JPH01219192A - Method for detecting sheet breakage in continuous electroplating - Google Patents

Method for detecting sheet breakage in continuous electroplating

Info

Publication number
JPH01219192A
JPH01219192A JP4386488A JP4386488A JPH01219192A JP H01219192 A JPH01219192 A JP H01219192A JP 4386488 A JP4386488 A JP 4386488A JP 4386488 A JP4386488 A JP 4386488A JP H01219192 A JPH01219192 A JP H01219192A
Authority
JP
Japan
Prior art keywords
plate
plating
voltage
tension
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4386488A
Other languages
Japanese (ja)
Inventor
Ikuo Kiyonaga
郁夫 清永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4386488A priority Critical patent/JPH01219192A/en
Publication of JPH01219192A publication Critical patent/JPH01219192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To eliminate the malfunction due to the slippage, slackening, inching, etc., of a steel sheet and to rapidly and surely detect the sheet breakage by combining the detection values of the plating voltage in electroplating and the variations in the width and tension of the steel sheet, and making a calculation. CONSTITUTION:In the continuous electroplating of a steel sheet 1, the plating voltage in the plating section is detected through a rectifier, a first abnormality detection signal A is outputted when the voltage detection value exceeds the voltage upper-limit set value. The sheet width is detected on the inside and outside of the plating section, and a second abnormality detection signal B is outputted when the width becomes smaller than the width lower-set value. The tension of the sheet 1 is detected by a tensimeter, and a third abnormality detection signal C is outputted when the tension variation exceeds the upper- limit set value except when the sheet is inched on the inlet side of the plating section. The logical product A.B.C of the signals A, B, and C is calculated, the sheet breakage is detected when calculated logical value is equal to 1, and the driving of the line and the plating current are immediately stopped.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼板等の板状体の連続電気メッキ設備におけ
るメッキセクションでの板状体の破断検出方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting breakage of a plate-like body in a plating section in continuous electroplating equipment for plate-like bodies such as steel plates.

(従来の技術) 電気メッキ設備のメッキ槽内での板破断は、入側セクシ
ョンでの溶接不良、仮の蛇行によるエツジマスク装置へ
の突掛は等を原因として発生する。
(Prior Art) Breakage of plates in the plating tank of electroplating equipment occurs due to poor welding at the entrance section, interference with the edge mask device due to temporary meandering, and the like.

この場合、早急にラインを停止し通電を止めないと電極
・通電ロール等の機器に損傷を生じ、長時間の停機が必
要になる。電気メンキラインのように複雑な構造のライ
ンでは、板破断をいかに精度よくかつ迅速に検出できる
かがその後の復旧に要する時間に多大な影響を与えるも
のであるから、確実・迅速に板破断を検出する方法の開
発が強く望まれている。
In this case, unless the line is stopped and energized immediately, equipment such as electrodes and energizing rolls will be damaged, requiring a long shutdown. On a line with a complex structure like an electric menki line, how accurately and quickly a plate break can be detected has a significant impact on the time required for subsequent recovery, so it is important to detect plate breaks reliably and quickly. There is a strong desire to develop a method to do so.

従来の板破断検出方法には次のような方法があった。Conventional methods for detecting plate breakage include the following methods.

■メッキセフ91フ前後のプライドルの速度差を測定し
、速度差上限値を越えた場合に板破断を検出する方法。
■Method of measuring the speed difference of the prydle before and after plating SEF 91F and detecting plate breakage if the speed difference exceeds the upper limit.

■メッキセフ93ン前後のプライドルの積算長さの差を
演算し、上限値を越えた場合に板破断を検出する方法。
■A method that calculates the difference in the cumulative length of prydle before and after plating safety 93, and detects plate breakage if the upper limit is exceeded.

■鋼板の張力を測定し、張力変動値が大きくなった時に
板破断を検出する方法。
■Method of measuring the tension of a steel plate and detecting plate breakage when the tension fluctuation value becomes large.

■アース検出装置により、板のたるみに起因する板・検
出装置間の接触を検出することにより板破断を検出する
方法。
■A method of detecting plate breakage by using an earth detection device to detect contact between the plate and the detection device due to plate sag.

