JPH1034220A - Method for controlling meandering in sheet rolling - Google Patents

Method for controlling meandering in sheet rolling

Info

Publication number
JPH1034220A
JPH1034220A JP8194396A JP19439696A JPH1034220A JP H1034220 A JPH1034220 A JP H1034220A JP 8194396 A JP8194396 A JP 8194396A JP 19439696 A JP19439696 A JP 19439696A JP H1034220 A JPH1034220 A JP H1034220A
Authority
JP
Japan
Prior art keywords
tension
roll
rolling
rolled material
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8194396A
Other languages
Japanese (ja)
Other versions
JP3545541B2 (en
Inventor
Kenji Yamada
健二 山田
Shigeru Ogawa
茂 小川
Atsushi Ishii
篤 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19439696A priority Critical patent/JP3545541B2/en
Publication of JPH1034220A publication Critical patent/JPH1034220A/en
Application granted granted Critical
Publication of JP3545541B2 publication Critical patent/JP3545541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate accidents at the time of passing a sheet through the mill and to improve working rate and yield by calculating difference in tension which act on a rolled stock in the position of a tension measuring roll between the operation side and drive side and controlling each rolling mill so that the difference is fallen in the allowable range. SOLUTION: By the output of devices 3a-3d for measuring the sheet passing position in the width direction of the rolled stock, the estimated value of the off-center amount of a material in the position of the tension measuring roll is calculated. The tension difference σdfi acting on the rolled stock is estimated using an equation from the estimated value above and the vertical and axial direction loads of the tension measuring roll and reducing/levelling control of each rolling mill is executed targeting σdfi =0. Furthermore, by targeting that the measured value of the load in the axial direction of roll which acts on the tension measuring roll becomes zero, reducing/leveling control is simultaneously executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属板のタンデム
圧延操業において、圧延時の圧延材料の安定した通板性
を確保するための蛇行制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a meandering control method for securing a stable threading property of a rolled material during rolling in a tandem rolling operation of a metal plate.

【0002】[0002]

【従来の技術】板材のタンデム圧延は、高精度な薄板を
大量生産できるプロセスであり、タンデム圧延機列を構
成する各圧延機間で圧延材に張力を作用させることがで
きるため、非常に安定した圧延操業が可能である。圧延
材に張力を作用させた場合、例えば、作業側と駆動側の
圧下装置の設定値の差(以下では圧下レベリングと略称
する)にある程度の最適値からの偏差が存在しても、そ
れがそのまま左右の伸び率差になるのではなく、張力の
再配分によって伸び率の左右差が抑制されるため、通板
事故に直結することは少ない。しかしながら、圧延材の
先端および後端については、前方あるいは後方張力を作
用させることができないので、張力による上記安定化作
用が半減し、通板事故を生じやすくなる。特に、後端通
過時には尻絞りという通板事故が発生することが多く、
蛇行制御あるいは尻絞り制御と呼ばれる圧下制御方法が
従来から実施されている。
2. Description of the Related Art Tandem rolling of a sheet material is a process capable of mass-producing a high-precision thin sheet. Since tension can be applied to a rolling material between rolling mills constituting a tandem rolling mill row, it is very stable. Rolling operation is possible. When tension is applied to the rolled material, for example, even if there is some deviation from the optimum value in the difference between the set values of the screw-down device on the working side and the drive side (hereinafter abbreviated as the screw-down leveling), it does not matter. The difference between the right and left elongation rates is not directly changed, but the right and left differences in the elongation rates are suppressed by the redistribution of the tension. However, since the forward or backward tension cannot be applied to the leading and trailing ends of the rolled material, the above stabilizing action due to the tension is halved, and a passing-through accident is likely to occur. In particular, when passing through the trailing edge, a pass-through accident called squeezing often occurs,
Conventionally, a rolling-down control method called meandering control or trailing-edge restriction control has been implemented.

【0003】なお、以下の説明では多くの場合作業側、
駆動側の事を「左、右」という表現で簡略表現する。し
たがって、例えば「圧下設定値の左右差」とは圧下設定
値の作業側と駆動側間の差を意味する。また、本発明で
は圧延材がミルセンターから幅方向にずれて通過するこ
とを「蛇行」と呼ぶものとする。
In the following description, in many cases, the work side,
The driving side is simply represented by “left, right”. Therefore, for example, the “left-right difference of the rolling reduction value” means a difference between the working side and the driving side of the rolling reduction value. In the present invention, the passage of the rolled material shifted from the mill center in the width direction is referred to as “meandering”.

【0004】尻絞りは、圧延材後端近傍における作業側
と駆動側の伸び差率に起因する材料の蛇行が主原因と考
えられており、尻絞りの現象が現れ始める時点、すなわ
ち圧延材の後端が直前の圧延機から出た時点から、当該
圧延機の圧下設定値の左右差の制御すなわちレベリング
制御を実施するというのが従来の蛇行制御方法である。
このときの検出端としては、当該圧延機の圧延荷重の左
右差や蛇行センサーによる板のオフセンター量の検出信
号などが用いられる。
It is considered that the tail drawing is caused mainly by the meandering of the material caused by the difference in elongation between the working side and the driving side near the rear end of the rolled material. It is a conventional meandering control method to execute control of the left-right difference of the rolling reduction value of the rolling mill, that is, leveling control, from the time when the rear end exits the immediately preceding rolling mill.
As the detection end at this time, a detection signal of the off-center amount of the plate by the meandering sensor or the difference in the rolling load of the rolling mill is used.

