JPH09183544A - Mechanical loss compensating method in sheet takeup control - Google Patents

Mechanical loss compensating method in sheet takeup control

Info

Publication number
JPH09183544A
JPH09183544A JP34380395A JP34380395A JPH09183544A JP H09183544 A JPH09183544 A JP H09183544A JP 34380395 A JP34380395 A JP 34380395A JP 34380395 A JP34380395 A JP 34380395A JP H09183544 A JPH09183544 A JP H09183544A
Authority
JP
Japan
Prior art keywords
tension
current
coil
sheet
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34380395A
Other languages
Japanese (ja)
Inventor
Masashi Kaneda
政資 金田
Toshihiko Chino
俊彦 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34380395A priority Critical patent/JPH09183544A/en
Publication of JPH09183544A publication Critical patent/JPH09183544A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mechanical loss compensating method in takeup control of a sheet, with which it is possible to compensate the mechanical loss not only resulting from variation of the revolving speed of a coil but from a change in the coil weight or takeup angle. SOLUTION: The amperage for the set tension of a drive motor to take up a sheet 1 is compensated in its portion corresponding to the friction loss current proportional to the revolving speed of a bearing, and the bearing load F as the resultant of the set tension T and the coil weight W(t) in compliance with the takeup coil diameter D of the sheet 1 is calculated from the sheet intrude angle θ(t) to the coil, and on the basis of the bearing load F, the torque loss is determined and compensation is made by adding even the loss current corresponding to it to the tension current set value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属ストリップや
紙等のシート類を一定張力で巻き取る駆動モータの張力
制御における機械損失補償方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a mechanical loss compensating method in tension control of a drive motor that winds sheets such as metal strips and paper with a constant tension.

【0002】[0002]

【従来の技術】この種の駆動モータとして使用されてい
る直流モータは、張力Tを一定に保つために一般に次の
いずれかの制御方法が採用されている。 電機子電流Iを一定に保ち、コイル径Dの増加に比例
させて界磁束φを増加させていく。
2. Description of the Related Art A DC motor used as a drive motor of this type generally employs one of the following control methods in order to keep the tension T constant. The armature current I is kept constant and the field flux φ is increased in proportion to the increase of the coil diameter D.

【0003】電機子電流IをD/φに比例させる。し
かし実際には、巻取り装置の摩擦等の機械損によるエネ
ルギー損失等の影響が避けられない。すなわち、シート
がリールに巻き取られるに従いコイル径が増大して重量
が大きくなるため、リールの回転数にほぼ比例して軸受
の摩擦によるトルク損失が大きくなる。この損失分を補
償するために巻き取り用電動機の電流補償を行なういわ
ゆる機械損補償制御を併用する張力制御が広く知られて
おり、例えば特開昭54−55268号公報に開示され
ている。このものは、界磁は電機子電圧による自動弱め
制御とし、電機子電流指令は張力指令(設定と補償を加
算したもの)に巻太径を掛け界磁束で割った値に制御す
る方法である。
The armature current I is made proportional to D / φ. However, in reality, the influence of energy loss due to mechanical loss such as friction of the winding device is unavoidable. That is, since the coil diameter increases and the weight increases as the sheet is wound on the reel, torque loss due to friction of the bearing increases substantially in proportion to the rotation speed of the reel. A tension control that uses a so-called mechanical loss compensation control for compensating the current of the winding motor to compensate for this loss is widely known, and is disclosed in, for example, Japanese Patent Laid-Open No. 54-55268. This is a method in which the field is automatically weakened by the armature voltage, and the armature current command is a value obtained by multiplying the tension command (setting and compensation added) by the winding diameter and dividing by the field flux. .

【0004】一方、特開昭59−225816号公報に
は、巻取りの進行によるコイル径Dの増大に伴って界磁
束φを増加させていく方法では機械系の摩擦抵抗等のた
めに実際の張力は一定とはならない実情に鑑み、巻き取
られる金属板に加わる実張力を検出し、この検出された
実張力に関する信号をモータの電流値に関する制御信号
に変換し、該信号と設定張力に関する制御信号とに基づ
いて実張力を設定張力と等しくする巻取り装置の実張力
制御方法が開示されている。
On the other hand, in Japanese Patent Laid-Open No. 59-225816, the method of increasing the field flux φ along with the increase of the coil diameter D due to the progress of winding actually causes a frictional resistance of the mechanical system. In consideration of the fact that the tension is not constant, the actual tension applied to the wound metal plate is detected, the signal related to the detected actual tension is converted into a control signal related to the motor current value, and the signal and the control related to the set tension are controlled. A method for controlling the actual tension of a winding device is disclosed in which the actual tension is made equal to the set tension based on the signal.

【0005】更に、特公平3−69820号公報には、
巻取機にコイルを装着しない場合、最大径のコイルを装
着した場合、中間径のコイルを装着した場合について直
流電動機の回転数に対する機械損電流の値を実測し、コ
イル径をパラメータとして回転数と機械損電流との関係
を予め定めた後、巻取時に直流電動機の回転数と圧延材
の速度とを検出してコイル径を演算し、このコイル径と
上記検出した直流電動機の回転数とを上記の関係にあて
はめることにより機械損電流を算出し、定電流制御,界
磁弱め制御,加減速補償制度に従って計算された直流電
動機に流す電流の値に、上記算出した機械損電流の値を
加算することで機械損電流補償を行うようにした巻取機
の張力制御方法が開示されている。
Further, Japanese Patent Publication No. 3-69820 discloses that
When the coil is not attached to the winder, the coil with the maximum diameter is attached, and the coil with the intermediate diameter is attached, the value of the mechanical loss current with respect to the rotation speed of the DC motor is measured, and the rotation speed is set using the coil diameter as a parameter. And a mechanical loss current, the coil diameter is calculated by detecting the rotation speed of the DC motor and the speed of the rolled material during winding, and this coil diameter and the detected rotation speed of the DC motor. The mechanical loss current is calculated by applying to the above relationship, and the calculated value of the mechanical loss current is added to the value of the current flowing through the DC motor calculated according to the constant current control, field weakening control, and acceleration / deceleration compensation system. A tension control method for a winding machine is disclosed in which mechanical loss current compensation is performed by adding the two.

【0006】[0006]

【発明が解決しようとする課題】上記従来の、リールの
回転数に比例した摩擦損失補償方法では、ライン運転
中、払い出し又は巻き取られるコイルの重量増減に比例
してリール軸受の荷重が変化し、これに伴って軸受の摩
擦損失が変動するために張力が変化する。一定の張力で
払い出し又は巻取りが行われないと、例えば金属ストリ
ップにスリキズ,巻き弛み,巻き締め等の不具合が発生
するという問題が生じる。また、運転張力の大きさと、
金属ストリップの払い出し又は巻取り角度の関係で発生
する力もまた、軸受の摩擦損失の変動要因になり張力変
動を誘発する。
In the conventional friction loss compensation method proportional to the number of rotations of the reel, the load on the reel bearing changes in proportion to the increase or decrease in the weight of the coil to be paid out or wound during the line operation. As a result, the friction loss of the bearing fluctuates and the tension changes. If the payout or the winding is not performed with a constant tension, there arises a problem that, for example, the metal strip has defects such as scratches, winding slack, and winding tightening. Also, the magnitude of the operating tension,
The force generated in relation to the payout or winding angle of the metal strip also causes a fluctuation in the friction loss of the bearing and induces a tension fluctuation.

【0007】これに対し、特開昭59−225816号
及び特公平3−69820号におけるように、実際の張
力を検出して設定張力と等しくする実張力制御の場合
は、張力変動による不具合は生じないものの、複数のロ
ールや圧力検出器等からなる実張力測定装置を設置する
費用がかかる。又、種々のコイル径についての電動機の
回転数に対する機械損電流の値を実測して予めコイル径
をパラメータとした回転数と機械損電流との関係を求め
ておくなどの手間がかかる。
On the other hand, in the case of the actual tension control in which the actual tension is detected and made equal to the set tension as in Japanese Patent Laid-Open No. 59-225816 and Japanese Patent Publication No. 3-69820, troubles due to tension fluctuation occur. Although it does not exist, it is expensive to install an actual tension measuring device consisting of multiple rolls and pressure detectors. Further, it takes time and effort to actually measure the values of the mechanical loss current with respect to the rotational speed of the electric motor for various coil diameters and to previously obtain the relationship between the rotational speed and the mechanical loss current with the coil diameter as a parameter.

【0008】本発明は、コイル回転数の変動のみなら
ず、コイル重量の変動や巻取り角度の変化に起因する機
械損失分をも補償し、張力計を用いた実張力制御を行っ
ていない場合に特に有効なシート巻取り制御における機
械損失補償方法を提供することを目的とする。
The present invention compensates not only for the change in the coil rotation speed but also for the mechanical loss caused by the change in the coil weight and the change in the winding angle, and when the actual tension control using the tensiometer is not performed. It is an object of the present invention to provide a mechanical loss compensation method in sheet winding control that is particularly effective for the above.

【0009】[0009]

【課題を解決するための手段】本発明は、シートを巻き
取る駆動モータの予め設定した張力電流値をベアリング
の回転数に比例した摩擦損失電流のぶん補償するように
したシート巻取り制御における機械損失補償方法におい
て、前記コイルへのシート進入角度を用いて前記シート
の巻き取りコイル径に応じたコイル重量と設定張力との
合力となる前記ベアリングにかかる軸受荷重を算出し、
当該軸受荷重に基づきトルク損失を求めて、該トルク損
失に相当する電流値を、前記駆動モータのベアリングの
回転数に比例した摩擦損失電流分を補償した張力電流設
定値に更に加算することを特徴とする。
SUMMARY OF THE INVENTION The present invention is a machine for sheet winding control in which a preset tension current value of a drive motor for winding a sheet is compensated for a friction loss current proportional to the rotational speed of a bearing. In the loss compensation method, the bearing load applied to the bearing, which is the resultant force of the coil weight and the set tension according to the winding coil diameter of the sheet, is calculated using the sheet entrance angle to the coil,
A torque loss is obtained based on the bearing load, and a current value corresponding to the torque loss is further added to a tension current setting value that compensates for a friction loss current amount proportional to the rotation speed of the bearing of the drive motor. And

【0010】本発明によれば、リールに巻いたシートの
コイル径の現在値を検出・演算してコイル重量現在値を
算出し、そのコイル重量現在値とリールの運転張力とを
力学的に合成してリールの軸受にかかる荷重を算出し、
更にリールの軸受摩擦損失量を算出した後、そのトルク
損失分をリール駆動モータの機械損失補償分として、リ
ール軸受の回転数による摩擦損失の補償に加えて電流指
令に付加するようにしたから、リール回転速度に比例す
る軸受摩擦損失分のみならず、コイル重量及び運転張力
によるリール軸受の摩擦損失をも補償でき、従来より厳
密に常に一定の張力でシートの巻取りまたは払い出しが
できる。
According to the present invention, the present value of the coil diameter of the sheet wound on the reel is detected and calculated to calculate the present value of the coil weight, and the present value of the coil weight and the operating tension of the reel are dynamically combined. And calculate the load on the reel bearing,
Furthermore, after calculating the bearing friction loss amount of the reel, the torque loss amount is added as a mechanical loss compensation amount of the reel drive motor to the current command in addition to the friction loss compensation by the rotation speed of the reel bearing. Not only the bearing friction loss proportional to the reel rotation speed, but also the friction loss of the reel bearing due to the coil weight and the operating tension can be compensated, and the sheet can be wound up or paid out more strictly than ever with a constant tension.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は本発明の一実施形態例であ
るストリップシートの巻取り制御のブロック線図であ
る。シートであるストリップ1がペイオフリール2にコ
イル状に巻かれている。このコイル3aを、払出し駆動
モータ6aの駆動で巻き戻し連続的に通板しながら処理
装置5へ送り出して所定の処理を施す。処理が終わった
ストリップ1は巻取り駆動モータ6bの駆動で回転する
テンションリール4に連続的にコイル3bとして巻き取
られていく。このとき、例えばペイオフリール2及びテ
ンションリール4では、コイル3a,3bの外径Dは連
続的に変化していくが、その外径Dの変化にかかわらず
ストリップ1を一定張力で巻き取るように、払い出し駆
動モータ6a及び巻取り駆動モータ6bの制御が行われ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of winding control of a strip sheet which is an embodiment of the present invention. A strip 1 which is a sheet is wound around a payoff reel 2 in a coil shape. The coil 3a is unwound by the drive of the pay-out drive motor 6a and continuously fed through the coil 3a to the processing device 5 for predetermined processing. The strip 1 that has been processed is continuously wound as a coil 3b on a tension reel 4 that is rotated by the drive of a winding drive motor 6b. At this time, for example, on the pay-off reel 2 and the tension reel 4, the outer diameter D of the coils 3a and 3b continuously changes, but the strip 1 is wound with a constant tension regardless of the change of the outer diameter D. The payout drive motor 6a and the winding drive motor 6b are controlled.

【0012】例えばテンションリール4の場合を例にと
ると、まず予め設定した設定張力T〔kg〕一定で巻き
取るために、その設定張力Tを電流変換装置8により張
力設定電流IT に変換する。そしてこの張力設定電流I
T を巻取り駆動モータ6bに電源装置9を介して供給す
るに際し、巻取り駆動モータ6bの検出電流実績値I O
をフィードバックして自動電流制御装置(ACR)10
によりつき合わせ、一定電流を供給するように巻取り駆
動モータ6bの制御を行っている。しかして、実際に
は、テンションリール4が回転中に発生する軸受の摩擦
損失が、巻取り駆動モータ6bの負荷の増大を誘発する
ため、上記のように張力設定電流IT を一定に制御した
だけでは、巻取り張力を一定に保持することは出来な
い。そのため、軸受の回転数に比例する摩擦損失の影響
を受けて巻取り張力が弱くなり、テンションリール4で
の巻き弛み等の不具合が生じる。そこで、巻取り駆動モ
ータ6bの回転数N1 をパルスジェネレータ(PLG)
11で検出し、これから演算器12により軸受摩擦損失
分を補償する機械損失補償電流値IL2を得て、前記張力
設定電流IT に加算した電流(IT +IL2)を指令電流
としてACR10に送る。これにより軸受の回転数に比
例した摩擦損失分を補償し、ある程度安定した張力一定
制御が可能になる。ここまでは、従来も行われていた。
Taking the case of the tension reel 4 as an example,
Then, first, the winding is performed with a constant set tension T [kg].
In order to take it, the set tension T is tensioned by the current converter 8.
Force setting current ITConvert to. And this tension setting current I
TIs supplied to the winding drive motor 6b through the power supply device 9.
The actual detected current value I of the winding drive motor 6b O
Is fed back to the automatic current controller (ACR) 10
And winding up to supply a constant current.
The dynamic motor 6b is controlled. Then actually
Is the friction of the bearing generated while the tension reel 4 is rotating.
The loss causes an increase in the load of the winding drive motor 6b.
Therefore, as described above, the tension setting current ITControlled to be constant
It is not possible to keep the winding tension constant just by
Yes. Therefore, the effect of friction loss proportional to the rotation speed of the bearing
The winding tension becomes weaker as a result, and the tension reel 4
Problems such as winding slack occur. Therefore, the winding drive
Rotation speed N of the motor 6b1Pulse generator (PLG)
11, the bearing friction loss from the calculator 12
Mechanical loss compensation current value IL2To get the tension
Set current ITCurrent added to (IT+ IL2) Command current
To ACR10. As a result,
Compensate for the friction loss as shown, and keep the tension constant to some extent.
Control becomes possible. Up to this point, it has been performed conventionally.

【0013】しかし、このような回転速度に応じた軸受
の摩擦損失分の補償のみでは、一定した張力での巻取り
は不十分といわざるを得ない。というのは、ストリップ
1のテンションリール4への巻取りが進行するにつれて
コイル径が増大し、テンションリール4の軸受にかかる
荷重が増大するから、これに起因する軸受の機械損失量
も増大し、結局巻取り駆動モータ6bの負荷の増大が誘
発されて、その結果、テンションリール4での巻き弛み
等の不具合が助長されてしまう。図2は、現コイル径と
機械損失量との関係を示したグラフであり、現コイル径
Dが増大するにつれて、機械損失量も増大している。特
に、実張力制御を行っていない巻取り装置の場合に、こ
のコイル重量増大に伴う張力不足が顕著に発生する。
However, it cannot be said that the winding with a constant tension is insufficient only by compensating for the friction loss of the bearing according to such a rotation speed. This is because the coil diameter increases as the winding of the strip 1 onto the tension reel 4 increases, and the load applied to the bearing of the tension reel 4 increases, so the mechanical loss amount of the bearing resulting from this also increases. Eventually, an increase in the load of the winding drive motor 6b is induced, and as a result, problems such as winding slack in the tension reel 4 are promoted. FIG. 2 is a graph showing the relationship between the current coil diameter and the mechanical loss amount, and the mechanical loss amount also increases as the current coil diameter D increases. In particular, in the case of a winding device that does not perform actual tension control, insufficient tension occurs remarkably due to this increase in coil weight.

【0014】これに対し、本発明にあっては、更に、コ
イル3bの直径Dの増大に比例して増大していくコイル
重量に基づく軸受荷重の増大に見合った電流値を、機械
損失補償電流演算装置20により求めて、これを第二の
機械損失補償値として、上記加算した電流(IT
L2)に更に加算した指令電流を用いて制御するもので
ある。
On the other hand, according to the present invention, the current value commensurate with the increase in the bearing load based on the coil weight, which increases in proportion to the increase in the diameter D of the coil 3b, is used as the mechanical loss compensation current. Calculated by the arithmetic unit 20, and using this as the second mechanical loss compensation value, the added current ( IT +
I L2 ) is further controlled using the command current.

【0015】すなわち、本発明のシート巻取り制御にお
ける機械損失補償方法の概要は、 現コイル径Dに応じた現コイル重量W(t)を算出す
る。 現コイルへのシート進入角度θ(t)を求める。 θ(t)を用いて巻取り設定張力Tと現コイル重量W(t)
との合成力Fを演算する。
That is, the outline of the mechanical loss compensating method in the sheet winding control of the present invention is to calculate the current coil weight W (t) according to the current coil diameter D. Find the sheet entry angle θ (t) into the current coil. Set winding tension T and current coil weight W (t) using θ ( t)
The synthetic force F of and is calculated.

【0016】軸受荷重である前記合成力Fと軸受摩擦
係数μ,コイル径Dから軸受摩擦によるトルク損失τL
を求めて、これを電流値IL1に変換し、当該電流値IL1
を巻取り駆動モータ6bの張力設定電流IT に加算す
る。かくして、軸受の回転数に比例した摩擦損失分の補
償に加えて、更に、軸受荷重の増大に基づく機械損失分
をも補償するものである。
Torque loss due to bearing friction τ L from the above-mentioned combined force F which is a bearing load, bearing friction coefficient μ, and coil diameter D
Is calculated and converted into a current value I L1 to obtain the current value I L1.
Is added to the tension setting current I T of the winding drive motor 6b. Thus, in addition to the compensation of the friction loss proportional to the rotation speed of the bearing, the compensation of the mechanical loss due to the increase of the bearing load is also performed.

【0017】具体的には、巻取り駆動モータ6bの回転
速度N1 (テンションリール4の回転速度)をPLG1
1で検出すると共に、ストリップ1の速度検出ロール2
1の回転速度N2 をPLG22で検出し、両検出値
1 ,N2 をコイル径演算装置23に入力してコイル3
bの現コイル径Dを算出する。テンションリール4の外
径をD0 とすると、D=(N2 /N1 )×D0 から算出
できる。
Specifically, the rotational speed N 1 (rotational speed of the tension reel 4) of the winding drive motor 6b is set to PLG1.
1 and the speed detection roll 2 of the strip 1
The rotation speed N 2 of No. 1 is detected by the PLG 22, both detection values N 1 and N 2 are input to the coil diameter calculation device 23, and the coil 3 is detected.
The current coil diameter D of b is calculated. If the outer diameter of the tension reel 4 is D 0 , it can be calculated from D = (N 2 / N 1 ) × D 0 .

【0018】得られた現コイル径Dと、ストリップ1の
比重ρと、ストリップ幅lとから、現コイル重量W(t)
=(πρl/4)×(D2 −D0 2 )を算出する。一
方、シート進入角度θ(t)は次のように求める。いま、
ラインのストリップ1の送り面とテンションリール4の
軸心間の距離d0 、ストリップ1の送り面とコイル3b
の外径間の距離d1 、ストリップ1の進入開始位置のガ
イドロール24の軸心とコイル3bへの巻きつき開始位
置間の距離d2 とすると、現コイル径Dの半径はD/2
であるから図よりシート進入角度θ(t)=tan-1(d
0 −D/2)=tan-1(d1 /d2 )となる。
From the obtained current coil diameter D, the specific gravity ρ of the strip 1 and the strip width l, the current coil weight W (t)
= (Πρl / 4) × (D 2 −D 0 2 ) is calculated. On the other hand, the sheet entry angle θ (t) is calculated as follows. Now
The distance d 0 between the feed surface of the strip 1 and the axis of the tension reel 4 of the line, the feed surface of the strip 1 and the coil 3b
The distance d 1 between the outer diameters of the two is the distance d 2 between the axial center of the guide roll 24 at the entry start position of the strip 1 and the winding start position around the coil 3 b, and the radius of the current coil diameter D is D / 2.
Therefore, from the figure, the seat entry angle θ (t) = tan -1 (d
0 −D / 2) = tan −1 (d 1 / d 2 ).

【0019】求められた現コイル重量W(t)とシート進
入角度θ(t)と設定張力Tとから、図3のようにして、
軸受荷重としての合成荷重Fを算出する次式が得られ
る。 F={(Tcosθ(t) 2 +(W(t)−Tsinθ(t) 2 1/2 =(T2 +W(t) 2 −2W(t)Tsinθ(t) 1/2 このように合成して求めた軸受荷重Fの値と、軸受摩擦
係数μと、コイル径Dとから、軸受摩擦によるトルク損
失τL を次のように求める。
From the obtained current coil weight W (t) , the sheet advancing angle θ (t) and the set tension T, as shown in FIG.
The following formula for calculating the combined load F as the bearing load is obtained. F = {(Tcosθ (t) ) 2 + (W (t) -Tsinθ (t)) 2} 1/2 = (T 2 + W (t) 2 -2W (t) Tsinθ (t)) 1/2 This The torque loss τ L due to the bearing friction is obtained as follows from the value of the bearing load F obtained by the above synthesis, the bearing friction coefficient μ, and the coil diameter D.

【0020】τL =F/2×μ×D/2 そして、このトルク損失τL を電流変換装置25により
機械損失補償電流IL1に変換して張力設定電流IT に加
算する。かくして、張力設定電流IT に軸受荷重による
機械損失補償電流IL1を加えた電流値IT +IL1に、さ
らに軸受回転速度に比例した機械損失補償電流IL2を加
算したトータルの電流IREF を巻取り駆動モータ6bの
指令電流としてACR10に送る。これにより、軸受の
回転数に比例した摩擦損失分を補償し、且つ軸受荷重に
よる摩擦損失分をも補償して、テンションリール4bに
巻き取られるコイル3bの回転速度及び重量変化に影響
されずに、常に一定の張力で極めて安定した巻取りが可
能である。
Τ L = F / 2 × μ × D / 2 This torque loss τ L is converted into a mechanical loss compensation current I L1 by the current converter 25 and added to the tension setting current I T. Thus, the total current I REF obtained by adding the mechanical value compensation current I L2 proportional to the bearing rotation speed to the current value I T + I L1 obtained by adding the mechanical loss compensation current I L1 due to the bearing load to the tension setting current I T. The current is sent to the ACR 10 as a command current for the winding drive motor 6b. As a result, the friction loss proportional to the rotation speed of the bearing is compensated, and also the friction loss due to the bearing load is compensated, so that the rotation speed and the weight change of the coil 3b wound around the tension reel 4b are not affected. It is possible to take up extremely stable winding with constant tension.

【0021】本発明のシート巻取り制御方法は、張力計
を用いて実張力制御を行っていないリールにおいては、
特に効果がある。なお、上記実施形態例では、ストリッ
プのテンションリールへの巻取り制御の場合について説
明したが、本発明はこれに限定されるものではなく、ペ
イオフリールの場合についても、さらには紙などの払い
出し,巻取りなどの場合においても適用できるものであ
る。
According to the sheet winding control method of the present invention, in the reel in which the actual tension control is not performed by using the tensiometer,
Especially effective. In the above embodiment, the case of controlling the winding of the strip on the tension reel has been described, but the present invention is not limited to this, and even in the case of a pay-off reel, the payout of paper, etc., It is also applicable in the case of winding.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
シートを巻き取る駆動モータの張力電流値をベアリング
の回転数に比例した摩擦損失電流のぶん補償するのみな
らず、更に、コイルへのシート進入角度θ(t)を用いて
シートの巻き取りコイル径Dに応じたコイル重量W(t)
と設定張力Tとの合力となる軸受荷重Fを算出し、その
軸受荷重によるトルク損失に相当する電流分をも補償す
るものとしたため、コイル回転速度の変化のみならずコ
イル重量の変化の影響をも補償して、常時一定張力での
シートの巻取りや払い出しができるようになり、シート
製品の巻取り,巻き戻し時のスリキズ,巻き弛み,巻き
締め等の不具合発生が完全に防止できるという効果を奏
する。
As described above, according to the present invention,
Not only does the tension current value of the drive motor that winds the sheet compensate for the friction loss current that is proportional to the rotation speed of the bearing, but also the sheet entrance coil angle θ (t) is used to determine the sheet winding coil diameter. Coil weight according to D W (t)
Since the bearing load F, which is the resultant force between the load and the set tension T, is calculated and the current component corresponding to the torque loss due to the bearing load is also compensated, not only the change in the coil rotation speed but also the change in the coil weight is affected. By compensating for this, it is possible to always wind up and pay out the sheet with a constant tension, and it is possible to completely prevent the occurrence of defects such as scratches, looseness, and tightening at the time of winding and rewinding the sheet product. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の巻取り制御の一実施形態例のブロック
線図である。
FIG. 1 is a block diagram of an example of an embodiment of winding control according to the present invention.

【図2】コイル径変化と機械損失量との関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a change in coil diameter and a mechanical loss amount.

【図3】本発明方法におけるコイル重量とシート張力と
から軸受荷重を合成する方法を説明する図である。
FIG. 3 is a diagram illustrating a method of synthesizing a bearing load from a coil weight and a sheet tension in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 シート(ストリップ) 3a コイル 4 テンションリール 6a 巻取り駆動モータ 1 sheet (strip) 3a coil 4 tension reel 6a winding drive motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シートを巻き取る駆動モータの予め設定
した張力電流値をベアリングの回転数に比例した摩擦損
失電流のぶん補償するようにしたシート巻取り制御にお
ける機械損失補償方法において、 前記コイルへのシート進入角度を用いて前記シートの巻
き取りコイル径に応じたコイル重量と設定張力との合力
となる前記ベアリングにかかる軸受荷重を算出し、当該
軸受荷重に基づきトルク損失を求めて、該トルク損失に
相当する電流値を、前記駆動モータのベアリングの回転
数に比例した摩擦損失電流分を補償した張力電流設定値
に更に加算することを特徴とするシート巻取り制御にお
ける機械損失補償方法。
1. A mechanical loss compensating method in sheet winding control, wherein a preset tension current value of a drive motor for winding a sheet is compensated for a friction loss current proportional to a rotation speed of a bearing. The bearing load applied to the bearing, which is the total force of the coil weight and the set tension corresponding to the winding coil diameter of the sheet, is calculated using the sheet advancing angle, and the torque loss is calculated based on the bearing load, and the torque is calculated. A mechanical loss compensating method in sheet winding control, further comprising adding a current value corresponding to a loss to a tension current setting value that compensates for a friction loss current amount proportional to the rotational speed of the bearing of the drive motor.
JP34380395A 1995-12-28 1995-12-28 Mechanical loss compensating method in sheet takeup control Pending JPH09183544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34380395A JPH09183544A (en) 1995-12-28 1995-12-28 Mechanical loss compensating method in sheet takeup control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34380395A JPH09183544A (en) 1995-12-28 1995-12-28 Mechanical loss compensating method in sheet takeup control

Publications (1)

Publication Number Publication Date
JPH09183544A true JPH09183544A (en) 1997-07-15

Family

ID=18364361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34380395A Pending JPH09183544A (en) 1995-12-28 1995-12-28 Mechanical loss compensating method in sheet takeup control

Country Status (1)

Country Link
JP (1) JPH09183544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904212B1 (en) * 2006-08-04 2009-06-25 가부시키가이샤 메이키 세이사쿠쇼 Control method of carrier mechanism for carrying film
WO2009107604A1 (en) * 2008-02-26 2009-09-03 株式会社神戸製鋼所 Tire testing machine and method for testing tire
CN105752738A (en) * 2016-03-28 2016-07-13 马根昌 Automatic alignment gluing machine
CN108593170A (en) * 2018-04-25 2018-09-28 重庆大学 Device for measuring revolute pair moment of friction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904212B1 (en) * 2006-08-04 2009-06-25 가부시키가이샤 메이키 세이사쿠쇼 Control method of carrier mechanism for carrying film
WO2009107604A1 (en) * 2008-02-26 2009-09-03 株式会社神戸製鋼所 Tire testing machine and method for testing tire
US8136393B2 (en) 2008-02-26 2012-03-20 Kobe Steel, Ltd. Tire testing machine and method for testing tire
CN105752738A (en) * 2016-03-28 2016-07-13 马根昌 Automatic alignment gluing machine
CN108593170A (en) * 2018-04-25 2018-09-28 重庆大学 Device for measuring revolute pair moment of friction

Similar Documents

Publication Publication Date Title
US4496112A (en) Method of controlling a web winding process
JP5230509B2 (en) Rolling mill control device and control method thereof
CN113042540A (en) Method for controlling coiling tension of ultrathin steel strip
JPH09183544A (en) Mechanical loss compensating method in sheet takeup control
JP2008290109A (en) Sheet-thickness variation suppressing device for steel rolling equipment
US2157739A (en) Rolling mill control
JP3438393B2 (en) Rolling material winding control method
JP3449305B2 (en) Tension control method and apparatus for strip material
US4230975A (en) Control circuit arrangement for DC motors
JPH10180327A (en) Tension control method for chip end and tail end of strip in steckel mill
JP2006095594A (en) Device for suppressing fluctuation in reel tension
JPH11277135A (en) Discharging method of coil and its device
JP2594928B2 (en) Method for detecting interlayer slip of strip coil
JPH0438666B2 (en)
JPH0532372A (en) Protective film laminator device with tension control mechanism
JPS6083719A (en) Plate thickness controlling method of strip mill
JPH10323714A (en) Method and device for winding or rewinding metallic strip
EP0705151B1 (en) Control of single stand/reversing mills
JPH09155425A (en) Method for controlling speed of motor for uncoiler or coiler
JPH07315646A (en) Belt-like paper delivery method and device thereof
JP2583695B2 (en) Rolling mill
JPH0839139A (en) Method for controlling payoff reel
JP3921103B2 (en) Paper winding tension control device
JPH07315645A (en) Belt-like paper delivery method and device thereof
JPH0952119A (en) Method for controlling coiler for hot rolling