また、以上の■〜■の方法のように、本来、板破断検出
を目的とするものではないが、鋼板の連続電気メッキに
おける極間異常検出方法としては特開昭58−1075
00号公報がある。これはメッキ電流検出値・電圧検出
値・有効面積設定値から極間比抵抗と極間距離の積を求
め、これを上下限設定値と比較することにより極間の異
常接近によるスパークの発生あるいは異常開離による電
力浪費等を未然に防ぐものである。この公報の方法は特
に可溶性電極における極間距離変動の検出を目的とする
ものであるが、板破断の検出にも応用できると考えられ
る。
In addition, although the above methods (■ to ■) are not originally intended for detecting plate breakage, Japanese Patent Application Laid-Open No. 58-1075
There is a publication No. 00. This calculates the product of the resistivity between the electrodes and the distance between the electrodes from the plating current detection value, voltage detection value, and effective area setting value, and compares this with the upper and lower limit setting values to determine whether sparks occur due to abnormal proximity between the electrodes. This prevents power wastage due to abnormal disconnection. Although the method of this publication is particularly aimed at detecting changes in the distance between electrodes in soluble electrodes, it is thought that it can also be applied to detecting plate breakage.

(発明が解決しようとする諜B) 従来の板破断検出方法には次のような問題があったΦ ■のプライドルの速度差および■のプライドル積算長さ
の差を検出する方法は、鋼板のスリップによる誤検出が
あり、また上限値を適切な値に設定することも困難であ
る。■の張力変動値による検出方法は、入側セクション
での正・逆寸動時の張力変動および鋼板のスリップが誤
検出の原因となる。さらにまた■のアース検出装置を用
いる方法は検出装置の絶縁低下、加減速時の板たるみに
よる誤検出が問題となる。
(Intelligence B to be solved by the invention) The conventional method for detecting plate breakage has the following problems. Misdetection occurs due to slips, and it is also difficult to set the upper limit to an appropriate value. In the detection method (2) using tension fluctuation values, tension fluctuations and slippage of the steel plate during forward and reverse jogging in the entry section cause false detection. Furthermore, the method (2) using a ground detection device has the problem of erroneous detection due to poor insulation of the detection device and sagging of the plate during acceleration and deceleration.

従って本発明の目的は、鋼板等の被メッキ板のスリップ
・たるみ・寸動等による誤動作の虞れのない迅速・確実
な板破断の検出方法を提供することである。
Therefore, an object of the present invention is to provide a quick and reliable method for detecting plate breakage without the risk of malfunctions due to slipping, sagging, inching, etc. of a plated plate such as a steel plate.

(課題を解決するための手段) 本発明者は上の目的を達成するため研究を重ね次の着想
を得た。誤検出は種々の原因で起り得る。
(Means for Solving the Problem) In order to achieve the above object, the present inventor has conducted research and obtained the following idea. False detections can occur for various reasons.

しかし誤検出の原因は各板破断検出方法でそれぞれ異な
っている。すなわち、ある検出方法で誤検出の原因とな
る現象も他の検出方法の誤検出の原因とはならない。従
って複数の検出方法を組み合せて同時に用い、それぞれ
の短所を互いに補い合うように構成すれば確実な板破断
検出が可能となある筈である。このような着想に基づい
てさらに研究を重ね、相互に補足し合う具体的な検出方
法の組み合せを決定するとともに、組み合せの要素とな
る検出方法にも改良を加えて本発明を完成した。
However, the causes of false detection differ depending on each plate breakage detection method. In other words, a phenomenon that causes false detection with one detection method does not cause false detection with another detection method. Therefore, if a plurality of detection methods are combined and used at the same time, and the shortcomings of each method are compensated for, reliable plate breakage detection should be possible. Based on this idea, we conducted further research, determined a specific combination of mutually complementary detection methods, and also improved the detection methods that are the elements of the combination, thereby completing the present invention.