【0005】例えば、特開昭59−191510号公報
には、圧延機入側の蛇行検出器によって圧延材の蛇行量
を検出してレベリング制御を実施する技術が開示されて
いる。この技術の場合も、蛇行量を検出してレベリング
制御を実施する技術が開示されている。この技術の場合
も、蛇行量そのものは、タンデム圧延中には、上述した
ように圧延材に作用する張力によって大きな変化を示す
ことがほとんどないため、実際に有意な圧下レベリング
制御を実施できるのは、圧延材後端が直前の圧延機を出
た時点以降になる。なお、圧延材の蛇行を検出する手段
としては、上記特開昭59−191510号公報に開示
されているような蛇行センサー(幅方向通板位置測定装
置)や当該圧延機の圧延荷重の左右差等が用いられる。
For example, Japanese Patent Application Laid-Open No. Sho 59-191510 discloses a technique in which a meandering detector on the entrance to a rolling mill detects a meandering amount of a rolled material and performs leveling control. Also in the case of this technique, a technique of detecting a meandering amount and performing leveling control is disclosed. Also in the case of this technology, the meandering amount itself hardly shows a large change due to the tension acting on the rolled material during the tandem rolling as described above, and therefore, it is possible to actually perform a significant rolling leveling control. , After the time when the rear end of the rolled material exits the immediately preceding rolling mill. As means for detecting the meandering of the rolled material, a meandering sensor (width direction passing position measuring device) as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-191510 or a difference between the right and left of the rolling load of the rolling mill is used. Are used.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の蛇
行制御方法は、圧延材後端が直前の圧延機から出た時点
から制御が開始されるため、実質的な制御の動作時間が
短く、尻絞り防止に間に合わない場合がある。また、当
該圧延機の圧下レベリングに最適値からの偏差があった
場合には、圧延材の後端が直前の圧延機を出た時点で、
それまで作用していた後方張力がなくなり、張力の左右
差による補償効果がなくなるため急激な蛇行が始まるこ
とになり、その現象が現れてから圧下レベリング制御を
始めたのでは手遅れになる場合が多い。
In the conventional meandering control method as described above, since the control is started from the time when the rear end of the rolled material exits the immediately preceding rolling mill, the operation time of the control is substantially reduced. In some cases, it may not be possible to prevent squeezing. Further, when there is a deviation from the optimum value in the rolling leveling of the rolling mill, when the rear end of the rolled material exits the immediately preceding rolling mill,
The backward tension that had been acting until then disappears, and the compensation effect due to the left-right difference in tension disappears, so sudden meandering starts, and it is often too late to start rolling leveling control after that phenomenon appears .

【0007】本発明では、圧延材後端が直前の圧延機を
出た時点から制御を開始するのではなく、圧延材後端に
達する前の定常圧延状態で、タンデム圧延機列の各圧延
機の圧下レベリングを最適な状態にしておく方法を提示
する。
According to the present invention, the control is not started from the time when the rear end of the rolled material exits the immediately preceding rolling mill, but rather in a steady rolling state before reaching the rear end of the rolled material, each of the rolling mills in the tandem rolling mill train A method for keeping the rolling leveling of the steel in an optimum state is presented.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、2台以
上の圧延機と、各圧延機間のうち少なくとも一箇所の圧
延機間に、該圧延機のロール軸線に平行なロール軸を有
し圧延材と接触して回動自在に支持された張力測定用ロ
ールを配設し、圧延材に作用する圧延方向張力によって
前記張力測定用ロールに負荷される鉛直方向の力を作業
側・駆動側それぞれ独立に検出することができ、さら
に、前記張力測定用ロールに圧延材から作用するロール
軸方向の力を検出できる構造の測定装置と、圧延材の幅
方向通板位置測定装置とが配備されたタンデム板圧延機
の蛇行制御法において、前記幅方向通板位置測定装置の
出力より、前記圧延機間の張力測定用ロールの位置にお
ける圧延材の幅方向通板位置を直接検出または推定し、
これと前記張力測定用ロールに負荷される鉛直方向の力
の作業側と駆動側の検出値および前記張力測定用ロール
に圧延材から作用するロール軸方向の力の検出値とか
ら、前記張力測定用ロールの位置において圧延材に真に
作用している張力の作業側と駆動側の差を演算し、該張
力差が予め定められた許容範囲に入ることと、併せて前
記張力測定用ロールに負荷されるロール軸方向の力が予
め定められた許容範囲に入ることを目標として、各圧延
機の作業側と駆動側の圧下設定値の差を制御することを
特徴とする板圧延における蛇行制御方法である。
The gist of the present invention is that a roll axis parallel to the roll axis of the rolling mill is provided between two or more rolling mills and at least one of the rolling mills. A tension measuring roll rotatably supported in contact with the rolled material is provided, and a vertical force applied to the tension measuring roll by a rolling direction tension acting on the rolled material is applied to the working side. The drive side can be detected independently of each other, furthermore, a measuring device having a structure capable of detecting a force in the roll axis direction acting on the tension measuring roll from the rolled material, and a device for measuring the width direction threading position of the rolled material. In the meandering control method of the deployed tandem plate rolling mill, the width direction passing position of the rolled material at the position of the tension measuring roll between the rolling machines is directly detected or estimated from the output of the width direction passing position measuring device. And
From the detected values on the working side and the drive side of the vertical force applied to the tension measuring roll and the detected values of the force in the roll axis direction acting on the tension measuring roll from the rolled material, the tension measurement is performed. The difference between the working side and the driving side of the tension truly acting on the rolled material at the position of the roll is calculated, and the tension difference falls within a predetermined allowable range. Meandering control in plate rolling characterized by controlling the difference between the reduction value of the rolling side on the working side and the reduction value of the driving side of each rolling mill, with the goal that the force in the roll axis direction to be loaded falls within a predetermined allowable range. Is the way.

