JPS6135937Y2 - - Google Patents

Info

Publication number
JPS6135937Y2
JPS6135937Y2 JP1978106387U JP10638778U JPS6135937Y2 JP S6135937 Y2 JPS6135937 Y2 JP S6135937Y2 JP 1978106387 U JP1978106387 U JP 1978106387U JP 10638778 U JP10638778 U JP 10638778U JP S6135937 Y2 JPS6135937 Y2 JP S6135937Y2
Authority
JP
Japan
Prior art keywords
slit
scattered light
raman scattered
slits
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978106387U
Other languages
Japanese (ja)
Other versions
JPS5522692U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978106387U priority Critical patent/JPS6135937Y2/ja
Publication of JPS5522692U publication Critical patent/JPS5522692U/ja
Application granted granted Critical
Publication of JPS6135937Y2 publication Critical patent/JPS6135937Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は螢光分光装置の感度較正装置に関す
る。
[Detailed Description of the Invention] The present invention relates to a sensitivity calibration device for a fluorescence spectrometer.

螢光分光装置の感度較正方法には、標準光源を
用いる方法、標準となる螢光物質を用いる方法等
の他にラマン散乱光を利用して装置の感度を常に
一定に保つ方法がある。本考案はこのラマン散乱
光を利用する方法による装置に関する。
Methods for calibrating the sensitivity of a fluorescence spectrometer include a method using a standard light source, a method using a standard fluorescent substance, and a method that uses Raman scattered light to keep the sensitivity of the device constant. The present invention relates to an apparatus using a method that utilizes this Raman scattered light.

ラマン散乱光を利用する方法は試料の溶媒の発
するラマン散乱光の強度を測定してこれが常に一
定となるように光電変換素子の感度或は増幅系の
利得を調節するものであるが、溶媒或はブランク
に含まれている盲螢光が邪魔になつてラマン散乱
光の正確な測定が困難であつた。盲螢光は第1図
に示すように平坦な波長分布を示し、ラマン散乱
光はこの盲螢光をベースラインとしてその上に乗
つた状態になつている。従つてラマン散乱光の中
心波長位置で測定しただけでは盲螢光とラマン散
乱光とを分離できず、しかも盲螢光レベルは溶媒
に含まれる種々な不純物によるので常時一定した
ものではないので実際上感度較正の妨害となるの
である。従つてラマン散乱光によつて感度較正を
行うにはその度毎にラマン散乱光の前後或る波長
範囲の散乱光を測定して第1図のカーブを求める
と云う操作をしなければならないから、ラマン散
乱光による感度較正を自動的にしようとすると装
置構成が大変複雑なものとなる。
The method using Raman scattered light measures the intensity of Raman scattered light emitted by the solvent of the sample and adjusts the sensitivity of the photoelectric conversion element or the gain of the amplification system so that the intensity remains constant. It was difficult to accurately measure the Raman scattered light due to blind fluorescence contained in the blank. The blind fluorescence exhibits a flat wavelength distribution as shown in FIG. 1, and the Raman scattered light is on top of the blind fluorescence, using it as a baseline. Therefore, it is not possible to separate the blind fluorescence and the Raman scattered light simply by measuring at the center wavelength position of the Raman scattered light, and the blind fluorescence level is not always constant because it depends on various impurities contained in the solvent. This interferes with the upper sensitivity calibration. Therefore, in order to perform sensitivity calibration using Raman scattered light, it is necessary to measure the scattered light in a certain wavelength range before and after the Raman scattered light each time to obtain the curve shown in Figure 1. However, if sensitivity calibration using Raman scattered light is attempted automatically, the device configuration will become very complicated.

本考案は上述第1図に示すようなベース部分を
広く含んだラマン散乱光のプロフアイルを求めそ
れによつて盲螢光を除くと云う操作をなしにラマ
ン散乱光のみのレベルを測定することによつて感
度較正を行い得る装置を提供しようとするもので
ある。
The present invention is to obtain a profile of Raman scattered light that broadly includes the base portion as shown in Figure 1 above, and thereby measure the level of only the Raman scattered light without removing blind fluorescence. Therefore, the present invention aims to provide an apparatus capable of performing sensitivity calibration.

