システム等においては、圧延ロールの表
面状態や被圧延材の表面状態あるいはその他の穐々の原
因によシ圧延ロールと被圧延材との間にスリップ現象が
生じることが一般に知られている。このスリップは被圧
延材の張力に変動を与えて製品の品質の低下を招き、ま
た異常音を発生することから極力抑制あるいは防止しな
ければならない。
It is generally known that in cold rolling systems for steel plates, slippage occurs between the rolling rolls and the material to be rolled due to the surface condition of the rolling rolls, the surface condition of the material to be rolled, or other factors. It is being This slip causes fluctuations in the tension of the rolled material, resulting in a decrease in product quality, and also generates abnormal noise, so it must be suppressed or prevented as much as possible.

このスリップの発生を検出するための伝統的な方法とし
ては、熟練者による経験的判断が一般的であった。経験
的判断とは、例えば被圧延機の圧延状態や異常音によシ
行うものである。
The traditional method for detecting the occurrence of this slip was generally based on empirical judgment by an expert. The empirical judgment is based on, for example, the rolling condition of the rolling mill or abnormal sounds.

さらに進んだ方法として、被圧延材の圧延ロール入側に
おける走行速度と出側における走行速度をロール周速検
出器等によシ実測してその比を求め、かつ、所定の圧下
率を用いて算出した走行速度の比を予め求めておき、両
値の差が一定の値以上となったときにスリップが発生し
たものと判断する方法がある(特公昭59−1132号
公報参照)。
A more advanced method is to actually measure the running speed of the material to be rolled at the entrance and exit sides of the rolling roll using a roll circumferential speed detector, etc., find the ratio, and use a predetermined rolling reduction ratio. There is a method in which the ratio of the calculated running speeds is determined in advance and it is determined that a slip has occurred when the difference between the two values exceeds a certain value (see Japanese Patent Publication No. 59-1132).

この方法は、熟練者による直観的判断による方法に比べ
て検出精度が高く、また画一的に処理できる点できわめ
て優れたものであるが、この方法を実施するにはロール
周速検田器等の付加的な装置を必要とし、既存の圧延シ
ステムに適用するためには新たな装置を必要とするもの
である。
This method has higher detection accuracy than methods based on intuitive judgment by experts, and is extremely superior in that it can be processed uniformly. This method requires additional equipment such as, and new equipment is required in order to apply it to an existing rolling system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、圧延ロールと被圧延材間に発生するス
リップ現象を電気的な方法により確実に検出しうる検出
方法を提供することにある。
An object of the present invention is to provide a detection method that can reliably detect the slip phenomenon occurring between a rolling roll and a rolled material by an electrical method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明による圧延ロールの
スリップ検出方法は、圧延機の入側および出側に直流電
動機により駆動される巻戻機および巻取機を配置して、
コイル状に巻かれた被圧延材を巻戻しつつ連続的に圧延
するようにした圧延システムにおいて、前記巻戻機およ
び巻取機の直流電動機の界磁電流の変動を検出する点に
特徴を有する。
In order to achieve the above object, the rolling roll slip detection method according to the present invention includes disposing an unwinding machine and a winding machine driven by a DC motor on the entry side and exit side of the rolling mill,
A rolling system that continuously rolls a rolled material wound into a coil while unwinding the material, characterized in that fluctuations in the field current of the DC motors of the unwinding machine and the winding machine are detected. .

〔発明の実施例〕[Embodiments of the invention]

次に、本発明によるスリップ検出方法の実施例を図面に
基づいて説明する。
Next, an embodiment of the slip detection method according to the present invention will be described based on the drawings.

まず、鉋板を被圧延材とする冷間圧延システムの概要を
第1図に示す。第1図において、圧延ミル1の入側には
巻戻機2が配置され、この巻戻機2に取付けられたコイ
ル状の被圧延材3から帯状の被圧延材3が圧延ミル1の
出側に配置された巻取機4に巻取られつつ圧延が行なわ
れる。巻戻機2および巻取機4はそれぞれ巻戻用直流電
動機(以下巻戻電動機という。)5、および巻取用直流
電動機(以下巻取電動機という。)6により駆動される
。これらの各電動機5.6は被圧延材3の張力を一定に
保つために、後述する制御回路により、その各界磁巻線
7,8に圧延速度(ミル1の速度)に正比例した界磁電
流を供給することによって電機子電圧を一定に保つよう
制御しているのが普通である。すなわち、圧延ミル1の
速度が一定であれば電機子電圧も一定である。
First, FIG. 1 shows an overview of a cold rolling system that uses a planer plate as the material to be rolled. In FIG. 1, an unwinding machine 2 is disposed on the entry side of a rolling mill 1, and a strip-shaped rolled material 3 is transferred from a coil-shaped rolled material 3 attached to this unwinding machine 2 at the exit of the rolling mill 1. Rolling is performed while being wound up by a winding machine 4 disposed on the side. The rewinding machine 2 and the winding machine 4 are driven by a rewinding DC motor (hereinafter referred to as the unwinding motor) 5 and a winding DC motor (hereinafter referred to as the winding motor) 6, respectively. In order to keep the tension of the rolled material 3 constant, each of these electric motors 5 and 6 applies a field current directly proportional to the rolling speed (speed of the mill 1) to each of its field windings 7 and 8 by a control circuit to be described later. Normally, the armature voltage is controlled to be kept constant by supplying That is, if the speed of the rolling mill 1 is constant, the armature voltage is also constant.

次に圧延制御の詳細について説明する。第1図に示すよ
うに、巻戻電動機5および巻取電動機6にはそれぞれ制
御回路9,10が付加されており圧延ミル3の駆動用の
直流電動機11にカップリング12を介して取付けられ
たパイロットジェネレータ13からのミル速度帰還信号
vmによシフイードバック制御するように表っている。
Next, details of rolling control will be explained. As shown in FIG. 1, control circuits 9 and 10 are added to the unwinding motor 5 and the take-up motor 6, respectively, and are attached to a DC motor 11 for driving the rolling mill 3 via a coupling 12. It appears that the mill speed feedback signal vm from the pilot generator 13 is used for shift feedback control.

制御回路9において、予めセットアツプ計算機(図示せ
ず)等によって設定された主電流指令工mが主電流制御
装置、14に与えられ、その制御イハ号に基づいて主電
源用サイリスタ装置15から駆動電流■m2が巻戻電動
機5の電機子に与えられる。一方、パイロットジェネレ
ータ13からのミル速度帰還信号■mが加算要素16に
フィードバックされ、この加算要素16に巻戻電動機5
からの電機子電圧帰還信号vf!に入力され、その合成
信号が電動機制御装置17に与えられる。その出力制御
信号により界磁用ザイリスタ装置18が制御されミル速
度を一定にする界磁電流が界磁巻線7に与えられる。
In the control circuit 9, a main current command m set in advance by a setup computer (not shown) or the like is given to a main current control device 14, and the main current control device 14 is driven from the main power thyristor device 15 based on the control number. A current m2 is applied to the armature of the rewinding motor 5. On the other hand, the mill speed feedback signal m from the pilot generator 13 is fed back to the addition element 16, and the rewinding motor 5 is fed back to the addition element 16.
Armature voltage feedback signal from vf! and the combined signal is given to the motor control device 17. The field Zyristor device 18 is controlled by the output control signal, and a field current is applied to the field winding 7 to keep the mill speed constant.

制御回路10については、制御回路9と全く同様の構成
であり、主電流指令■mによって主電流制御装置19に
より主電源用サイリスタ装置20から駆動電流工mlが
巻取電動機6に供給される、またミル速度帰還信号vm
と電機子電圧帰還信号Vf1が加算要素21を介して電
動機制御装置22に与えられ、界磁用サイリスタ装置2
3によってミル速度を一定とする界磁電流が界磁巻取8
に供給される。
The control circuit 10 has exactly the same configuration as the control circuit 9, and the main current control device 19 supplies the drive current ml from the main power supply thyristor device 20 to the winding motor 6 according to the main current command m. Also, the mill speed feedback signal vm
and armature voltage feedback signal Vf1 are given to the motor control device 22 via the addition element 21, and the field thyristor device 2
3, the field current that keeps the mill speed constant is applied to the field winding 8.
supplied to

次に第2図に示す各部信号波形によシ制御動作を説明す
る。第2図において、時刻tO〜t3の区間は正常圧延
区間の各部信号を示しており、巻戻電動機5および巻取
電動機6の電機子電圧Vf1゜vf2は圧延ミル速度■
mに比例し、このとき界磁電流Ift、If2は一定で
ある。いま、時刻tlxt、にかけて圧延速度を加速す
ると、各電動機5.6の電機子電圧Vf2.Vftが変
化する。このとき、各電機子電流1ml、 Im2が図
のように変化する。これは加速を補償するためのフォー
シング電流を流して被圧延材3に働く張力を一定とする
ためである。
Next, the control operation will be explained based on the signal waveforms of each part shown in FIG. In FIG. 2, the section from time tO to t3 shows various signals of the normal rolling section, and the armature voltages Vf1°vf2 of the unwinding motor 5 and the take-up motor 6 are the rolling mill speed
m, and the field currents Ift and If2 are constant at this time. Now, when the rolling speed is accelerated over time tlxt, the armature voltage Vf2. of each electric motor 5.6 increases. Vft changes. At this time, each armature current of 1 ml, Im2, changes as shown in the figure. This is to keep the tension acting on the rolled material 3 constant by passing a forcing current to compensate for acceleration.

このような運転を行なっているとき、被圧延材3と圧延
ミル1との間にスリップが発生したとする(時刻ts 
 )。すると、被圧延材30走行速度が圧延ミル1の速
度よりも急激に低くなり、被圧延材3の走行速度の低下
は巻取電動機6の回転数の低下につながるので電機子電
圧■fIが低下することとなる。制御回路10は電機子
電圧Vf1を一定に保つよう構成されており、ミル速度
帰還信号■mの値に対して電機子電圧帰還信号■f1の
値が低下することによシミ動機制御装置17が界磁電流
If+を急激に増加させるように動作する。しかし、ス
リップが続くと、被圧延材30走行速度と圧延ミル1の
速度着は依然として解消されるわけではなく、制御回路
9はさらに界磁電流■flを増加させるように作用する
。その結果、界磁電流■f、が急激に増え続け、ついに
は飽和点にまで辻することとなる。
Suppose that slip occurs between the rolled material 3 and the rolling mill 1 during such operation (time ts
). Then, the traveling speed of the material to be rolled 30 suddenly becomes lower than the speed of the rolling mill 1, and the decrease in the traveling speed of the material to be rolled 3 leads to a decrease in the rotational speed of the winding motor 6, so that the armature voltage fI decreases. I will do it. The control circuit 10 is configured to keep the armature voltage Vf1 constant, and when the value of the armature voltage feedback signal f1 decreases with respect to the value of the mill speed feedback signal m, the stain motor control device 17 is activated. It operates to rapidly increase the field current If+. However, if the slip continues, the relationship between the traveling speed of the rolled material 30 and the speed of the rolling mill 1 is still not resolved, and the control circuit 9 acts to further increase the field current ■fl. As a result, the field current f continues to increase rapidly and finally reaches the saturation point.

一方、スリップの発生による被圧延材30走行速I隻の
急激な低下による影喪は同様に巻戻電動機5の回転数の
低下として現われ、電機子電圧■f2が低下することと
なる。制御回路9は電機子電圧Vfzを一定に保つよう
に構成されており、ミル速度帰還信号VmO値に対して
電機子電圧帰還信号Vf、の値が低下するので電動機制
御装置22が界磁電流Ifzを急激に増加させるように
動作する。しかし、巻取側と同様にスリップが継続する
と、増々界磁電流If、を増加させ、ついには飽和点に
達することになる。
On the other hand, the effects of a sudden drop in the traveling speed of the rolled material 30 due to the occurrence of slip also appear as a drop in the rotational speed of the unwinding motor 5, resulting in a drop in the armature voltage f2. The control circuit 9 is configured to keep the armature voltage Vfz constant, and since the value of the armature voltage feedback signal Vf decreases with respect to the mill speed feedback signal VmO value, the motor control device 22 controls the field current Ifz. act to rapidly increase the However, if the slip continues as on the winding side, the field current If increases more and more, and finally reaches the saturation point.

このように、時刻1o#18までの正常圧延時において
は、ミルの圧延速度と被圧延材3の走行速度が一致して
いるものとの前提において張力を一定とすべく定電圧制
御するのであるが、一旦スリップが発生すると、ミル圧
延速度と被圧延材3の走行速度との差に基づく過制御状
態が生じ、著しい場合には過張力状態によシ被圧延材3
の破断に到るおそれすらある。
In this way, during normal rolling up to time 1o #18, constant voltage control is performed to keep the tension constant on the premise that the rolling speed of the mill and the running speed of the rolled material 3 match. However, once slip occurs, an over-control state occurs based on the difference between the mill rolling speed and the running speed of the rolled material 3, and in severe cases, the rolled material 3 is over-tensioned.
There is even a risk of it breaking.

なお、スリップによシ被圧延材3の走行速度の方がミル
の圧延速度よりも大きくなった場合は上述の制御動作と
は逆に界磁電流Ifl、Ifmは共に減少することとな
る。なお、第2図において、Tは圧延機の出側の板厚の
変動、Pは圧延荷重を示している。
In addition, when the traveling speed of the material 3 to be rolled due to slip becomes higher than the rolling speed of the mill, both the field currents Ifl and Ifm decrease, contrary to the above-mentioned control operation. In addition, in FIG. 2, T indicates the variation in plate thickness on the outlet side of the rolling mill, and P indicates the rolling load.

さて、このように、スリップが発生すると各界磁電流J
fl、If*は共に同一の極性方向に急激に変化を生じ
、正常圧延時とは明らかに異なる現象が生じる。そこで
、この各界磁電流Ifl。
Now, in this way, when slip occurs, each field current J
Both fl and If* suddenly change in the same polar direction, and a phenomenon that is clearly different from that during normal rolling occurs. Therefore, each field current Ifl.

Ifzの急変化を検出することによりスリップの発生を
正確かつ電気的に検出することが可能となる。これが本
発明の検出原理である。
By detecting a sudden change in Ifz, it becomes possible to accurately and electrically detect the occurrence of slip. This is the detection principle of the present invention.

次に、正確にスリップを検出し判別するための装置につ
いて説明する。
Next, a device for accurately detecting and determining slip will be described.

第3図に検出装量の一例を示す。第3図において、巻取
電動機5の界磁電流Ifsの電流検出器24からの検出
信号は微分器25に入力される。
FIG. 3 shows an example of the detection capacity. In FIG. 3, a detection signal from a current detector 24 of the field current Ifs of the winding motor 5 is input to a differentiator 25.

微分器25により界磁電流Ifsの変化の方向に対応し
た信号(例えば、増加であれば(+)、減少であれば(
−))が掛算器26に出力される。
The differentiator 25 generates a signal corresponding to the direction of change in the field current Ifs (for example, (+) if it increases, (+) if it decreases).
-)) is output to the multiplier 26.

一方、巻戻電動機6の界磁電流Iftの電流検出器27
からの検出信号は他の微分器28に入力され、同様に界
磁電流Ifzの変化の方向に対応した信号が掛算器26
に出力される。掛算器26では2つの微分出力信号を掛
は合せ、極性判別器29に出力される。極性判別器29
は入力された信号の極性を判別し、その極性によシスリ
ップの発生の有無を検出することができる。
On the other hand, the current detector 27 for the field current Ift of the rewinding motor 6
The detection signal from the is input to another differentiator 28, and similarly, a signal corresponding to the direction of change in the field current Ifz is input to the multiplier 26.
is output to. The multiplier 26 multiplies the two differential output signals together and outputs the result to the polarity discriminator 29. Polarity discriminator 29
It is possible to determine the polarity of the input signal and detect whether syslip has occurred based on the polarity.

次に動作を説明する。正常圧延時(t″o=ts)にお
いては、第2図に示すように界磁電流IfsとIfzの
変化方向は互に逆であり、シたがって各微分器25.2
8からの出力信号の極性は(+)。
Next, the operation will be explained. During normal rolling (t″o=ts), the changing directions of the field currents Ifs and Ifz are opposite to each other as shown in FIG.
The polarity of the output signal from 8 is (+).

(−)となり、この信号は掛算器26において掛は合さ
れるので、掛算器出力の極性は(−)となり、極性判別
器29の出力信号はスリップ発生を意味しない。しかし
、第2図の時刻t3〜t4に示すように、界磁電流If
+、Ifmが同時に同方向に、しかも急激に変化した場
合には、各微分器25.28からの出力信号の極性は共
に(+)であシ、したがって掛算器26の出力信号の極
性も(+)となる。この(+)の極性をもつ信号は極性
判別器29において、スリップ信号の発生を意味し、こ
の信号に基づいて圧延機の圧下率を下げてスリップの発
生を阻止することができる。なお、例えば信号の処理上
、上述の信号の極性状態を全て逆にしても結果は同じこ
とであシ、同様に検出しうろことはいうまでもない。ま
た、極性を検出するのに微分器を用いたが、その他の態
様として、比較演算器を用い、各界磁電流If、。
(-), and this signal is multiplied by the multiplier 26, so the polarity of the multiplier output becomes (-), and the output signal of the polarity discriminator 29 does not mean that a slip has occurred. However, as shown from time t3 to t4 in FIG.
+ and Ifm change simultaneously and in the same direction and rapidly, the polarities of the output signals from each differentiator 25 and 28 are both (+), and therefore the polarity of the output signal of the multiplier 26 is also ( +). This signal having a (+) polarity means generation of a slip signal in the polarity discriminator 29, and based on this signal, the reduction rate of the rolling mill can be lowered to prevent the occurrence of slip. Note that, for example, in terms of signal processing, even if all the polarity states of the above-mentioned signals are reversed, the result will be the same, and it goes without saying that the detection can be performed in the same way. In addition, although a differentiator was used to detect the polarity, in another embodiment, a comparator was used to detect each field current If.

工f!の正常時における上下限値を越える値に基準値(
閾値)を設定し、両界磁電流I’l+Tf2共に基準値
を越えた場合にスリップ発生と判別するようにしてもよ
い。さらに、肉界磁電流If1.If*の検出信号を直
接的に加減することにより、正常時には互の界磁電流の
変化方向が逆になるのでほぼ一定の値であυ、異常時に
は同一方向に変化するので加減算値が異常値となってス
リップ発生を検出できる。
Engineering f! The reference value (
A threshold value) may be set, and it may be determined that a slip has occurred when both field currents I'l+Tf2 exceed a reference value. Furthermore, the flesh field current If1. By directly adding or subtracting the If* detection signal, the direction of change in the field currents is opposite during normal times, resulting in a nearly constant value υ; when abnormal, the values change in the same direction, so the added/subtracted value becomes an abnormal value. The occurrence of slip can be detected.

このように、界V&電流Ifl、If2の挙動を監視す
ることによシ、従来の如く熟練者による目視等の判断に
よることなく、また、格別新たな検出器を圧延ラインに
装備することなく、既存の設備のままで、電気的にスリ
ップ発生を正確かつ迅速に検出することができる。その
結果、スリップ発生からその防止措置を講するまでの時
間を短縮することができ、スリップによる品質の低下を
最少限にくい止めることが可能となシ、あるいは被圧延
材の破断等を防止できる。このことは被圧延材の歩留り
の向上に寄与することとなる。また、破断等が生じた場
合には圧延ラインを一旦停止させる必要があるが、スリ
ップの検出が迅速に行われるので、破断に到ることを抑
制でき、稼動時間の損失を防止でき、生産性の向上に寄
与することができる。
In this way, by monitoring the behavior of the fields V and currents Ifl and If2, it is possible to realize The occurrence of slip can be electrically detected accurately and quickly using existing equipment. As a result, the time from the occurrence of slip to the time when preventive measures are taken can be shortened, and it is possible to minimize deterioration in quality due to slip, or to prevent breakage of the rolled material. This contributes to improving the yield of the rolled material. In addition, in the event of a break, it is necessary to temporarily stop the rolling line, but since the slip is detected quickly, it is possible to suppress the occurrence of a break, prevent loss of operating time, and improve productivity. can contribute to the improvement of

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、圧延システムに設備さ
れた巻取機および巻戻機の駆動用直流電動機の界at流
の変動を検出することにより、被圧延材の走行速度を直
接検出する等の手段を用いることなく、電気的に圧延ロ
ールと被圧延材との間に生じるスリップを確実かつ迅速
に検出することができる。
As described above, according to the present invention, the traveling speed of the material to be rolled is directly detected by detecting the fluctuation of the field current of the DC motor for driving the winding machine and the unwinding machine installed in the rolling system. It is possible to electrically detect slip occurring between the rolling roll and the rolled material reliably and quickly without using such means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な冷間圧延システムの構成を示すブロッ
ク図、第2図は圧延制御装置の各部信号波形を示す波形
図、第3図は本発明によるスリップ検出を実施するため
の検出装置の例を示すブロック図である。 1・・・圧延ミル、2・・・巻戻機、3・・・被圧延材
、4・・・巻取機、5・・・巻戻電動機、6・・・巻取
電動機、■fl・・・巻取電動機の界磁電流、If2・
・・巻戻電動機の界磁電流、24・・・電流検出器、2
5・・・微分器、26・・・掛算器、27・・・電流検
出器、28・・・微分器、29・・・極性判別器。
Fig. 1 is a block diagram showing the configuration of a general cold rolling system, Fig. 2 is a waveform diagram showing signal waveforms of each part of the rolling control device, and Fig. 3 is a detection device for carrying out slip detection according to the present invention. It is a block diagram showing an example. DESCRIPTION OF SYMBOLS 1... Rolling mill, 2... Unwinding machine, 3... Rolled material, 4... Winding machine, 5... Unwinding motor, 6... Winding motor, ■fl.・・Field current of the winding motor, If2・
...Field current of the rewinding motor, 24...Current detector, 2
5... Differentiator, 26... Multiplier, 27... Current detector, 28... Differentiator, 29... Polarity discriminator.

Claims (1)

【特許請求の範囲】[Claims] 1、圧延機の入側および出側に直流電動機により駆動さ
れる巻戻機および巻取機を配置して、コイル状に巻かれ
た被圧延機を巻戻しつつ圧延を行うようにした圧延シス
テムにおいて、前記巻戻機および巻取機の直流電動機の
界磁電流の変動を検出することにより前記圧延機の圧延
ロールと被圧延材との間に生じるスリップを検出するこ
とを特徴とする圧延ロールのスリップ検出方法。
1. A rolling system in which an unwinding machine and a winding machine driven by a DC motor are arranged on the entry and exit sides of the rolling mill, and rolling is performed while unwinding the rolling machine wound into a coil. In the rolling roll, slip occurring between the rolling roll of the rolling mill and the rolled material is detected by detecting fluctuations in field currents of DC motors of the unwinding machine and the winding machine. slip detection method.
JP59123160A 1984-06-15 1984-06-15 Detection of slip of rolling roll Pending JPS613607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123160A JPS613607A (en) 1984-06-15 1984-06-15 Detection of slip of rolling roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123160A JPS613607A (en) 1984-06-15 1984-06-15 Detection of slip of rolling roll

Publications (1)

Publication Number Publication Date
JPS613607A true JPS613607A (en) 1986-01-09

Family

ID=14853665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123160A Pending JPS613607A (en) 1984-06-15 1984-06-15 Detection of slip of rolling roll

Country Status (1)

Country Link
JP (1) JPS613607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105598210A (en) * 2015-12-31 2016-05-25 中铝西南铝冷连轧板带有限公司 Strip material slippage detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105598210A (en) * 2015-12-31 2016-05-25 中铝西南铝冷连轧板带有限公司 Strip material slippage detection method

Similar Documents

Publication Publication Date Title
US2586412A (en) Control system for dynamoelectric machines
JPS613607A (en) Detection of slip of rolling roll
US2715701A (en) Motor regulation for strip tension control
JPH0671320A (en) Rolling method for steel strip
US2157739A (en) Rolling mill control
US2594035A (en) Reel control system
JP3426452B2 (en) Tension control method for stopping and restarting operation of cold tandem rolling mill
JPS6356308A (en) Device for preventing drawing-in of rolling mill
JP2536884B2 (en) Front and back surface color tone control method for rolled material
US2281063A (en) Control system
JP3649025B2 (en) Strip rolling equipment
JP3453931B2 (en) Rolling mill acceleration / deceleration control method
JP3073633B2 (en) Automatic thickness control method for rolling mill
US2798991A (en) Reel motor control systems
JP2540165B2 (en) Front and back color tone control device for rolled material
JP3324198B2 (en) Linear body screening method and screening apparatus
JP3073637B2 (en) Method for detecting slip of rolling equipment and method for automatically controlling thickness of rolling mill
JPH11129012A (en) Tension control method and equipment for metal band in rolling mill exit side
US2817049A (en) Ward-leonard control for wire spooler
JPH09183544A (en) Mechanical loss compensating method in sheet takeup control
JPS6344655B2 (en)
JPH0724526A (en) Method for stopping processing line for belt-like material
JP3533780B2 (en) Method for controlling electric motor for winding machine and control device therefor
JPH01219192A (en) Method for detecting sheet breakage in continuous electroplating
JPS6264417A (en) Speed reduction controller for tandem rolling mill