【0009】[0009]

【発明の実施の形態】圧延材後端が直前の圧延機を出た
ことによって起きる最も大きな変化は、言うまでもなく
後方張力がなくなることである。したがって、この時か
ら急激な蛇行が始まるのであれば、それは当該圧延機の
圧下レベリング最適値からずれていて、これを後方張力
の左右差で補償していたものと推定される。このことか
ら、圧延材後端に達する前の定常圧延状態の間に、各圧
延機の入側および出側の圧延材に作用する張力の左右差
をできるだけ零に近づけておくのが、尻絞り事故防止の
決め手になるものと考えられる。このためには、各圧延
機の入側および出側の圧延材に作用する張力の左右差を
検出し、これを零に近づける操作を行えばよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The greatest change caused by the trailing end of the rolled material leaving the immediately preceding rolling mill is, of course, the absence of back tension. Therefore, if a sudden meandering starts at this time, it is presumed that it has deviated from the optimum value of the rolling reduction of the rolling mill, and this has been compensated for by the left-right difference in the rear tension. For this reason, during steady rolling before reaching the rear end of the rolled material, it is necessary to make the right-left difference in the tension acting on the rolled material on the entrance side and the exit side of each rolling mill as close to zero as possible. It is considered to be a decisive factor in accident prevention. For this purpose, an operation may be performed in which the difference between the left and right tensions acting on the rolled material on the entrance side and the exit side of each rolling mill is detected, and the difference is reduced to zero.

【0010】図1には、本発明の蛇行制御方法の好まし
い実施例のアルゴリズムを示している。図1のアルゴリ
ズムは、例えば図2に示すように、スタンド間に張力測
定用ロール2a〜2cと幅方向通板位置測定装置3a〜
3cが配備されたようなタンデム圧延機設備列を対象と
した蛇行制御法である。スタンド間に配備された幅方向
通板位置測定装置3a〜3cの出力より、同じくスタン
ド間に配備された張力測定用ロール2a〜2cの位置に
おける圧延材4の幅方向通板位置を直接検出または推定
する。該張力測定用ロールは、左右独立な張力、ロール
軸方向の力(以下スラスト力と称す)の測定が可能とな
るように構成されている。この左右の張力、スラスト力
の測定値と上記圧延材の幅方向通板位置とから、圧延材
に真に作用している張力の左右差を演算算出する。
FIG. 1 shows an algorithm of a preferred embodiment of the meandering control method of the present invention. The algorithm of FIG. 1 is, for example, as shown in FIG. 2, between the stands, the tension measuring rolls 2 a to 2 c and the width direction threading position measuring device 3 a to
This is a meandering control method for a tandem rolling mill equipment row in which 3c is deployed. From the outputs of the width direction passing position measuring devices 3a to 3c provided between the stands, the width direction passing position of the rolled material 4 at the position of the tension measuring rolls 2a to 2c also provided between the stands is directly detected or presume. The tension measuring roll is configured to be capable of measuring left and right independent tension and a force in a roll axis direction (hereinafter, referred to as a thrust force). From the measured values of the left and right tension and thrust force and the widthwise passing position of the rolled material, the left and right difference of the tension truly acting on the rolled material is calculated.