第2図は螢光分光装置の概略を示す平面図であ
る。Lは光源、M1は励起光分光器、Cは試料セ
ルで分光器M1を出た光によつて照射される。M
2は螢光分光器で試料セルCに入射した励起光に
対し直角の方向に出た種々な光がM2に入射し、
M2により分光された光は出口スリツトSを通つ
て光電変換素子Pに入射する。
FIG. 2 is a plan view schematically showing the fluorescence spectrometer. L is a light source, M1 is an excitation light spectrometer, and C is a sample cell that is irradiated by light exiting the spectrometer M1. M
2 is a fluorescence spectrometer, and various lights emitted in a direction perpendicular to the excitation light that entered the sample cell C enter M2,
The light separated by M2 passes through the exit slit S and enters the photoelectric conversion element P.

本考案は第2図における出口スリツトSを特殊
な構造にしてラマン散乱光と盲螢光とを分離測定
可能としたものである。その原理を第3図によつ
て説明する。第3図は第1図でラマン散乱光を中
心とする或る幅の範囲を抽出したものである。今
出口スリツトとして中心スリツトS1とその両側
にラマン散乱光のピークの両側傾斜部に位置する
ように波長差でΔW離れた位置に配置されるスリ
ツトS2,S3の三個を用い、まずS2,S3を
同時に用いS1を除いておくと第3図でIa′,
Ib′と記入された光強度の光が光電変換素子Pに
入射する。そこでS2,S3のスリツト幅をS1
の半分としておくと、このときのPの出力は
(Ia′+Ib′)/2とみなすことができる。次にスリ
ツトS2,S3を除きS1を用いるとラマン散乱
光の中心部の高さIc′が測定できる。こゝで図か
ら明かなように、Ic′は強度Idの盲螢光の上に乗
つたラマン散乱光の強度で、真のラマン散乱光強
度IcはIc′−Id′であり、同様にしてラマン散乱光
の中心の両側Δwにおけるラマン散乱光の真の強
度Ia,Ibは夫々Ia=Ia′−Id、Ib=Ib′−Idである
が、直接測定できるのはIa′,Ib′,Ic′である。そ
こで演算回路でIc′−(Ia′+Ib′)/2を算出する
ことができる。こゝで盲螢光のレベルはラマン散
乱光を中心にその前後ΔWの範囲では殆ど水平と
みなせるのでこのレベルをIdとするとIa′=Ia+
Id、Ib′=Ib+Id、Ic′=Ic+Idであるから、 Ic′−(Ia′+Ib′)
/2=Ic−(Ia+Ib)/2=Io……(1) となり上式には盲螢光レベルIdは含まれていな
い。従つてIoはラマン散乱光強度に完全に比例し
ており、このIoが一定となるように光電変換素子
Pの感度或は以後の増幅回路の利得を調節すれば
正し感度較正ができることになる。
In the present invention, the exit slit S in FIG. 2 has a special structure so that Raman scattered light and blind fluorescence can be measured separately. The principle will be explained with reference to FIG. FIG. 3 shows an extracted range of a certain width centered on the Raman scattered light in FIG. 1. Now, as exit slits, we use a central slit S1 and three slits S2 and S3 arranged on both sides of the center slit S2 and S3, which are spaced apart by wavelength difference by ΔW so as to be located on both side slopes of the peak of Raman scattered light. At the same time, if S1 is removed, Ia′,
Light having a light intensity written as Ib' is incident on the photoelectric conversion element P. Therefore, the slit width of S2 and S3 is set to S1.
The output of P at this time can be regarded as (Ia'+Ib')/2. Next, by removing the slits S2 and S3 and using the slit S1, the height Ic' of the center of the Raman scattered light can be measured. As is clear from the figure, Ic′ is the intensity of the Raman scattered light superimposed on the blind fluorescence of intensity Id, and the true Raman scattered light intensity Ic is Ic′−Id′, and similarly, The true intensities Ia and Ib of the Raman scattered light on both sides Δw of the center of the Raman scattered light are Ia = Ia' - Id and Ib = Ib' - Id, respectively, but the ones that can be directly measured are Ia', Ib', and Ic. ′. Therefore, Ic'-(Ia'+Ib')/2 can be calculated using an arithmetic circuit. Here, the level of blind fluorescence can be considered to be almost horizontal in the range of ΔW around the Raman scattered light, so if this level is Id, then Ia' = Ia +
Id, Ib′=Ib+Id, Ic′=Ic+Id, so Ic′−(Ia′+Ib′)
/2=Ic-(Ia+Ib)/2=Io...(1) The above equation does not include the blind fluorescence level Id. Therefore, Io is completely proportional to the Raman scattered light intensity, and correct sensitivity calibration can be performed by adjusting the sensitivity of the photoelectric conversion element P or the gain of the subsequent amplifier circuit so that Io remains constant. .