こうして本発明の要旨とするところは、板状体に連続的
に電気メッキを施す設備において、a)メッキセクショ
ンにおける電圧検出値が電圧上限設定値を超えた時に第
1の異常検出信号Aを出力すること、 b)メンキ上クシ3ンにおいて板幅を検出し、板幅が板
幅下限設定値以下となった時に第2の異常検出信号Bを
出力すること、 C)メッキセクションにおいて板状体の張力を検出し、
張力変動が、メッキセクション人側寸動時以外において
張力変動上限設定値を超えた時に第3の異常検出信号C
を出力すること、 d)異常検出信号A、B、Cの論理積A−B−Cを演算
し、信号A−B−Cの値が論理値1の時に板破断を検出
すること、 以上a)〜d)の工程を備えることを特徴とする連続電
気メッキにおける板破断検出方法である。
In this way, the gist of the present invention is that, in equipment that continuously electroplates plate-shaped bodies, a) a first abnormality detection signal A is output when the detected voltage value in the plating section exceeds the voltage upper limit setting value; b) Detecting the board width at the upper comb 3 of the plate and outputting the second abnormality detection signal B when the board width becomes less than the lower limit set value of the board width; C) Detecting the board width in the plating section. detects the tension of
The third abnormality detection signal C is generated when the tension fluctuation exceeds the tension fluctuation upper limit setting value except when the plating section is inching on the human side.
d) Calculating the logical product A-B-C of the abnormality detection signals A, B, and C, and detecting plate breakage when the value of the signal A-B-C is a logical value of 1. This is a method for detecting plate breakage in continuous electroplating, comprising the steps of ) to d).

(作用) 本発明では電気メッキ通電時のメッキ電圧の連続監視a
)と、鋼板の幅検出b)を組み合せて板破断検出を行う
ためスリップ・たるみ等による誤検出が無い。また張力
変動の検出C)においては、メッキセクション入側正・
逆寸動を検出条件から外すことにより誤検出を防止して
いる。検出信号A、B、Cの論理積A−B−Cをとるこ
とにより正確な板破断検出が可能である。
(Function) In the present invention, continuous monitoring of plating voltage during electroplating energization a
) and steel plate width detection b) to detect plate breakage, there is no false detection due to slipping, sagging, etc. In addition, in tension fluctuation detection C), the plated section entry side positive
Erroneous detection is prevented by excluding reverse inching from the detection conditions. Accurate plate breakage detection is possible by taking the logical product A-B-C of the detection signals A, B, and C.

さらに本発明の作用を詳しく説明すると次のとおりであ
る。
Further, the operation of the present invention will be explained in detail as follows.

a)電圧異常の検出をメンキセルで行う場合は、メッキ
電流検出値と板幅データから電流密度を算出し、電流密
度に応じて電圧上限設定値を決定する。
a) When detecting a voltage abnormality using a Menki cell, calculate the current density from the plating current detection value and the plate width data, and determine the voltage upper limit set value according to the current density.

メッキ電流密度は鋼板の幅・電極の長さ・メッキ電流検
出値に基づき演算される。このメッキ電流密度とメッキ
電圧の関係は、正常運転中には一定の直線的関係で表わ
される。メッキ設備では電流制御を行っているので板破
断が発生し仮無しとなった時には、電圧が過大となり、
上記の直線的関係から大きく外れる。従ってメッキ電圧
を検出し、上記の関係から決められた上限設定値と比較
することにより板破断を示す信号Aを出力する。
The plating current density is calculated based on the width of the steel plate, the length of the electrode, and the plating current detection value. The relationship between the plating current density and the plating voltage is expressed as a constant linear relationship during normal operation. Since current is controlled in plating equipment, if a plate breaks and the plate becomes blank, the voltage will be excessive, and
It deviates significantly from the above linear relationship. Therefore, by detecting the plating voltage and comparing it with the upper limit set value determined from the above relationship, a signal A indicating plate breakage is output.

一方、前処理セルにおいて電圧異常を検出する場合は、
例えば定格電圧の110%を電圧上限値として設定し、
検出電圧がこの上限値を越えた場合に異常を検出する。
On the other hand, when detecting voltage abnormalities in pretreatment cells,
For example, set 110% of the rated voltage as the voltage upper limit,
An abnormality is detected when the detection voltage exceeds this upper limit value.

b)綱板の幅検出は、メッキ槽外では固定式の板端検知
器を用い、またメッキ槽内では板エツジに追従する板端
検知器を用いて行う。これらの板端位置から算出される
板幅が、下限設定値以下となった場合に板破断を示す信
号Bを出力する。なお、この下限設定値はOとしても良
い、この場合は検出板幅が0となった時に信号Bを出力
する。
b) The width of the steel plate is detected using a fixed plate edge detector outside the plating tank, and a plate edge detector that follows the plate edge inside the plating tank. When the plate width calculated from these plate end positions becomes less than or equal to the lower limit setting value, a signal B indicating plate breakage is output. Note that this lower limit setting value may be set to O. In this case, the signal B is output when the detection plate width becomes 0.

C)メッキセクションでの張力は正常運転中には一定に
保たれるが板破断時には過渡的な張力変動が発生する。
C) The tension in the plated section remains constant during normal operation, but transient tension fluctuations occur when the plate breaks.

張力計により検出された張力変動が、入側寸動時以外に
上限設定値を越えた場合に板破断を示す信号Cを出力す
る。
If the tension fluctuation detected by the tension meter exceeds the upper limit setting value other than during inching on the entry side, a signal C indicating plate breakage is output.

d)これらの板破断を示す信号A、B、Cの論理積A−
B−Cにより正確な板破断検出を行う。
d) Logical product A- of these signals A, B, and C indicating plate breakage
Accurate plate breakage detection is performed by B-C.

(実施例) 次に本発明の実施例について添付図面を参照しながら詳
しく説明する。
(Example) Next, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の板破断検出方法を鋼板の連続電気メッ
キ設備に応用した実施例の全体的構成を示すブロック図
である。メッキセクションは多数のメッキ槽を備え、鋼
板1を連続的にメッキして行く。なお、第1図には図示
しないが、メッキセクションへの鋼板の供給は、ペイオ
フリールからプライドルロール・入側ルーパ・プライド
ルロールを介して行われる。一方、メッキセクションを
出た鋼板は、順にプライドルロール・熱処理炉・テンシ
ョンレヘラ・出側ルーパ・プライドルロールを経て巻取
りリールに巻取られる。
FIG. 1 is a block diagram showing the overall configuration of an embodiment in which the plate breakage detection method of the present invention is applied to continuous electroplating equipment for steel plates. The plating section is equipped with a large number of plating tanks, and the steel plates 1 are continuously plated. Although not shown in FIG. 1, the steel plate is supplied to the plating section from a payoff reel via a prydle roll, an inlet looper, and a prydle roll. On the other hand, the steel plate that has left the plating section passes through a prydle roll, a heat treatment furnace, a tension roller, an exit looper, and a prydle roll in order, and is then wound onto a take-up reel.

本発明の方法は、メッキ電圧異常を示す信号A、板幅異
常を示す信号B、および張力異常を示す信号Cの論理積
信号A−B−Cにより板破断を検出するものである。以
下各信号の形成方法について項目に分けて説明する。
The method of the present invention detects plate breakage using the AND signal A-B-C of a signal A indicating an abnormality in plating voltage, a signal B indicating an abnormality in plate width, and a signal C indicating an abnormality in tension. The method for forming each signal will be explained in sections below.

言 A: メッキ] 第2図は電圧異常を示す信号Aを形成する装置構成を示
すブロック図である。
Term A: Plating] FIG. 2 is a block diagram showing the configuration of a device for forming signal A indicating voltage abnormality.

鋼板1は、通電ロール2および浸漬ロール3を介してメ
ッキセル4内を走行し、電極5間において連続的にメン
キされる。メッキ電流はブスバー6を介して整流器7か
ら供給され、電流制御装置8により制御される。一方、
前処理セル10における電極11間の電流は、整流器1
2により供給され、電流制御装置8により制御される。
The steel plate 1 travels through a plating cell 4 via an energized roll 2 and a dipping roll 3, and is continuously coated between electrodes 5. Plating current is supplied from a rectifier 7 via a bus bar 6 and is controlled by a current control device 8. on the other hand,
The current between the electrodes 11 in the pretreatment cell 10 is passed through the rectifier 1
2 and controlled by a current control device 8.

各整流器7.12の電流値Iおよび電圧値■は、電流制
御装置8から演算装置13に出力される。
The current value I and the voltage value ■ of each rectifier 7.12 are output from the current control device 8 to the arithmetic device 13.

メンキセルにおけるメッキ電圧・メッキ電流検出値に基
づいて信号Aを形成する場合、演算装置13は次の手順
に従う。
When forming the signal A based on the plating voltage and plating current detected values in the Menki cell, the arithmetic unit 13 follows the following procedure.

第3図にグラフを示すように、正常時のメッキ電圧■は
電流密度Jを独立変数として回帰式%式% で表わすことができる。ただし に、、 Kg:定数 J:電流密度(^/dm”) V二メッキ電圧(V) 従って予め回帰分析により、メソキセル4におけるtl
1式の定数にいに、を決定する0次に例えばに1′ −
K。
As shown in the graph of FIG. 3, the normal plating voltage (2) can be expressed by the regression formula (%) using the current density J as an independent variable. However, Kg: constant J: current density (^/dm") V plating voltage (V) Therefore, by regression analysis in advance, tl in Methoxel 4
Determine the constant of equation 1, for example 1′ −
K.

x、l  −4X+C,(C:適当な定数)とおくこと
により、K+、Kgを用いて定数に1゛(≧に1)。
By setting x, l -4X+C, (C: an appropriate constant), use K+ and Kg to make the constant 1゛ (≧1).

に2゛(〉に2)を決定し、 v、I=に、’J+に、’   −−・(2)で決まる
値v、lを、メッキ電流密度Jに対する電圧■の上限と
して設定する(第3図)。
Determine 2゛ (〉 is 2) for v, I=, 'J+,' ---. Set the values v, l determined by (2) as the upper limit of the voltage ■ for the plating current density J ( Figure 3).

従って演算装置13ではまずメッキ電流検出値11電極
長さ(固定値)しいおよび板幅Wより電流密度Jを次式
で演算する: J=1/LxW・・・(3) 次に(3)式から求めた電流密度検出値Jを(2)式に
代入し電圧上限値VMを演算する。
Therefore, the calculation device 13 first calculates the current density J from the plating current detection value 11 electrode length (fixed value) and plate width W using the following formula: J=1/LxW...(3) Next, (3) The current density detection value J obtained from the equation is substituted into the equation (2) to calculate the voltage upper limit value VM.

さらにメッキ電圧■と■8を連続的に比較し、メッキ電
流通電中V>V、の条件で信号Aを出力する。
Furthermore, the plating voltages ■ and ■8 are continuously compared, and a signal A is output under the condition that V>V while the plating current is flowing.

一方、酸洗等を行う前処理セル10における電圧値に基
づき信号Aを形成する場合は、メンキセル4とは通電方
式が異なるので、電圧検出値■のみに基づき信号Aの形
成を行う。
On the other hand, when forming the signal A based on the voltage value in the pretreatment cell 10 that performs pickling, etc., the energization method is different from that of the Menki cell 4, so the signal A is formed based only on the detected voltage value ■.

即ち、例えば定格の110%を電圧上限値vM′ とし
て設定し、■を前処理セル電極電圧として、通電中v>
v、I’の条件で信号Aを出力する。
That is, for example, if 110% of the rating is set as the voltage upper limit value vM', and ■ is the pretreatment cell electrode voltage, then during energization v>
A signal A is output under the conditions of v and I'.

信号B: 板幅異常検出 次に板幅異常を示す信号Bの形成の手順を第4図を参照
しながら説明する。
Signal B: Detection of board width abnormality Next, the procedure for forming signal B indicating a board width abnormality will be explained with reference to FIG.

板端検知器14a 、 14bは例えば描像装置より成
り、メンキセル外における鋼板1の板端位置を検知する
。 同様に板端検知器14c 、14dはメンキセル内
における鋼板lの板端位置を検知する。板幅検知器15
a 、 15bはそれぞれの検知器14a 、14bお
よび14c 、 14dの板端検知信号から板幅W1、
W、を算出し演算装置16に出力する。検知器および板
幅検出器は2〜4セル毎に設置し、セル外は固定式、セ
ル内は板端に追従する可動式とする。
The plate edge detectors 14a and 14b are composed of imaging devices, for example, and detect the plate edge position of the steel plate 1 outside the menki cell. Similarly, the plate edge detectors 14c and 14d detect the plate edge position of the steel plate l within the Menki cell. Plate width detector 15
a, 15b are board width W1,
W, is calculated and output to the arithmetic unit 16. Detectors and board width detectors are installed every 2 to 4 cells, and are fixed outside the cell and movable to follow the board edge inside the cell.

第4図の15cは他セルの板幅検出器の例である。15c in FIG. 4 is an example of a plate width detector of another cell.

演算装置16は、各板幅検出器15a〜15cで算出さ
れた板幅W a w W cを下限設定値W o (例
えばW。
The calculation device 16 sets the plate width W aw W c calculated by each plate width detector 15 a to 15 c to a lower limit set value W o (for example, W.

=0)と比較し、連続した2つの演算板幅Wi(i=a
l b、  ・・・+c)について Wi≦Wo  ・・・(4) が成立する場合、または検出板幅Wi (i−a+ b
l・・・+c)のうちのいづれかが(4)式を成立させ
る場合に信号Bを出力する。
= 0), two consecutive calculation board widths Wi (i = a
When Wi≦Wo ...(4) holds true for l b, ...+c), or when the detection plate width Wi (i-a+b
l...+c), a signal B is output when any one of them satisfies equation (4).

信C: 変 常 第5図は張力計17aにより検出された張力変動に基づ
き信号Bを形成する装置のブロック図である。
Signal C: Variation FIG. 5 is a block diagram of a device that generates signal B based on tension fluctuations detected by tension meter 17a.

正常動作時においては鋼板1はプライドルロールによる
張力制御により一定張力で駆動される。
During normal operation, the steel plate 1 is driven with a constant tension by tension control using priddle rolls.

゛   入側プライドルロール1aの後方に設置された
張力!H7aはロールセルより成り、メッキセクション
の入口張力を検知する。張力計増幅器17bは、張力計
17aからの信号を増幅し張力制御装置18および演算
装置19に張力値を出力する。演算装置19は、各スキ
ャン毎の張力値を連続的に監視し、連続するスキャン値
T、、Ttの差(T+  Tz)の絶対値が張力変動上
限値ΔT +e m xを超える場合、即ち、lT、−
Tl>ΔT ++ta x が成立する場合に信号C3を発生する。
゛ Tension installed behind the entry side priddle roll 1a! H7a consists of a roll cell and detects the inlet tension of the plating section. Tension meter amplifier 17b amplifies the signal from tension meter 17a and outputs a tension value to tension control device 18 and calculation device 19. The calculation device 19 continuously monitors the tension value for each scan, and when the absolute value of the difference (T+Tz) between successive scan values T, , Tt exceeds the tension fluctuation upper limit value ΔT + e m x, that is, lT, -
A signal C3 is generated when Tl>ΔT ++tax holds true.

ところで張力変動は入側セクションの加減速時、特に正
寸動、逆寸動時に発生することがある。これによる誤動
作を防止するためには、ライン主幹制御装置20から入
側寸動信号りを演算装置19に入力し、板破断検出条件
から外す必要がある。従って演算装置19は、上述の信
号C2と寸動信号りの否定百の理論積を信号Cとして出
力する:C=C,−D 二  Eの    と  ′ 板破断信号合成回路21は、アンド回路から成り、上の
ように算出された信号A、B、Cの論理積A・B−Cを
演算し、これを板破断信号Eとしてライン主幹制御装置
20に出力する: E=A  −B  −C 板破断信号Eに応答してライン主幹制御装置20は、ラ
イン駆動電動器22を停止し、またメッキ電流制御装置
23の電流指令ゲートを切り、メッキ電流の通電を停止
する。
Incidentally, tension fluctuations may occur during acceleration and deceleration of the entry section, particularly during forward and reverse inching. In order to prevent malfunctions due to this, it is necessary to input the entry side inching signal from the line main control device 20 to the calculation device 19 and remove it from the plate breakage detection conditions. Therefore, the arithmetic unit 19 outputs the logical product of the above-mentioned signal C2 and the inching signal as the signal C: C=C, -D Then, the logical product A・B−C of the signals A, B, and C calculated as above is calculated, and this is outputted to the line main controller 20 as the plate breakage signal E: E=A −B −C In response to the plate breakage signal E, the line master controller 20 stops the line drive motor 22, and also turns off the current command gate of the plating current controller 23, thereby stopping the supply of plating current.

(発明の効果) 本発明では以上のようにメッキ電圧過大、メッキ板幅か
ら判断される板無し、張力変動異常の3種の異常信号の
論理積をとることによりそれぞれの信号の誤検出を他信
号で補足するように3種の信号を組み合せて板破断を検
出する。従って誤動作の虞れなく板破断を検出し、設備
の損傷、長時間停機を防止することができる。
(Effects of the Invention) As described above, the present invention eliminates the false detection of each signal by taking the logical product of the three types of abnormal signals: excessive plating voltage, no plate determined from the plated plate width, and abnormal tension fluctuation. Three types of signals are combined to detect plate breakage. Therefore, plate breakage can be detected without the risk of malfunction, and damage to equipment and long-term shutdowns can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の全体的構成を示すブロック図; 第2図は、本発明における電圧異常検出信号の形成を示
すブロック図; 第3図は、電圧異常検出における上限値と回帰式の関係
を示すグラフ; 第4図は、本発明における板幅異常検出信号の形成を示
すブロック図;および 第5図は、本発明における張力変動異常信号および板破
断信号の形成を示すブロック図である。 1:11板  2:通電ロール 4:メソキセル5:電
極  7:整流器   8:電流制御装置10:前処理
セル    11:電極 12:整流器      13:演算装置14a〜14
d : Fi端検知器 15a〜15c :板幅検出器
16:演算装置     19:演算装置20: ライ
ン主幹制御装置21:合成回路L4凹
Figure 1 is a block diagram showing the overall configuration of the present invention; Figure 2 is a block diagram showing the formation of a voltage abnormality detection signal in the present invention; Figure 3 is a diagram showing the upper limit value and regression equation for voltage abnormality detection. A graph showing the relationship; FIG. 4 is a block diagram showing the formation of a plate width abnormality detection signal in the present invention; and FIG. 5 is a block diagram showing the formation of a tension fluctuation abnormality signal and a plate breakage signal in the present invention. . 1: 11 plate 2: Current roll 4: Methoxel 5: Electrode 7: Rectifier 8: Current control device 10: Pretreatment cell 11: Electrode 12: Rectifier 13: Arithmetic device 14a to 14
d: Fi end detector 15a to 15c: Board width detector 16: Arithmetic device 19: Arithmetic device 20: Line main control device 21: Synthetic circuit L4 concave

Claims (1)

【特許請求の範囲】 板状体に連続的に電気メッキを施す設備において、 a)メッキセクションにおける電圧検出値が電圧上限設
定値を超えた時に第1の異常検出信号Aを出力すること
、 b)メッキセクションにおいて板幅を検出し、板幅が板
幅下限設定値以下となった時に第2の異常検出信号Bを
出力すること、 c)メッキセクションにおいて板状体の張力を検出し、
張力変動が、メッキセクション入側寸動時以外において
張力変動上限設定値を超えた時に第3の異常検出信号C
を出力すること、 d)異常検出信号A、B、Cの論理積A・B・Cを演算
し、信号A・B・Cの値が論理値1の時に板破断を検出
すること、 以上a)〜d)の工程を備えることを特徴とする連続電
気メッキにおける板破断検出方法。
[Claims] In an equipment for continuously electroplating a plate-shaped body, a) a first abnormality detection signal A is output when a voltage detection value in the plating section exceeds a voltage upper limit setting value; b) ) Detecting the plate width in the plating section and outputting a second abnormality detection signal B when the plate width becomes less than the lower limit set value of the plate width; c) Detecting the tension of the plate in the plating section;
The third abnormality detection signal C is generated when the tension fluctuation exceeds the tension fluctuation upper limit set value at a time other than when the plating section enters the plating section.
d) Calculating the logical product A, B, and C of the abnormality detection signals A, B, and C, and detecting plate breakage when the values of the signals A, B, and C are logical 1; A method for detecting plate breakage in continuous electroplating, comprising the steps of ) to d).
JP4386488A 1988-02-26 1988-02-26 Method for detecting sheet breakage in continuous electroplating Pending JPH01219192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4386488A JPH01219192A (en) 1988-02-26 1988-02-26 Method for detecting sheet breakage in continuous electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4386488A JPH01219192A (en) 1988-02-26 1988-02-26 Method for detecting sheet breakage in continuous electroplating

Publications (1)

Publication Number Publication Date
JPH01219192A true JPH01219192A (en) 1989-09-01

Family

ID=12675562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4386488A Pending JPH01219192A (en) 1988-02-26 1988-02-26 Method for detecting sheet breakage in continuous electroplating

Country Status (1)

Country Link
JP (1) JPH01219192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053451A1 (en) * 2007-11-07 2009-05-28 Thyssenkrupp Steel Ag Method for detecting band stops of band against coating electrodes of band coating system, involves generating current signal depending upon value of electrical current for coating band
RU2611632C2 (en) * 2015-05-28 2017-02-28 Акционерное общество "Кумертауское авиационное производственное предприятие" Method of coating thickness determination during solid-state anodisation process
WO2019181179A1 (en) * 2018-03-22 2019-09-26 富山住友電工株式会社 Plating treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053451A1 (en) * 2007-11-07 2009-05-28 Thyssenkrupp Steel Ag Method for detecting band stops of band against coating electrodes of band coating system, involves generating current signal depending upon value of electrical current for coating band
DE102007053451B4 (en) * 2007-11-07 2011-12-01 Thyssenkrupp Steel Europe Ag Method and device for detecting band stops
RU2611632C2 (en) * 2015-05-28 2017-02-28 Акционерное общество "Кумертауское авиационное производственное предприятие" Method of coating thickness determination during solid-state anodisation process
WO2019181179A1 (en) * 2018-03-22 2019-09-26 富山住友電工株式会社 Plating treatment device

Similar Documents

Publication Publication Date Title
JPH01219192A (en) Method for detecting sheet breakage in continuous electroplating
JPH11189885A (en) Method for pickling hot rolled steel strip
JP3982433B2 (en) Roller table equipment diagnosis method
JP3914674B2 (en) Rolled material transport method in hot roughing mill
JPH07214131A (en) Rolling controller
JP2013116489A (en) Method for detecting fracture in strip in hot rolling finishing mill
JP3073633B2 (en) Automatic thickness control method for rolling mill
JPH11181592A (en) Method for controlling position of edge mask in electroplating
JP4251038B2 (en) Rolling meander control method, apparatus and manufacturing method
JPH1034220A (en) Method for controlling meandering in sheet rolling
JPH08318305A (en) Method for controlling meandering in tandem mill
JPH08197125A (en) Control method for meandering and rolling mill equipment row for tandem plate
JPS61154717A (en) Acid cleaning method of strip steel
JPS63137508A (en) Method of preventing rolling trouble in continuous cold tandem rolling mill
JPH11350043A (en) Method for controlling tension of steel strip and device therefor
JPH08150414A (en) Method for automatically specifying breaking point of metallic strip
JPS61179819A (en) Cooling method of metallic strip
CN116078830A (en) Strip steel deviation detection method and device
JPH08174023A (en) Method for detecting and treating breakage of jointed point in hot strip mill
CN115815343A (en) Judgment method for strip breakage of rolling strip steel of rolling mill
JPH0796317A (en) Method and device for controlling meandering of metallic strip
JPS6181351A (en) Method for detecting slip in steel strip production line
JP2536884B2 (en) Front and back surface color tone control method for rolled material
JP3073637B2 (en) Method for detecting slip of rolling equipment and method for automatically controlling thickness of rolling mill
JPH02182313A (en) Speed control method for hot run table