【0011】今、任意のNo.i圧延機とNo.i+1
圧延機の間を考慮の対象とし、図4に示すようなルーパ
方式張力測定装置を例としてさらに詳しく説明する。圧
延材張力測定装置のロードセル荷重をルーパ角度を考慮
して鉛直方向の荷重に換算して作業側と駆動側の差を抽
出した値をRdfi とするとき、Rdfi には圧延材に作用
する張力差σdfi のみならず、張力測定用ロールに作用
するスラスト力Si (駆動側から作業側に向かって圧延
材から張力測定用ロールに作用した場合を正)、および
圧延材の幅方向通板位置すなわち材料オフセンター量x
ciの影響も含まれ、次式のような関係式が成立する。 Rdfi =[{b2 /(6aLi)}σdfi +(2/aLi)σi bxci] ×(sinθfi+sinθb(i+1))hi +(2/aLi)rLii (1) ここで、bは圧延材の板幅、aLiは張力測定用ロール支
点間距離、σi は圧延材の単位断面積あたりの張力(以
下ではユニット張力と称する)、θfiおよびθb(i+1)
張力測定用ロールを境にして第i圧延機出側および第i
+1圧延機入側の板面が水平面となす角度(図3参
照)、hi は第i圧延機出側の板厚、rLiは張力測定用
ロール半径である。
Now, when an arbitrary No. i rolling mill and No. i + 1
In consideration of the interval between rolling mills, a looper type tension measuring device as shown in FIG. 4 will be described in more detail as an example. The rolling material tension value obtained by extracting the difference between the drive-side working side in terms of the vertical load of the load cell load in consideration of the looper angle measuring device when the R dfi, the R dfi acting on the rolled material Not only the tension difference σ dfi, but also the thrust force S i acting on the tension measuring roll (positive when the rolled material acts on the tension measuring roll from the drive side to the working side from the rolled material), and the width direction of the rolled material Plate position, that is, material off-center amount x
Including the effect of ci , the following relational expression holds. R dfi = [{b 2 / (6a Li)} σ dfi + (2 / a Li) σ i bx ci] × (sinθ fi + sinθ b (i + 1)) h i + (2 / a Li) r Li S i (1) where b is the plate width of the rolled material, a Li is the distance between the roll fulcrums for tension measurement, σ i is the tension per unit sectional area of the rolled material (hereinafter referred to as unit tension), θ fi And θb (i + 1) are the i-th rolling mill exit side and the i-th
+1 angle between plate surfaces horizontal plane of the rolling mill inlet side (see FIG. 3), the thickness of the h i is the delivery side of the i-th rolling mill, r Li is roll radius for tension measurement.

【0012】式(1)より、Rdfi が測定されたとして
も、張力測定用ロールに作用するスラスト力Si および
ルーパ位置における材料オフセンター量xciが未知な場
合、正確に圧延材に作用している張力を求めることは不
可能なことがわかる。
From the equation (1), even if R dfi is measured, if the thrust force S i acting on the tension measuring roll and the material off-center amount x ci at the looper position are unknown, the force acts on the rolled material accurately. It turns out that it is impossible to determine the tension that is applied.

【0013】一般に、xciは零となることを目標として
圧延操業を実施するが、現実には10〜20mm程度の誤
差は存在し、これが圧延材に作用している張力σdfi
推定精度に無視できない影響をおよぼす。また、図4は
上流側圧延機のロール軸芯位置6と下流側圧延機のロー
ル軸芯位置7との間に存在する圧延中の圧延材4の幅方
向位置を見た平面図の模式図であるが、図に示すよう
に、例えば、スタンド間の圧延材の幅方向通板位置が上
流側と下流側とで逆方向にずれている場合、張力測定用
ロールには圧延材からスラスト力が作用する。これは、
圧延材4の速度ベクトル13が、ロール軸に垂直な方向
の成分の他に、僅かではあるがロール軸に平行な成分1
5を有する一方、張力測定用ロールの周速ベクトル14
は常にロール軸に垂直な成分のみであるため、張力測定
用ロールとの間に圧延材のロール軸方向速度成分15に
相当するすべり速度を生じ、すべり方向に発生する摩擦
力として張力測定用ロールには圧延材からスラスト力が
作用することになる。
In general, the rolling operation is carried out with the aim of making x ci become zero. However, there is an error of about 10 to 20 mm in actuality, and this error affects the estimation accuracy of the tension σ dfi acting on the rolled material. Has a non-negligible effect. FIG. 4 is a schematic plan view of the rolled material 4 during rolling existing between the roll axis position 6 of the upstream rolling mill and the roll axis position 7 of the downstream rolling mill as viewed in the width direction. However, as shown in the figure, for example, when the width direction passing position of the rolled material between the stands is shifted in the opposite direction between the upstream side and the downstream side, the thrust force from the rolled material is applied to the tension measuring roll. Works. this is,
In addition to the component in the direction perpendicular to the roll axis, the velocity vector 13 of the material 4
5 and the peripheral velocity vector 14 of the tension measuring roll.
Always has only a component perpendicular to the roll axis, a slip speed corresponding to the roll axis direction speed component 15 of the rolled material is generated between the roll and the tension measurement roll, and the tension measurement roll is generated as a frictional force generated in the slip direction. , A thrust force acts from the rolled material.