第4図は本考案の一実施例の螢光分光器の出口
スリツト(第2図のS)を示す。1はスリツト板
でスリツトS1及びS2,S3が開口させてあ
る。スリツトS2,S3の幅は共にスリツトS1
の幅の半分であり、各スリツトの中心間の間隔は
第3図における波長差ΔWに相当している。スリ
ツト板1の前面に上下に動かすことのできるマス
ク2が設けられている。このマスクは下向き凸字
形で上方に引上げられた図の位置では中央の下方
突出部によつてスリツトS1が覆閉され両側のス
リツトS2,S3が開通している。マスクを下方
へ下げた位置では全スリツトが覆われるがスリツ
トS1と対向する位置に窓3が穿つてあるので、
このときはスリツトS2,S3が閉じられスリツ
トS1が開く。
FIG. 4 shows the exit slit (S in FIG. 2) of a fluorescence spectrometer according to an embodiment of the present invention. 1 is a slit plate in which slits S1, S2, and S3 are opened. Both the widths of slits S2 and S3 are the same as slit S1.
The distance between the centers of each slit corresponds to the wavelength difference ΔW in FIG. A mask 2 that can be moved up and down is provided on the front side of the slit plate 1. This mask has a downward convex shape, and in the position shown in the figure when it is pulled upward, the slit S1 is covered and closed by the downward protrusion in the center, and the slits S2 and S3 on both sides are open. When the mask is lowered, all the slits are covered, but since the window 3 is cut in the position opposite to the slit S1,
At this time, slits S2 and S3 are closed and slit S1 is opened.

マスク2を高速で上下に動かすとそれにつれて
光電変換素子Pへの入射光量はIc′と(Ia′+
Ib′)/2とに切換わり、Pの出力は脈動する。
そこでこの出力を適当に増幅した後マスク2の上
下と同期したパルス信号によりこの増幅出力から
Ic′に対応した信号と(Ia′+Ib′)/2に対応した
信号とを別々にサンプリングし、両者を夫々平滑
化した後、これらを引算回路に印加し前者Ic′に
対応する直流信号から後者(Ia′+Ib′)/2に対
応する直流信号を引算すると前記式(1)のIoが求ま
る。そこでこのIoを光電変換素子の感度調節信号
或は増幅回路の自動利得信号とする。
When the mask 2 is moved up and down at high speed, the amount of light incident on the photoelectric conversion element P changes as Ic' and (Ia'+
Ib')/2, and the output of P pulsates.
Therefore, after appropriately amplifying this output, a pulse signal synchronized with the top and bottom of mask 2 is used to convert the amplified output into
The signal corresponding to Ic′ and the signal corresponding to (Ia′+Ib′)/2 are sampled separately, and after smoothing both, they are applied to a subtraction circuit to generate a DC signal corresponding to the former Ic′. By subtracting the DC signal corresponding to the latter (Ia'+Ib')/2 from the above equation (1), Io can be found. Therefore, this Io is used as the sensitivity adjustment signal of the photoelectric conversion element or the automatic gain signal of the amplifier circuit.

本考案は上述したように常時感度一定となるよ
うに制御する場合にも利用されるが、排水におけ
るフエノールの監視装置で螢光によりフエノール
を検出する構成の装置の月毎或は年毎の感度較正
と云つた場合にも用いられる。フエノールの螢光
による検出に当つては励起光の波長が254〜295mm
と短いため、被測定液中の他の不純物による盲螢
光レベルが高くなり、ラマン線の位置だけで散乱
光強度を測る方法では正しい感度較正は全く不可
能である。本考案によれば、盲螢光の影響を受け
ないで正確にラマン散乱光の強度に比例した信号
が得られるので正しい感度較正が可能となり、上
述のように盲螢光レベルの高い場合に用いて甚だ
有効である。
As mentioned above, the present invention can also be used to control the sensitivity to be constant at all times, but it can also be used to control the monthly or yearly sensitivity of a phenol monitoring device in wastewater that detects phenol using fluorescence. It is also used when it comes to calibration. When detecting phenol using fluorescence, the excitation light wavelength is 254 to 295 mm.
Since the line is short, the level of blind fluorescence due to other impurities in the liquid to be measured becomes high, and correct sensitivity calibration is completely impossible with a method that measures the scattered light intensity only by the position of the Raman line. According to the present invention, a signal accurately proportional to the intensity of Raman scattered light can be obtained without being affected by blinding fluorescence, making it possible to calibrate the sensitivity correctly. It is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はラマン散乱と盲螢光との重なりを示す
グラフ、第2図は螢光分光装置の平面図、第3図
は、本考案の原理を説明するためのラマン散光の
プロフアイルのグラフ、第4図は本考案の一実施
例におけるスリツトの正面図である。 1……スリツト板、2……マスク、3……マス
クに穿たれた窓、S1,S2,S3……スリツト
開口。
Figure 1 is a graph showing the overlap between Raman scattering and blind fluorescence, Figure 2 is a plan view of the fluorescence spectrometer, and Figure 3 is a graph of the profile of Raman scattering to explain the principle of the present invention. , FIG. 4 is a front view of a slit in an embodiment of the present invention. 1... Slit plate, 2... Mask, 3... Window drilled in the mask, S1, S2, S3... Slit opening.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 蛍光分光器の出口スリツトを中心位置のスリツ
トとその両側にラマン線のピークの両側の傾斜部
に位置する適宜波長差だけ隔てゝ設けられたスリ
ツトの三個のスリツトにより構成し、中心位置の
スリツトを覆うか両側のスリツトを覆うかの切換
えを可能とし、上記中心スリツトをラマン散乱光
の位置に合せた蛍光分光装置の感度較正装置。
The exit slit of the fluorescence spectrometer is composed of three slits: a central slit and slits on both sides of the slit located on the slopes on both sides of the peak of the Raman line, separated by an appropriate wavelength difference. A sensitivity calibration device for a fluorescence spectrometer, which enables switching between covering the slit and covering the slits on both sides, and aligning the center slit with the position of Raman scattered light.
JP1978106387U 1978-08-01 1978-08-01 Expired JPS6135937Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978106387U JPS6135937Y2 (en) 1978-08-01 1978-08-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978106387U JPS6135937Y2 (en) 1978-08-01 1978-08-01

Publications (2)

Publication Number Publication Date
JPS5522692U JPS5522692U (en) 1980-02-14
JPS6135937Y2 true JPS6135937Y2 (en) 1986-10-18

Family

ID=29049518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978106387U Expired JPS6135937Y2 (en) 1978-08-01 1978-08-01

Country Status (1)

Country Link
JP (1) JPS6135937Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200255U (en) * 1986-06-10 1987-12-19
JP2010286493A (en) * 2004-01-23 2010-12-24 Horiba Ltd Substrate inspecting apparatus
JP2005233928A (en) * 2004-01-23 2005-09-02 Horiba Ltd Substrate inspecting apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819945A (en) * 1971-07-01 1974-06-25 Environmental Data Corp Spectrometers
JPS5248506A (en) * 1975-10-15 1977-04-18 Mazda Motor Corp Wear-resisting high phosphorus sintered alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819945A (en) * 1971-07-01 1974-06-25 Environmental Data Corp Spectrometers
JPS5248506A (en) * 1975-10-15 1977-04-18 Mazda Motor Corp Wear-resisting high phosphorus sintered alloy

Also Published As

Publication number Publication date
JPS5522692U (en) 1980-02-14

Similar Documents

Publication Publication Date Title
EP2204646B1 (en) Ultraviolet protection effect evaluation method, evaluation device, evaluation program, and recording medium where the program is recorded
US4275299A (en) Method and apparatus for detecting a fluorescent area on a sheet of paper
JPH06501856A (en) Measuring devices and measuring systems for determining concentration
JPS6135937Y2 (en)
DE2757196C3 (en) Photometric arrangement
JPS58180941A (en) Electrochemical measurement of photoreaction
US4266872A (en) Method of measuring the amount of reduction of a dot film, and device for practicing same
DE3204146A1 (en) Method of measuring the composition and local concentration of substances at surfaces
EP0950892A3 (en) Device for measuring optical density
JPH0249645B2 (en)
JPH0623958Y2 (en) Infrared analyzer
US5032730A (en) Immunoassay apparatus
JP3660938B2 (en) Component analysis method using laser
JPS643065Y2 (en)
JPS5813303Y2 (en) Bunko Koudokei
JPS6082835A (en) Automatic spectrum measuring device of light and heat
JPS6242036A (en) Yellowing degree detecting device for leaf tobacco
JPS6157805U (en)
JPH04198745A (en) X-ray diffracting method
DE102010062015B4 (en) Measuring device for measuring absorption or scattering at different wavelengths
DE2527699C3 (en) Device for measuring the temperature-color behavior of liquid crystals
JP2507934Y2 (en) X-ray fluorescence analyzer
McGonagle et al. Microphotometric errors for photographically recorded spectral lines of nonuniform half-width
DE3405592A1 (en) Configuration for the photometric determination of the concentration of organic and inorganic substances
DE722828C (en) Method for determining exposure values