【0014】例えば、xci=10mm、aLi=2000m
m、b=1000mmの場合、式(1)右辺の[]内の項
の評価より、xciの影響を無視したままで張力差σdfi
を推定した場合、ユニット張力σi の12%の誤差を生
じることになる。また、張力測定用ロールに作用するス
ラスト力Si は、張力測定用ロールに作用する鉛直方向
の合力に一般にスラスト係数といわれる定数を乗じた下
式で評価されると考えられる。 Si =γσi bhi (sinθfi+sinθb(i+1)) (2) ここで、γはスラスト係数である。式(2)を式(1)
に代入、評価すると、上記条件に加え張力測定用ロール
半径rLiを150mmとした場合、スラスト係数が0.0
5としても、スラスト力Si を無視するとユニット張力
σi の9%の誤差を生じることになる。
For example, x ci = 10 mm, a Li = 2000 m
When m and b = 1000 mm, the tension difference σ dfi can be obtained while ignoring the influence of x ci from the evaluation of the terms in [] on the right side of the equation (1).
Is estimated, an error of 12% of the unit tension σ i occurs. Further, the thrust force S i which acts on tension measuring rolls is generally believed to be evaluated by the following formula obtained by multiplying the constants said thrust coefficient in the vertical direction of the resultant force acting on the tension measuring roll. S i = γσ i bh i (sin θ fi + sin θ b (i + 1) ) (2) where γ is a thrust coefficient. Equation (2) is replaced by equation (1)
When the roll radius r Li for tension measurement was set to 150 mm in addition to the above conditions, the thrust coefficient was 0.0
Even if the value is 5, if the thrust force S i is ignored, an error of 9% of the unit tension σ i occurs.

【0015】圧延材に作用する張力の左右差σdfi を零
にするために圧下レベリング制御を実施した場合、材料
オフセンター量xciおよびスラスト力Si も変化するの
普通であるが、この変化を一切検出することなく制御を
実施したとすれば、上記の例に従う場合、この制御には
目標値σdfi に対して約±0.1σi の本質的な誤差を
含むことになり、尻絞り事故を撤廃できるような十分な
蛇行制御を実施することは不可能である。通板事故を防
止するために重要なのはRdfi =0とすることではなく
て、σdfi =0とすべきことは明らかであるからであ
る。
When roll-down leveling control is performed to reduce the right-left difference σ dfi of the tension acting on the rolled material to zero, the material off-center amount x ci and the thrust force S i usually change. If the and executing the control without detecting any, if according to the above example, this control will contain the essential error of about ± 0.1σ i with respect to the target value sigma dfi, ass aperture It is impossible to implement sufficient meandering control to eliminate the accident. It is clear that it is not important to set R dfi = 0, but to set σ dfi = 0, in order to prevent the passing -through accident.

【0016】以上説明してきたように、σdfi を正確に
検出し、σdfi =0とするための制御を実施するために
は、作業側・駆動側それぞれ独立に張力検出器を有する
圧延材張力測定装置で該張力測定装置に負荷される荷重
の左右差を検出するとともに、該張力測定装置の位置に
おける圧延材の幅方向通板位置を直接検出または推定
し、かつ該張力測定装置に作用するスラスト力をも検出
することが必須要件となることが明らかである。
As described above, in order to accurately detect σ dfi and perform control for setting σ dfi = 0, it is necessary to use a rolled material tension having a tension detector independently for each of the working side and the driving side. The measuring device detects the left-right difference of the load applied to the tension measuring device, and directly detects or estimates the widthwise passing position of the rolled material at the position of the tension measuring device, and acts on the tension measuring device. It is clear that detecting the thrust force is also an essential requirement.

【0017】以上のようにして、圧延材に作用する張力
の左右差が算出された後、この張力差が所定値になるこ
とを目標として、各圧延機の圧下レベリング制御を実施
する。このときの所定の目標値としては、一般的には左
右差零を目標とするが、操業実績の学習結果によって、
零近傍の所定の目標値を設定して差し支えない。また、
このような制御を実施しても、完全に目標値に一致する
ことは稀であるので、目標値近傍に張力の左右差の許容
範囲を設け、この許容値を超えた場合に圧下レベリング
制御を実施するというのが現実的である。
After the difference between the left and right tensions acting on the rolled material is calculated as described above, the rolling leveling control of each rolling mill is performed with the aim of making the tension difference a predetermined value. At this time, the predetermined target value is generally set to zero as the difference between the left and right sides.
A predetermined target value near zero may be set. Also,
Even if such control is performed, it is rare that the target value is completely coincident with the target value.Therefore, an allowable range of the right-left difference in tension is provided near the target value, and when the allowable value is exceeded, the rolling leveling control is performed. It is realistic to do it.

【0018】次に、張力測定用ロールに作用するスラス
ト力を検出して、この軸方向力が所定の値になるように
各圧延機の圧下レベリング制御を実施する。スラスト力
が生じる図4のような状態では、スタンド間の圧延材に
作用する張力の主軸12は、図に示すようにスタンド間
の圧延材に対して斜め方向になるため、図4に示すよう
に、張力測定用ロール位置における圧延材の張力分布1
1が均一であっても、上流側圧延機位置の張力分布9お
よび下流側圧延機位置の張力分布10が図に示す方向に
不均一となる。このような張力のアンバランスは、前記
した張力測定用ロール2に負荷される鉛直方向荷重の測
定からは検出不可能であり、張力測定用ロールに作用す
るスラスト力を検出して、これを零にするような圧下レ
ベリング制御を同時に実施する本発明の方法によって初
めて検出・制御可能となる。
Next, a thrust force acting on the tension measuring roll is detected, and rolling reduction control of each rolling mill is performed so that the axial force becomes a predetermined value. In the state where the thrust force is generated as shown in FIG. 4, the main axis 12 of the tension acting on the rolled material between the stands is oblique to the rolled material between the stands as shown in FIG. First, the tension distribution 1 of the rolled material at the position of the tension measuring roll 1
Even if 1 is uniform, the tension distribution 9 at the upstream rolling mill position and the tension distribution 10 at the downstream rolling mill position become non-uniform in the direction shown in the figure. Such a tension imbalance cannot be detected from the measurement of the vertical load applied to the tension measuring roll 2 described above, and the thrust force acting on the tension measuring roll is detected, and this is detected as zero. The detection and control can be performed for the first time by the method of the present invention in which the reduction leveling control as described above is simultaneously performed.

【0019】ところで、張力測定用ロールに作用するス
ラスト力の目標値は基本的には零であるが、張力測定用
ロール軸芯と圧延機のロール軸芯との平行度の誤差によ
っては、零近傍の所定の値を目標としたほうが安定する
場合がある。また、このような制御を実施しても、完全
に目標値に一致することは稀であるので、目標値近傍に
スラスト力の許容範囲を設け、この許容値を超えた場合
に圧下レベリング制御を実施するという方式を採用する
のが好ましい。
The target value of the thrust force acting on the tension measuring roll is basically zero. However, depending on the parallelism error between the tension measuring roll axis and the roll axis of the rolling mill, the target value may be zero. It may be more stable to target a predetermined value in the vicinity. Even if such control is performed, it is rare that the target value is completely matched. Therefore, an allowable range of the thrust force is provided near the target value, and when the allowable value is exceeded, the rolling leveling control is performed. It is preferable to adopt a method of carrying out.

【0020】また、図1のアルゴリズムでは、圧延材に
作用する張力の左右差を所定値にする制御ループの外側
に、張力測定用ロールに作用するスラスト力を所定値に
するための制御ループを位置づけているが、制御方式と
しては、この逆でもよく、また、張力の左右差とスラス
ト力を同時に零にするような圧下レベリング操作を一気
に実施してもよい。
In the algorithm of FIG. 1, a control loop for setting the thrust force acting on the tension measuring roll to a predetermined value is provided outside the control loop for setting the left-right difference of the tension acting on the rolled material to a predetermined value. Although it is positioned, the control method may be the reverse of this, or a rolling leveling operation may be performed at a stretch to make the left-right difference in tension and the thrust force simultaneously zero.

【0021】[0021]

【実施例】図5に示すような7スタンドタンデムミル
で、すべてのスタンド1a〜1g間に作業側・駆動側そ
れぞれ独立に張力検出器を有し鉛直方向荷重とロール軸
方向荷重を検出することができる張力測定用ロール2a
〜2fを有し、最下流圧延機より連続して4スタンド1
d〜1gの圧延機前面のスタンド間には、圧延材の幅方
向通板位置を測定できる検出装置3a〜3dが配備され
ているタンデム圧延機群を用いて蛇行制御を実施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A seven-stand tandem mill as shown in FIG. 5 has tension detectors independently on the working side and the driving side between all stands 1a to 1g to detect a vertical load and a roll axial load. Roll 2a for tension measurement
~ 2f, 4 stands 1 continuously from the most downstream rolling mill
Meandering control was carried out using a group of tandem rolling mills in which detectors 3a to 3d capable of measuring the widthwise threading position of the rolled material were provided between stands on the front of the rolling mills of d to 1g.

【0022】当初、張力測定用ロール鉛直方向荷重の測
定値のみを用いて、材料オフセンター量を常に零と仮定
して、圧延材に作用する張力差σdfi を推定し、σdfi
=0を目標として圧下レベリング制御を実施したが、圧
延材後端の通板状況は完全に安定するまでには至らなか
った。
[0022] Initially, using only the tension measured value of the measuring roll vertical direction load, assuming the material off-center amount is always zero and estimates the tension difference sigma dfi acting on the rolled material, sigma dfi
The rolling leveling control was performed with the target of = 0, but the threading condition at the rear end of the rolled material did not reach complete stability.

【0023】そこで、圧延材の幅方向通板位置測定装置
3a〜3dの出力によって、張力測定用ロールの位置に
おける材料オフセンター量の推算値を算出し、この値と
張力測定用ロール鉛直方向および軸方向荷重から式
(1)を用いて圧延材に作用する張力差σdfi を推定
し、σdfi =0を目標として各圧延機の圧下レベリング
制御を実施した。さらに、上記張力測定用ロールに作用
するロール軸方向荷重の測定値が零になることを目標と
して同時に圧下レベリング制御を実施した結果、下流側
圧延機を含めて圧延材後端の通板をほぼ完全に安定させ
ることができた。
Therefore, an estimated value of the off-center amount of the material at the position of the tension measuring roll is calculated from the outputs of the rolled material width direction passing-through position measuring devices 3a to 3d, and the estimated value is calculated. The tension difference σ dfi acting on the rolled material was estimated from the axial load using equation (1), and the rolling leveling control of each rolling mill was performed with σ dfi = 0 as a target. Further, as a result of simultaneously executing the draft leveling control with the aim of reducing the measured value of the roll axial load acting on the tension measuring roll to zero, the passing of the rear end of the rolled material substantially including the downstream rolling mill was performed. It could be completely stabilized.

【0024】[0024]

【発明の効果】本発明の蛇行制御方法を用いることによ
り、定常圧延中にタンデム圧延機列の各圧延機の圧下レ
ベリングを最適化することができ、その結果、圧延材後
端圧延時を含めて通板時の事故はほとんど皆無の状態と
なり、作業率および歩留を大きく向上させることが可能
となる。
According to the meandering control method of the present invention, the rolling leveling of each rolling mill in the tandem rolling mill row can be optimized during the steady rolling, and as a result, it is possible to optimize the rolling level at the rear end of the rolled material. As a result, there is almost no accident at the time of threading, and the working rate and the yield can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蛇行制御方法のアルゴリズムを示す図
である。
FIG. 1 is a diagram showing an algorithm of a meandering control method of the present invention.

【図2】本発明の前提となるタンデム板圧延機設備列の
例を示す模式図である。
FIG. 2 is a schematic diagram showing an example of a tandem plate rolling mill equipment row as a premise of the present invention.

【図3】圧延機間の圧延材が水平面となす角を示すため
の側面図である。
FIG. 3 is a side view showing an angle between a rolling material between rolling mills and a horizontal plane.

【図4】任意のスタンド間において張力測定用ロールに
ロール軸方向荷重が発生するメカニズムを説明する平面
図である。
FIG. 4 is a plan view for explaining a mechanism in which a load in a roll axial direction is generated on a tension measuring roll between arbitrary stands.

【図5】本発明の実施例としたタンデム板圧延機設備列
を示す模式図である。
FIG. 5 is a schematic view showing a tandem plate rolling mill equipment row according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a〜1g 圧延機 2a〜2f 圧延材張力測定装置 3a〜3d 幅方向通板位置測定装置 4 圧延材 5 圧延方向 6 任意の圧延機間の上流側圧延機のロール軸芯位置 7 任意の圧延機間の下流側圧延機のロール軸芯位置 8 任意の圧延機間の張力測定用ロールの軸芯位置 9 上流側圧延機位置の張力分布 10 下流側圧延機位置の張力分布 11 張力測定用ロール位置における張力分布 12 圧延機間の圧延材に作用する張力の主軸 13 張力測定用ロール位置における圧延材の速度ベク
トル 14 張力測定用ロールの周速ベクトル 15 圧延材のロール軸方向速度成分
1a-1g Rolling machine 2a-2f Rolled material tension measuring device 3a-3d Width direction threading position measuring device 4 Rolled material 5 Rolling direction 6 Roll axis center position of upstream rolling mill between arbitrary rolling mills 7 Optional rolling mill Roll center position of downstream rolling mill between 8 Roll center positions of tension measuring rolls between arbitrary rolling mills 9 Tension distribution at upstream rolling mill position 10 Tension distribution at downstream rolling mill position 11 Roll position for tension measurement 12 Main axis of tension acting on the rolled material between rolling mills 13 Speed vector of rolled material at the position of roll for tension measurement 14 Peripheral speed vector of roll for tension measurement 15 Speed component in roll axis direction of rolled material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2台以上の圧延機と、各圧延機間のうち
少なくとも一箇所の圧延機間に、該圧延機のロール軸線
に平行なロール軸を有し圧延材と接触して回動自在に支
持された張力測定用ロールを配設し、圧延材に作用する
圧延方向張力によって前記張力測定用ロールに負荷され
る鉛直方向の力を作業側・駆動側それぞれ独立に検出す
ることができ、さらに、前記張力測定用ロールに圧延材
から作用するロール軸方向の力を検出できる構造の測定
装置と、圧延材の幅方向通板位置測定装置とが配備され
たタンデム板圧延機の蛇行制御法において、前記幅方向
通板位置測定装置の出力より、前記圧延機間の張力測定
用ロールの位置における圧延材の幅方向通板位置を直接
検出または推定し、これと前記張力測定用ロールに負荷
される鉛直方向の力の作業側と駆動側の検出値および前
記張力測定用ロールに圧延材から作用するロール軸方向
の力の検出値とから、前記張力測定用ロールの位置にお
いて圧延材に真に作用している張力の作業側と駆動側の
差を演算し、該張力差が予め定められた許容範囲に入る
ことと、併せて前記張力測定用ロールに負荷されるロー
ル軸方向の力が予め定められた許容範囲に入ることを目
標として、各圧延機の作業側と駆動側の圧下設定値の差
を制御することを特徴とする板圧延における蛇行制御方
法。
A roll shaft parallel to a roll axis of a rolling mill is provided between two or more rolling mills and at least one rolling mill between the rolling mills, and is rotated in contact with a rolled material. A freely supported tension measuring roll is provided, and the vertical force applied to the tension measuring roll by the rolling direction tension acting on the rolled material can be independently detected on the working side and the drive side. Furthermore, a meandering control of a tandem plate rolling mill provided with a measuring device having a structure capable of detecting a force in a roll axis direction acting on the tension measuring roll from a rolled material and a device for measuring a width direction passing position of a rolled material. In the method, from the output of the width direction passing position measuring device, the width direction passing position of the rolled material at the position of the tension measuring roll between the rolling mills is directly detected or estimated, and this and the tension measuring roll Vertical force applied From the detected values of the working side and the drive side and the detected value of the force in the roll axis direction acting on the tension measuring roll from the rolled material, the tension truly acting on the rolled material at the position of the tension measuring roll The difference between the working side and the driving side is calculated, and the tension difference falls within a predetermined allowable range, and the force in the roll axis direction applied to the tension measuring roll is also a predetermined allowable range. A meandering control method in sheet rolling, characterized in that a difference between a set value of a rolling reduction on a working side and a set value of a reduction on a driving side of each rolling mill is controlled in order to enter the rolling mill.
JP19439696A 1996-07-24 1996-07-24 Meandering control method in plate rolling Expired - Fee Related JP3545541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19439696A JP3545541B2 (en) 1996-07-24 1996-07-24 Meandering control method in plate rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19439696A JP3545541B2 (en) 1996-07-24 1996-07-24 Meandering control method in plate rolling

Publications (2)

Publication Number Publication Date
JPH1034220A true JPH1034220A (en) 1998-02-10
JP3545541B2 JP3545541B2 (en) 2004-07-21

Family

ID=16323905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19439696A Expired - Fee Related JP3545541B2 (en) 1996-07-24 1996-07-24 Meandering control method in plate rolling

Country Status (1)

Country Link
JP (1) JP3545541B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058612A1 (en) * 2000-02-07 2001-08-16 Ishikawajima-Harima Heavy Industries Company Limited Rolling strip material
JP2007229764A (en) * 2006-03-01 2007-09-13 Kobe Steel Ltd Method for controlling meandering in reversible rolling
JP2009208151A (en) * 2008-02-06 2009-09-17 Nippon Steel Corp Rolling method of metal plate material and rolling apparatus therefor
WO2012086043A1 (en) 2010-12-24 2012-06-28 三菱日立製鉄機械株式会社 Hot rolling equipment and hot rolling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058612A1 (en) * 2000-02-07 2001-08-16 Ishikawajima-Harima Heavy Industries Company Limited Rolling strip material
US6766934B2 (en) 2000-02-07 2004-07-27 Castrip, Llc Method and apparatus for steering strip material
JP2007229764A (en) * 2006-03-01 2007-09-13 Kobe Steel Ltd Method for controlling meandering in reversible rolling
JP2009208151A (en) * 2008-02-06 2009-09-17 Nippon Steel Corp Rolling method of metal plate material and rolling apparatus therefor
WO2012086043A1 (en) 2010-12-24 2012-06-28 三菱日立製鉄機械株式会社 Hot rolling equipment and hot rolling method
US9211573B2 (en) 2010-12-24 2015-12-15 Primetals Technologies Japan, Ltd. Hot rolling equipment and hot rolling method

Also Published As

Publication number Publication date
JP3545541B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US7775079B2 (en) Rolling method and rolling apparatus for flat-rolled metal materials
US5231858A (en) Method of controlling edge drop in cold rolling of steel
US5722279A (en) Control method of strip travel and tandem strip rolling mill
JPH1034220A (en) Method for controlling meandering in sheet rolling
US4003229A (en) Method for compensating tail end
JPH08197125A (en) Control method for meandering and rolling mill equipment row for tandem plate
JPH07214131A (en) Rolling controller
JPH07144211A (en) Method for controlling meandering of tail end of sheet steel in hot finishing roll
JP4306273B2 (en) Strip meander control device and meander control method for tandem rolling mill
JPS5916528B2 (en) Meandering correction device for rolling mill
JP4319431B2 (en) Sheet thickness control method and control device for tandem rolling mill
JPH03165913A (en) Meandering motion controlling method and controller for hot continuous finishing mill
JPH0220608A (en) Method for controlling meandering of rolled stock
JP2706342B2 (en) Meandering control method for rolled material
JPS63188415A (en) Meandering controller for rolling mill
WO2022201327A1 (en) Device for controlling meander in continuous rolling mill
JPS6380908A (en) Meandering and camber control method for rolled stock
JPH1133615A (en) Method for controlling meandering in tandem mill and device therefor
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JPS59110410A (en) Method and device for controlling tension of rolling material and position of looper in continuous hot mill
JP3140552B2 (en) Strip width control method of material to be rolled in hot finishing rolling line
JPS6254511A (en) Method and apparatus for controlling camber of hot rolling mill
JPS62214805A (en) Method for preventing camber for rolling material
JPH11169935A (en) Device for controlling tensile force of strip and method therefor
JPS6018499B2 (en) How to correct meandering strips

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees