JPS6135668B2 - - Google Patents

Info

Publication number
JPS6135668B2
JPS6135668B2 JP11414981A JP11414981A JPS6135668B2 JP S6135668 B2 JPS6135668 B2 JP S6135668B2 JP 11414981 A JP11414981 A JP 11414981A JP 11414981 A JP11414981 A JP 11414981A JP S6135668 B2 JPS6135668 B2 JP S6135668B2
Authority
JP
Japan
Prior art keywords
insulated wire
laser beam
insulated
ceramic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11414981A
Other languages
Japanese (ja)
Other versions
JPS5816487A (en
Inventor
Takeshi Imai
Nobuyuki Asano
Shigeo Masuda
Morihiko Katsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, NipponDenso Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11414981A priority Critical patent/JPS5816487A/en
Publication of JPS5816487A publication Critical patent/JPS5816487A/en
Publication of JPS6135668B2 publication Critical patent/JPS6135668B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】 本発明は近年発明された新規なセラミツク化可
能絶縁皮膜を有する絶縁電線の他金属への接続に
関するものであり、就中、回転電機等における整
流子片への接続に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the connection of an insulated wire having a novel ceramicizable insulating film to other metals, which has been invented in recent years, and particularly relates to the connection to commutator pieces in rotating electric machines, etc. It is something.

従来電気、電子機器に用いられる絶縁電線は、
磁界を発生させる為に流す電流により所謂ジユー
ル熱が発生して高温となる為容易に絶縁皮膜が変
形したり容易に熱劣化しない耐熱性が要求され
る。このため多くの耐熱性高分子材料が絶縁電線
の皮膜としして使われることによつて機器は小型
になりしかも短絡事故は減少して機器の信頼性は
一段と向上してきた。こうしたことからもわかる
様に絶縁電線皮膜の耐熱性向上は従来から非常に
重要な技術開発テーマであつた。
Insulated wires conventionally used in electrical and electronic equipment are
The electric current that is passed to generate the magnetic field generates so-called Joule heat, resulting in high temperatures, so heat resistance is required so that the insulating film does not easily deform or easily deteriorate due to heat. For this reason, many heat-resistant polymer materials have been used as coatings on insulated wires, which has made devices smaller, reduced short-circuit accidents, and further improved device reliability. As can be seen from these facts, improving the heat resistance of insulated wire coatings has long been a very important technological development theme.

近年特に自動車電装部品あるいは化学プラント
の特殊な高温雰囲気下で使用されるモーター等の
静止コイルあるいは可動コイルにおいては、従来
では考えられなかつたた様な高温雰囲気という厳
しい条件下でも正常な運転が要求され始めてき
た。即ち機械的振動を伴なつた高温雰囲気下と
か、たとえ異常な過負荷電流が流れてもコイルを
形成する絶縁電線同士の短絡事故は発生せず、コ
イルとしての磁界発生機能は維持されることが要
求されてきた。
In recent years, stationary coils and moving coils of motors, etc., which are used in special high-temperature atmospheres, especially in automobile electrical components and chemical plants, are required to operate normally even under severe conditions of previously unimaginable high-temperature atmospheres. It's starting to happen. In other words, even if an abnormal overload current flows, such as in a high-temperature atmosphere accompanied by mechanical vibrations, short-circuit accidents between the insulated wires that form the coil will not occur, and the magnetic field generation function of the coil will be maintained. It has been requested.

従来コイルに用いられる絶縁電線の皮膜は多く
は有機高分子からなり、温度が上る次第に軟化し
更に高温になると分解して絶縁機能は次第に低下
した。そのため耐熱性が特に要求されるコイルに
は導体に無機材料を塗着あるいは被覆したものが
使われてきた。この種の無機材料絶縁電線は皮膜
の可撓性が非常に乏しかつた。そのため可撓性の
あまり要求されない大型電気機器用モーター例え
ば舶用モーター、車両モーターあるいは大型発電
機等にのみ使われ可撓性の要求される小型で高性
能機器用コイルには使われてはこなかつた。
Most of the coatings on insulated wires used in conventional coils were made of organic polymers, which softened as the temperature rose and decomposed as the temperature rose further, resulting in a gradual decline in insulation function. For this reason, coils that require particularly high heat resistance have been made with conductors coated or coated with inorganic materials. This type of inorganic material insulated wire has very poor film flexibility. For this reason, it is used only in motors for large electrical equipment that do not require much flexibility, such as marine motors, vehicle motors, or large generators, and has not been used in coils for small, high-performance equipment that require flexibility. Ta.

一般に無機絶縁電線としては、例えばアルミニ
ウムを陽極酸化処理したアルミナ絶縁電線に代表
される金属酸化物皮膜で絶縁された絶縁電線、ガ
ラス繊維、アスベスト繊維等の無機質繊維を横巻
きした絶縁電線、アスベストテープ、マイカを含
んだテープ等無機質テープを横巻きした絶縁電
線、酸化アルミニウム、酸化マグネシウム等の金
属酸化物あるいはガラスの粉末を有機絶縁物中に
混入した絶縁電線が開発され、一部実用に供され
ている。
In general, inorganic insulated wires include, for example, insulated wires insulated with a metal oxide film such as alumina insulated wires made by anodizing aluminum, insulated wires horizontally wound with inorganic fibers such as glass fibers and asbestos fibers, and asbestos tapes. , insulated wires in which inorganic tapes such as mica-containing tapes are wrapped horizontally, and insulated wires in which metal oxides such as aluminum oxide and magnesium oxide or glass powder are mixed into organic insulators have been developed, and some of them have been put into practical use. ing.

しかし、アルミナ絶縁電線に代表される金属酸
化物皮膜で絶縁された絶縁電線は、金属酸化物皮
膜に可撓性が乏しいため非常に大きな径に巻かな
いと皮膜に亀裂が入り満足な絶縁特性が得られな
い。このため大型のリフテイングマグネツトの如
き特殊な用途には実用化されているが、いわゆる
自動巻線機が導入されている中小型の回転機用と
しては全く使用しえないものである。
However, insulated wires insulated with a metal oxide film, such as alumina insulated wires, have poor flexibility, so unless they are wound to a very large diameter, the film will crack and the insulation properties will not be satisfactory. I can't get it. For this reason, although it has been put to practical use in special applications such as large lifting magnets, it cannot be used at all for small and medium-sized rotating machines equipped with so-called automatic winding machines.

次にガラス繊維、アスベスト繊維等の無機質繊
維を横巻きした絶縁電線、アスベストテープ、マ
イカを含んだテープ等無機質テープを横巻きした
絶縁電線は、当然の事ながら使用される繊維の外
径、テープの厚み等の制限により絶縁皮膜厚は厚
くなり絶縁電線の外径が大きくなる。この為機器
に組込んだ場合導体の占積率が悪く機器の効率低
下を招く、又効率を充分に発揮さす為には機器を
大型化せざるを得ないという結果になる。又これ
らの無機質繊維は摩耗、ひつかき等の機械的な強
度に劣り絶縁特性を低下させない為には慎重な取
扱いが必要であり、機器の生産性の向上が望めな
い。この種の絶縁電線は舶用機器、大型発電機、
電車用モーター等大量生産されていない機器の一
部に使われているにすぎない。
Next, insulated wires made by horizontally wrapping inorganic fibers such as glass fibers and asbestos fibers, insulated wires made by horizontally wrapping inorganic tapes such as asbestos tape, tape containing mica, etc., of course depend on the outer diameter of the fibers used, the tape Due to limitations such as the thickness of the insulated wire, the thickness of the insulating film becomes thicker and the outer diameter of the insulated wire becomes larger. For this reason, when incorporated into a device, the space factor of the conductor is poor, leading to a decrease in the efficiency of the device, and in order to fully utilize the efficiency, the device must be made larger. Furthermore, these inorganic fibers have poor mechanical strength against abrasion, scratches, etc., and must be handled carefully to avoid deterioration of their insulation properties, making it difficult to expect an improvement in the productivity of equipment. This type of insulated wire is used for marine equipment, large generators,
They are only used in some equipment that is not mass-produced, such as train motors.

一方金属酸化物粉、ガラス粉等を有機絶縁物に
混入した絶縁皮膜の場合上述した如如き種々の欠
点は改良され、好ましい絶縁電線が得られる。こ
の様な金属酸化物粉、ガラス粉等を有機絶縁物に
混入した絶縁電線は古くはハネカム用電線として
実用されてきた。しかしこの様に金属酸化物を単
に有機材料に混入したのみでは例えば万一コイル
に過電流が流れ有機物が熱分解を起こちた場合に
は当該金属酸化物粉末はそのもの自体では皮膜形
成能がない為有機物皮膜の欠落に伴なつて欠落し
てしまう。特に当該機器に振動が加わる様な場合
にはその傾向が著しい。従つてこの様な金属酸化
物の粉末を有機材料として混入して用いることは
当該有機材料の耐熱性の改善にはなり得ないので
ある。
On the other hand, in the case of an insulating film in which metal oxide powder, glass powder, etc. are mixed into an organic insulator, the various drawbacks mentioned above can be improved and a preferable insulated wire can be obtained. Insulated wires made by mixing metal oxide powder, glass powder, etc. into organic insulators have long been used as honeycomb wires. However, if a metal oxide is simply mixed into an organic material in this way, for example, in the unlikely event that an overcurrent flows through the coil and the organic material is thermally decomposed, the metal oxide powder itself will not have the ability to form a film. Therefore, it is lost due to the lack of organic film. This tendency is particularly noticeable when vibrations are applied to the equipment. Therefore, mixing and using such metal oxide powder as an organic material cannot improve the heat resistance of the organic material.

この様な状況において薄膜絶縁が可能で可撓性
に優れ自動コイル巻に耐える絶縁皮膜を形成し且
つ当該電気電子機器に過負荷がかかり必要以上に
過電流が付加された場合でも皮膜が欠落しない絶
縁電線が近年開発された。更に詳しく述べるなら
ば、過電流が付加され有機材料が熱分解する様な
温度に達したならば膜を形成したまま全体がセラ
ミツク化することを特徴としている。即ち無機質
材料とシリコーンを主成分とする絶縁塗料を導体
上に塗布焼付、更に必要ならば当該絶縁皮膜の上
に通常の有機絶縁塗料を塗布焼付けしたものであ
り通常は従来のエナメル電線と同様に使用でき、
かつ高温異常時にはセラミツク絶縁層を形成して
高温下での機器の正常運転を可能にしたものであ
る。シリコーン樹脂としては例えばメチルシリコ
ーン樹脂、フエニルシリコーン樹脂、メチルルフ
エニルシリコーン樹脂、メチルベンジルシリコー
ン樹脂等及びこれらの有機変性シリコーン樹脂が
あり複数種を混合して使用することもできる。無
機質材料としては例えばマイカ、アルミナ、シリ
カ、クレー、カリオン、ベントナイト、モンモリ
ロナイト、ガラス、フリント、シリコンナイトラ
イド、ボロンナイトライド、チタン酸バリウム、
チタン酸カルシウム、チタン酸鉛、ジルコン、ジ
ルコン酸バリウム、ステアタイト、ベリリア、ジ
ルコニア、ママネシア等及びこれらの混合物があ
る。シリコーン樹脂100重量部に対し、無機質材
料を20〜200重量部程度更に必要な場合は希釈剤
を加えて塗料料となし導体上に塗布焼付すること
によつてセラミツク化可能絶縁電線を造ることが
できる。
In such situations, thin film insulation is possible, forming an insulating film that is highly flexible and can withstand automatic coil winding, and the film will not break even if the electrical/electronic equipment is overloaded and an excessive current is applied. Insulated wires have been developed in recent years. More specifically, if an overcurrent is applied and the temperature reaches such a temperature that the organic material thermally decomposes, the entire structure turns into ceramic while the film is still formed. In other words, an insulating paint mainly composed of inorganic materials and silicone is applied and baked on the conductor, and if necessary, a normal organic insulating paint is applied and baked on the insulating film. can be used,
Furthermore, in the event of abnormal high temperatures, a ceramic insulating layer is formed to enable normal operation of the equipment under high temperatures. Examples of the silicone resin include methyl silicone resin, phenyl silicone resin, methyl phenyl silicone resin, methylbenzyl silicone resin, and organically modified silicone resins, and a plurality of these resins may be used in combination. Examples of inorganic materials include mica, alumina, silica, clay, carrion, bentonite, montmorillonite, glass, flint, silicon nitride, boron nitride, barium titanate,
Examples include calcium titanate, lead titanate, zircon, barium zirconate, steatite, beryllia, zirconia, mamanesia, etc., and mixtures thereof. If necessary, add about 20 to 200 parts by weight of an inorganic material to 100 parts by weight of silicone resin, and if necessary, add a diluent to make a paint material.By applying and baking it onto a conductor, an insulated wire that can be made into ceramic can be made. can.

この絶縁電線は、高温雰囲気下あるいは導体に
過電流が流れた場合の発熱によりシリコーン樹脂
と無機質材料とが相互に作用し次第にセラミツク
化していくものであり、セラク化後は可撓性がな
くなり、固い絶縁体となるものである。
This insulated wire gradually becomes ceramic as the silicone resin and inorganic material interact with each other due to heat generated in a high temperature atmosphere or when an overcurrent flows through the conductor, and after it becomes ceramic, it loses its flexibility. It is a hard insulator.

この様な特徴をもつセラミツク化可能絶縁電線
を回転電機等に用い、コイル加工したあと整流子
片へ接続する場合従来から用いられてきた電気的
ヒユージング法を適用用するとヒユージングの際
の加熱により絶縁皮膜がセラミツク化した状態で
残留し、所謂接触抵抗が高いという接続不良を来
すことがあつた。この様な接続不良品を用いると
機器の運転の繰り返しにより接続部にヒートサイ
クが加わり、接続金属部に絶縁性あるいは半電性
の酸化皮膜が成長することとなり結果としてこの
接続部の接触抵抗が例えば当初1mΩあつたもの
が100mΩと2桁も上昇することがあり解決すべ
き重要技術問題となつてきていた。
When using insulated wires that can be made into ceramic with these characteristics in rotating electric machines, etc., and connecting them to commutator bars after coil processing, the electrical fusing method that has been used in the past can be used to insulate the wires by heating during fusing. The film remained in a ceramic state, resulting in poor connection due to so-called high contact resistance. If such a defective connection product is used, heat cycles will be added to the connection part due to repeated operation of the equipment, and an insulating or semi-electric oxide film will grow on the connection metal part. As a result, the contact resistance of this connection part will increase, for example. What was initially 1mΩ could rise to 100mΩ by two orders of magnitude, and this had become an important technical problem that needed to be solved.

我々はこの接続不良を皆無にすべく鋭意研究と
開発を行なつた結果本発明を完成した。以下本発
明を詳細に説明する。本発明は、セラミツク化可
能絶縁電線を他金属に接続するに際し接続部の絶
縁皮膜をレーザー光線照射により焼灼し続いて電
気導体の接続部を加熱し、絶縁電線に押圧して前
記絶縁電線の導体に溶着接続するこを基体とす
る。溶着接続する過程においてレーザー光線照射
により焼灼した絶縁皮膜が導体上に残る恐れのあ
る場合はレーザー光線照射と同時にあるいは後に
ガスを吹きつけることにより残留した焼灼絶縁皮
膜をより確実に除去することができる。
We have completed the present invention as a result of intensive research and development to completely eliminate this connection failure. The present invention will be explained in detail below. In the present invention, when connecting an insulated wire that can be made into ceramic to another metal, the insulating film at the connection part is cauterized by laser beam irradiation, and then the connection part of the electric conductor is heated, and the insulated wire is pressed against the conductor of the insulated wire. The base is welded and connected. If there is a risk that the insulating film cauterized by laser beam irradiation may remain on the conductor during the process of welding and connecting, the remaining cauterized insulating film can be more reliably removed by blowing gas at the same time as or after the laser beam irradiation.

本発明で用いるレーザー光線はセラミツク化可
能絶縁皮膜を焼灼しうるものであればどのような
種類のレーザー光線でも良い。ガスレーザーとし
ては、炭酸ガスレーザー、アルゴンレーザー、ク
リプトンレーザー等を使うことができる。固体レ
ーザーとしては、ルビーレーザー、ガラスレーザ
ー、YAGレーザー等を使うことができる。その
他半導体レーザーとして、ガリウムヒ素レーザ
ー、インジウムヒ素レーザー、インジウムアンチ
モンレーザー等が使える。しかし乍ら既に汎用化
され、多くの実績が積まれている炭酸ガスレーザ
ー光線で充分である。レーザー光線の出力及び照
射時間はセラミツク化可能絶縁電線の絶縁皮膜そ
のものの特性、線サイズあるいは皮膜厚により多
少異なるが多くの場合出力は10Wから100W、照
射時間は0.5秒から5秒程度の極めて短時間照射
で充分であることを実験により確認した。この範
囲を越えて出力が小さく照射時間が短かい場合に
は絶縁皮膜を焼灼する迄に至らず目的を達成する
ことができないこともある。逆に出力が100Wを
越える場合には照射時間を著しく短かくする必要
があり、わずか照射時間が長くなつただけでも導
体結晶組織に変化を来し、時には穴のあく場合も
ある。導体結晶組織に変化を来すとヒユージング
時の押圧力あるいは機器運転中に発生する応力に
より断線等のトラブルを生ずるので注意を要す
る。本発明者らは実験により絶縁皮膜の焼灼に用
いるレーザー光線の照射条件としては出力10〜
100W照射時間0.5〜5秒が安定してコントロール
ができる好ましい条件でありかつ導体に結晶組織
に変化を来さない条件であることを見い出した。
The laser beam used in the present invention may be any type of laser beam that can cauterize the ceramicizable insulation coating. As the gas laser, a carbon dioxide laser, an argon laser, a krypton laser, etc. can be used. As solid-state lasers, ruby lasers, glass lasers, YAG lasers, etc. can be used. Other semiconductor lasers that can be used include gallium arsenide laser, indium arsenide laser, and indium antimony laser. However, a carbon dioxide laser beam, which has already been widely used and has many achievements, is sufficient. The output and irradiation time of the laser beam will vary somewhat depending on the characteristics of the insulation film itself, the wire size, and the thickness of the insulated wire, but in most cases the output is 10W to 100W, and the irradiation time is extremely short, about 0.5 to 5 seconds. It was confirmed through experiments that irradiation was sufficient. If the output exceeds this range and the irradiation time is short, the insulating film may not be cauterized and the purpose may not be achieved. On the other hand, if the output exceeds 100W, the irradiation time must be significantly shortened, and even a slight increase in irradiation time can cause changes in the conductor crystal structure, sometimes creating holes. Care must be taken as changes in the conductor crystal structure can cause problems such as wire breakage due to the pressing force during fusing or the stress generated during equipment operation. The present inventors have experimentally determined that the irradiation conditions for the laser beam used to cauterize the insulation film are as follows:
It has been found that a 100W irradiation time of 0.5 to 5 seconds is a favorable condition that allows stable control and does not cause any change in the crystal structure of the conductor.

一方、本発明においてセラミツク化可能絶縁に
レーザー光線を照射すると同時にあるいは後で吹
きつけて残留した焼灼絶縁皮膜をより確実に除去
するためのガスとしては空気、窒素その他の不活
性ガスがあるが、コストの面も考え空気で充分で
ある。特に接続部の絶縁導体及び被接続部電気導
体の酸化を防止したい場合には窒素ガスを用いる
と良い。
On the other hand, in the present invention, gases such as air, nitrogen, and other inert gases can be used to more reliably remove the cauterized insulation film that remains by spraying the laser beam on the ceramicizable insulation at the same time as or after the laser beam is irradiated. Considering this, air is sufficient. In particular, when it is desired to prevent oxidation of the insulated conductor of the connection part and the electrical conductor of the connected part, it is preferable to use nitrogen gas.

本発明の電気導体の接続部の加熱には従来から
の通電による方法を用いることができる。又レー
ザー光線照射による方法も用いることができる。
この時用いるレーザー光線の種類も特に限定はな
く、電気導体の接続部を加熱できるものであれば
よい。前述通り、ガスレーザー、固体レーザー、
半導体レーザーとして具体的に列挙したものを使
うことができる。特にレーザー光線を照射して加
熱する場合には瞬時に電気導体が高温となり接続
部における接着強度が通電による方法に比べて驚
くべきことに1.5倍から2.5倍程度も高くなること
がわかつた。このことは特に回転電機等遠心力の
かゝる部分の接続に関して信頼性が大きく向上す
ることを意味している。回転中に特に大きな遠心
力のかかる大型モータ等に対して効果がありその
工業的価値は大きいものである。このレーザー光
線を照射して加熱する場合には瞬時に電気導体が
高温となるため整流子片の表面にZnびSnメツキ
等からなる低温度にて溶融する導体層を設けなく
てもよいという利点が付加される。
Conventional energization methods can be used to heat the connection portion of the electrical conductor of the present invention. Alternatively, a method using laser beam irradiation can also be used.
There is no particular limitation on the type of laser beam used at this time, as long as it can heat the connection portion of the electric conductor. As mentioned above, gas lasers, solid-state lasers,
Those specifically listed as semiconductor lasers can be used. In particular, when heated by laser beam irradiation, the electrical conductor instantaneously reaches a high temperature, and the adhesive strength at the connection point was surprisingly 1.5 to 2.5 times higher than when using electricity. This means that reliability is greatly improved, especially in connection with parts such as rotating electric machines that are subject to centrifugal force. It is effective for large motors that are subject to particularly large centrifugal forces during rotation, and has great industrial value. When heating by irradiating this laser beam, the electric conductor instantly becomes high temperature, so there is an advantage that there is no need to provide a conductor layer made of Zn or Sn plating that melts at low temperatures on the surface of the commutator piece. will be added.

次に本発明を図に用いて説明する。第1図は回
転機におけるセラミツク化可能絶縁電線の整流子
片への接続を示すものである。1,2は通電加熱
用の電極、3はモーターの電機子に隣接する整流
子片(コミユテータセグメント)であり、4は整
流溝である。5はモーターのシヤフト、6は他の
電気導体となる整流子片3の接続爪である。7は
本発明に係る絶縁電線であり、電気子巻線であ
る。8は整流子片の表面に設けられたZn及びSn
メツキ等から成る低温度にて溶融する導体層であ
る。10はレーザー光線照射治具であり、場合に
よりガス噴射機能をも兼ねそなえたノズルであ
る。Aはセラミツク化可能絶縁電線7と接続爪6
のヒユージング部分であり、接続爪6の下に絶縁
電線を引つかけ、レーザー光線照射治具10より
レーザー光線を照射させる。
Next, the present invention will be explained using the drawings. FIG. 1 shows the connection of ceramicizable insulated wires to commutator bars in a rotating machine. Reference numerals 1 and 2 are electrodes for electrical heating, 3 is a commutator segment adjacent to the armature of the motor, and 4 is a rectifying groove. 5 is the shaft of the motor, and 6 is a connecting claw of the commutator piece 3 which serves as another electric conductor. 7 is an insulated wire according to the present invention, which is an armature winding. 8 is Zn and Sn provided on the surface of the commutator piece
A conductor layer made of plating or the like that melts at low temperatures. Reference numeral 10 denotes a laser beam irradiation jig, which is a nozzle that also has a gas injection function in some cases. A is an insulated wire 7 that can be made of ceramic and a connecting claw 6
An insulated wire is hooked under the connecting claw 6, and a laser beam is irradiated from the laser beam irradiation jig 10.

但し接続爪の下に絶縁電線をひつかけ、レーザ
ー光線を照射して皮膜を焼灼するという手順につ
いては例えば次のような2,3の異なる手順によ
つてもよい。
However, the procedure of hooking an insulated wire under the connecting claw and irradiating the laser beam to cauterize the film may be carried out using two or three different procedures, such as the following.

即ち整流子の個々の接続爪に当該絶縁電線をひ
つかけては逐一レーザー光線を照射して皮膜を焼
灼してゆく方法、回転機1個分のコイル巻きと整
流子の爪へのひつかけが全て完了してからレーザ
ー光線を各ひつかけ部に順次あるいは同時に照射
して皮膜を焼灼する方法、整流子の個々の接続爪
にひつかける直前に四方からレーザー光線を照射
して皮膜を焼灼し、焼灼された部分が接続爪のと
ころにちようどくる様に順次巻いてゆく方法等で
ある。
That is, the method involves hooking the insulated wires to each connecting claw of the commutator and cauterizing the coating by irradiating the laser beam one by one, winding a coil for one rotating machine, and hooking it to the claws of the commutator. After completion, the coating is cauterized by irradiating each hooked part with a laser beam sequentially or simultaneously, or by irradiating the laser beam from all sides to cauterize the coating immediately before hooking it to the individual connecting claws of the commutator. This method involves winding the parts one after another so that they are right at the connecting claws.

レーザー光線を照射すると同時にあるいは照射
後にガスを噴射させることによつて残留した焼灼
絶縁皮膜をより確実に除去することができる。そ
の後電極1,2の間に電流を流して接続爪6を発
熱させると同時に電極1にて押圧することにより
低融点金属、接続爪及び絶縁電線の導体が溶着し
整流子片が接続するものである。
By injecting gas at the same time as the laser beam irradiation or after the irradiation, the remaining cautery insulation film can be removed more reliably. Then, a current is passed between the electrodes 1 and 2 to generate heat in the connecting claw 6, and at the same time press it with the electrode 1, so that the low melting point metal, the connecting claw, and the conductor of the insulated wire are welded, and the commutator pieces are connected. be.

第2図はレーザー光線照射なしの従来通りの方
法でヒユージグした場合の接続部を示すものであ
る。7aはセラミツク化可能絶縁の導体7bの表
面に残存している絶縁性のセラミツク化した被覆
層で、接続抵抗が大きくなる原因となつている。
第3図は本発明になるレーザー光線照射後ヒユー
ジングした場合に接続部を示すもである。何ら絶
縁被膜の残留物を夾雑することなく確実に接続が
なされた。
FIG. 2 shows the connection when the fuse is made by the conventional method without laser beam irradiation. Reference numeral 7a denotes an insulating ceramic coating layer remaining on the surface of the ceramicizable insulating conductor 7b, which causes an increase in connection resistance.
FIG. 3 shows the connection portion when fusing is performed after laser beam irradiation according to the present invention. The connection was made reliably without contaminating any residue of the insulating coating.

以下比較例、参照例、実施例を用いて説明す
る。セラミツク化可能絶縁電線は共通してサイズ
0.7mmφであり、皮膜膜厚は27μmである。接続
個数は各例10000個である。接続部の接着力の測
定は室温において絶縁電線を接続方向に引張り最
大引張り荷荷重して求めた。
The following will be explained using comparative examples, reference examples, and examples. Ceramic insulated wires have a common size
The diameter is 0.7 mm, and the film thickness is 27 μm. The number of connections is 10,000 in each example. The adhesive strength of the connection was measured at room temperature by pulling the insulated wire in the connection direction and applying the maximum tensile load.

比較例はセラミツク化可能絶縁電線をレーザー
光線を使うことなく従来を同じ通電加熱による電
気的ヒユージング法によりコミユテーター部に接
続したものであり、接続抵抗が10mΩ以上の接続
不良が0.20%も発生している。接続部の接着力は
3〜5Kgfであつた。
In the comparative example, an insulated wire that can be made into ceramic was connected to the commutator part using the same electrical fusing method using current heating without using a laser beam, and 0.20% of connection failures with a connection resistance of 10 mΩ or more occurred. . The adhesive force at the connection portion was 3 to 5 kgf.

参照例1〜4はセラミツク化可能絶縁電線の皮
膜をガスレーザー光線を照射して焼灼後従来と同
じ通電加熱による電気的ヒユージング法によりコ
ミユテーター部に接続したものである。炭酸ガス
レーザー光線の照射条件が本発明にいう適正範囲
からはずれているものである。接触抵抗が10mΩ
以上の接続不良は0.01〜0.07%発生しているとは
言え、比較例と比べた場合1/3〜1/20と大幅に減
少しており、レーザー光線によるセラミツク化可
能絶絶縁皮膜の効果がはつきりと認められた。参
照例3,4ではレーザー光線の照射条件が適正範
囲から外れて非常に強力なためセラミミク化可能
絶縁電線の銅体の結晶組織が変化して脆弱となり
結果として接続部の接着力が2〜3Kgfとなり比
較例を比べて約1/2になつてしまつている。
Reference Examples 1 to 4 are those in which a film of an insulated wire that can be made into ceramic is cauterized by irradiation with a gas laser beam, and then connected to a commutator part by an electrical fusing method using current heating as in the conventional method. The irradiation conditions of the carbon dioxide laser beam are outside the appropriate range according to the present invention. Contact resistance is 10mΩ
Although the above connection failures occur at 0.01 to 0.07%, they are significantly reduced to 1/3 to 1/20 compared to the comparative example, and the effect of the insulating film that can be made into ceramic by laser beams is It was clearly recognized. In Reference Examples 3 and 4, the laser beam irradiation conditions were out of the appropriate range and were very strong, so the crystal structure of the copper body of the ceramic insulated wire changed and became brittle, resulting in the adhesive strength at the connection part becoming 2 to 3 kgf. This is about 1/2 compared to the comparative example.

実施例1〜4はセラミツク化可能絶縁皮膜を炭
酸ガスレーザ場ー光線により焼灼する時の照射条
件が本発明にいう適正範囲に入つているものであ
る。接触抵抗が10mΩ以上の接続不良が0.01〜
0.02%となり、比較例を比べて1/10〜1/20を大幅
に減少した。焼灼の効果が顕著に認められた。そ
れに付随して接続部の接着力が4〜14Kgfと比較
例と比べて驚くべきことに1.5倍から2.5倍程度も
高くなつた。実施例3は特にレーザー光線を照射
して接続爪を加熱すると同時に治具にて押圧し接
続したものである。この場合接続部の接着力は11
〜14Kgfとなつた。通電加熱による電気的ヒユー
ジング法によりコミユテータ部に接続している実
施例1,2,4の接着力が4〜8Kgfであるのに
比べても明らかに約2倍も高い値を示しており、
レーザー光線照射による加熱押圧接続の効果がは
つきりと認められた。実施5〜8はセラミツク化
可能絶縁皮膜を炭酸ガスレーザー光線により焼灼
する時の照射条件が本発明にいう適正範囲に入つ
ており、かつ炭酸ガスレーザー光線の照射と同時
に空気を高速にて噴射して焼灼した絶縁皮膜をよ
り確実に飛散させたものである。この場合接触抵
抗が10mΩ以上の接続不良は何ら発生しなかつ
た。一方接続部の接着力は4〜14Kgfとなり比べ
て実に1.5倍〜2.5倍程度も高くなつた。実施例7
は特にレーザー光線を照射して接続爪を加熱する
と同時に治具にて押圧し接続したものである。こ
の場合の接続部の接着力は11〜14Kgfとなつた。
通電加熱による電気的ヒユージング法によりコミ
ユテーター部に接続している実施例5,6,8の
接着力が4〜8Kgfであるのに比べても明らかに
約2倍も高い値を示しておりレーザー光線照射に
よる加熱押圧接続の効果がはつきりと認められ
た。
In Examples 1 to 4, the irradiation conditions when cauterizing the ceramicizable insulating film with the carbon dioxide laser field fell within the appropriate range according to the present invention. Connection failure with contact resistance of 10mΩ or more is 0.01~
It was 0.02%, which was significantly reduced by 1/10 to 1/20 compared to the comparative example. The effect of cauterization was noticeable. Concomitantly, the adhesive force at the connection portion was surprisingly 1.5 to 2.5 times higher than that of the comparative example, at 4 to 14 kgf. In Example 3, in particular, the connection claws were heated by irradiation with a laser beam and simultaneously pressed with a jig to connect them. In this case, the adhesive strength of the connection is 11
~14Kgf. This is clearly about twice as high as the adhesive strength of Examples 1, 2, and 4, which are 4 to 8 Kgf, which are connected to the commutator part by an electrical fusing method using energized heating.
The effect of heating and pressing connection using laser beam irradiation was clearly recognized. In Examples 5 to 8, the irradiation conditions when cauterizing the ceramicizable insulating film with the carbon dioxide laser beam were within the appropriate range according to the present invention, and the cauterization was performed by jetting air at high speed at the same time as the carbon dioxide laser beam irradiation. The insulating film is dispersed more reliably. In this case, no connection failure with a contact resistance of 10 mΩ or more occurred. On the other hand, the adhesive force at the connection portion was 4 to 14 Kgf, which was actually 1.5 to 2.5 times higher than that of the previous example. Example 7
Specifically, the connection is made by irradiating a laser beam to heat the connecting claw and simultaneously pressing it with a jig. In this case, the adhesive strength of the connection portion was 11 to 14 kgf.
This is clearly about twice as high as the adhesive strength of Examples 5, 6, and 8, which are 4 to 8 Kgf, which are connected to the commutator part by the electrical fusing method using current heating, and the value is clearly about twice as high as that of Examples 5, 6, and 8, which are connected to the commutator part by an electrical fusing method using electrical heating. The effectiveness of the heat-press connection was clearly recognized.

比較例 シリコーン樹脂とマイカ微粉末とから成る絶縁
塗料を0.7mmφの銅線に塗布焼付して皮膜厚27μ
mのセラミツク化可能絶縁電線とした。この線を
モーターの回転子に巻きつけた後電気的なヒユー
ングによりコミユテーター部に接続していた。こ
の場合接触抵抗が10mΩ以上の接続不良が0.20%
発生した。接続部の接着力は3〜5Kgfであつ
た。
Comparative example: Insulating paint consisting of silicone resin and mica fine powder was applied and baked on a 0.7mmφ copper wire to form a film with a thickness of 27μ.
This is an insulated wire that can be made into ceramic. This wire was wrapped around the motor rotor and then connected to the commutator section using an electrical hook. In this case, connection failure with contact resistance of 10 mΩ or more is 0.20%.
Occurred. The adhesive force at the connection portion was 3 to 5 kgf.

参照例 1 シリコーン樹脂とアルミナ微粉末とから成る絶
縁塗料を0.7mmφ銅線に塗布焼付して皮膜厚27μ
mのセミツク化可能絶縁電線とした。この線をモ
ーターの回転子に巻きつけた後接続爪にひつかけ
た部分に出力7Wの炭酸ガスレーザーを5秒照射
した。絶縁皮膜がわずか焼灼されたのみであつた
が続いて電気的にヒユージングをしてコミユテー
ター部に接続していつた。この場合接触抵抗が10
mΩ以上の接続不良は0.07%発生した。接続部の
接着力は3〜7Kgfであつた。
Reference example 1 An insulating paint consisting of silicone resin and fine alumina powder is applied to a 0.7mmφ copper wire and baked to obtain a coating thickness of 27μ.
This is an insulated wire that can be made into a semi-conductor. After wrapping this wire around the motor rotor, the part where it was wrapped around the connecting claw was irradiated with a carbon dioxide laser with an output of 7W for 5 seconds. Although the insulating film was only slightly cauterized, electrical fusing was subsequently performed to connect it to the commutator. In this case, the contact resistance is 10
Connection failures of mΩ or more occurred in 0.07%. The adhesive force at the connection portion was 3 to 7 kgf.

参照例 2 シリコーン樹脂とアルミナ微粉末とから成る絶
縁塗料を0.7mmφの銅線に塗布焼付して皮膜厚27
μmのセラミツク化可能絶縁電線とした。この線
をモーターの回転に巻き付けた後接続爪にひつか
けや部分に出力50Wの炭酸ガスレーザーを0.2秒
照射し絶縁皮膜を焼灼した。次に電気的にヒユー
ジングとしてコミユテーター部に接続していつ
た。この場合接触抵抗が10mΩ以上の接続不良は
0.06%発生した。接続部の接着力は3〜7Kgfで
あつた。
Reference example 2 An insulating paint consisting of silicone resin and fine alumina powder was applied to a 0.7mmφ copper wire and baked to form a film with a thickness of 27 mm.
This is an insulated wire that can be made into μm ceramic. After wrapping this wire around the rotation of the motor, a carbon dioxide laser with an output of 50W was irradiated for 0.2 seconds on the connection claw and the part to cauterize the insulation film. Next, I connected it electrically to the commutator part as fusing. In this case, a connection failure with a contact resistance of 10mΩ or more
Occurred at 0.06%. The adhesive force at the connection portion was 3 to 7 kgf.

実施例 1 シリコーン樹脂とマイカ微粉末、カオリン微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモータの回転子に巻き付けた後
接続爪にひつかけた部分に出力12Wの炭酸ガスレ
ーザーを5秒照射し絶縁皮膜を焼灼した。次に電
気的にヒユージングしてコミユテーター部に接続
していつた。この場合接触抵抗が10mΩ以上の接
続不良は0.01%発生した。接続部の接着力は4〜
8Kgfであつた。
Example 1 An insulating paint consisting of a silicone resin, mica fine powder, and kaolin fine powder was applied and baked on a 0.7 mmφ copper wire to obtain an insulated wire having a coating thickness of 27 μm and capable of being made into ceramic. After wrapping this wire around the motor rotor, the part where it was wrapped around the connecting claw was irradiated with a carbon dioxide laser with an output of 12 W for 5 seconds to cauterize the insulating film. Next, I connected it to the commutator part by fusing it electrically. In this case, connection failures with contact resistance of 10 mΩ or more occurred in 0.01%. The adhesive strength of the connection part is 4~
It was 8kgf.

実施例 2 シリコーン樹脂とマイカ微粉末、カオリン微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分に出力50Wの炭酸ガス
レーザーを2秒照射し絶縁皮膜を焼灼した。次に
電気的にヒユージングしてコミユテーター部に接
続していつた。この場合接触抵抗が10mΩ以上の
接続不良は0・01%発生した。接続部の接着力は
4〜8Kgfであつた。
Example 2 An insulating paint consisting of a silicone resin, mica fine powder, and kaolin fine powder was applied and baked on a 0.7 mmφ copper wire to obtain an insulated wire having a coating thickness of 27 μm and capable of being made into ceramic. After wrapping this wire around the motor rotor, the part where it was wrapped around the connecting claw was irradiated with a 50W carbon dioxide laser for 2 seconds to cauterize the insulation film. Next, I connected it to the commutator part by fusing it electrically. In this case, connection failures with contact resistance of 10 mΩ or more occurred in 0.01%. The adhesive force at the connection portion was 4 to 8 kgf.

実施例 3 シリコーン樹脂とマイカ微粉末、カオリン微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分に出力50Wの炭酸ガス
レーザーを2秒照射し絶縁皮膜を焼灼した。次に
出力120Wの炭酸ガスレーザーを2秒接続爪に照
射して加熱すると同時に治具にて押圧し接続し
た。この場合接触抵抗10mΩ以上の接続不良は
0.01%発生した。接続部の接着力は11〜14Kgfで
あつた。
Example 3 An insulating paint consisting of a silicone resin, mica fine powder, and kaolin fine powder was applied and baked on a 0.7 mmφ copper wire to obtain an insulated wire having a coating thickness of 27 μm and capable of being made into ceramic. After wrapping this wire around the motor rotor, the part where it was wrapped around the connecting claw was irradiated with a 50W carbon dioxide laser for 2 seconds to cauterize the insulation film. Next, a carbon dioxide gas laser with an output of 120 W was irradiated onto the connection claw for 2 seconds to heat it, and at the same time, the connection was made by pressing with a jig. In this case, a connection failure with a contact resistance of 10mΩ or more
Occurred at 0.01%. The adhesive force at the connection portion was 11 to 14 kgf.

実施例 4 シリコーン樹脂とマイカ微粉末、カオリン微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪ひつかけた部分に出力90Wの炭酸ガスレ
ーザーを0.8秒照射し絶縁皮膜を焼灼した。次に
電気的にヒユージングしてコミユーテータ部に接
続していつた。この場合接触抵抗が10mΩ以上の
接続不良は0.02%発生した。接続部の接着力は4
〜8Kgfであつた。
Example 4 An insulating paint consisting of a silicone resin, mica fine powder, and kaolin fine powder was applied and baked on a 0.7 mm diameter copper wire to obtain an insulated wire having a coating thickness of 27 μm and capable of being made into ceramic. After wrapping this wire around the rotor of the motor, a carbon dioxide gas laser with an output of 90 W was irradiated for 0.8 seconds at the part where the connecting claw was hooked to cauterize the insulating film. Next, I connected it to the commutator section by fusing it electrically. In this case, connection failures with contact resistance of 10 mΩ or more occurred in 0.02%. The adhesive strength of the connection part is 4
It was ~8Kgf.

参照例 3 シリコーン樹脂とマイカ微粉末、カリオン微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分に出力90Wの炭酸ガス
レーザーを7秒照射し絶縁皮膜を焼灼した。次に
電気的にヒユージングしてコミユテーター部に接
続していつた。この場合接触抵抗が10mΩ以上の
接続不良は0.01%発生した。接続部の接着力は2
〜3Kgfであつた。
Reference Example 3 An insulating paint consisting of a silicone resin, fine mica powder, and fine carrion powder was applied and baked on a 0.7 mm diameter copper wire to obtain an insulated wire with a coating thickness of 27 μm that could be made into ceramic. After wrapping this wire around the motor rotor, the part where it was wrapped around the connecting claw was irradiated with a 90W carbon dioxide laser for 7 seconds to cauterize the insulation film. Next, I connected it to the commutator part by fusing it electrically. In this case, connection failures with contact resistance of 10 mΩ or more occurred in 0.01%. The adhesive strength of the connection part is 2
It was ~3Kgf.

参照例 4 シリコーン樹脂とマイカ微粉末、カオリン微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分に出力120Wの炭酸ガ
スレーザーを1秒照射し絶縁皮膜を焼灼した。次
に電気的にヒユージングしてコミユータ部に接続
していつた。この場合接触抵抗が10mΩ以上の接
続不良は0.02%発生した。接続部の接着力は2〜
3Kgfであつた。
Reference Example 4 An insulating paint consisting of a silicone resin, mica fine powder, and kaolin fine powder was applied and baked on a 0.7 mmφ copper wire to obtain an insulated wire with a coating thickness of 27 μm that can be made into ceramic. After wrapping this wire around the motor rotor, the part where it was wrapped around the connecting claw was irradiated with a 120W carbon dioxide laser for 1 second to cauterize the insulation film. Next, I connected it to the commuter section by fusing it electrically. In this case, connection failures with contact resistance of 10 mΩ or more occurred in 0.02%. The adhesive strength of the connection part is 2~
It was 3kgf.

実施例 5 シリコーン樹脂とアルミナ微粉末、マイカ微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分に出力12Wの炭酸ガス
レーザーを5秒照射すると同時に空気を高速にて
噴射し絶縁皮膜を焼灼すると共に飛散させた。次
に電気的にヒユージングしてコミユテータ部に接
続していつた。この場合接触抵抗が10mΩ以上の
接続不良は発生しなかつた。接続部の接着力は4
〜8Kgfであつた。
Example 5 An insulating paint consisting of a silicone resin, fine alumina powder, and fine mica powder was applied and baked on a 0.7 mmφ copper wire to obtain an insulated wire with a coating thickness of 27 μm that can be made into ceramic. After wrapping this wire around the rotor of the motor, a carbon dioxide laser with an output of 12W was irradiated for 5 seconds on the part where it was wrapped around the connecting claw, and at the same time air was jetted at high speed to cauterize and scatter the insulating film. Next, I connected it to the commutator part by fusing it electrically. In this case, no connection failure with a contact resistance of 10 mΩ or more occurred. The adhesive strength of the connection part is 4
It was ~8Kgf.

実施例 6 シリコーン樹脂とアルミナ微粉末、マイカ微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミク化可能絶縁電線と
した。この線をモーターの回転子に巻き付けた後
接続爪にひつかけた部分に出力50Wの炭酸ガスー
ザーを2秒照射すると同時に空気を高速にて噴射
し絶縁皮膜を焼灼すると共に飛散させた。次に電
気的にヒユージングしてコミユテータ部に接続し
ていつた。この場合接触抵抗が10mΩ以上の接続
不良は発生しなかつた。接続部の接着力は4〜8
Kgfであつた。
Example 6 An insulating paint consisting of a silicone resin, fine alumina powder, and fine mica powder was coated and baked on a 0.7 mm diameter copper wire to produce an insulated wire with a coating thickness of 27 μm that can be made into ceramic. After wrapping this wire around the rotor of the motor, the part where it was wrapped around the connecting claw was irradiated with a carbon dioxide soser with an output of 50 W for 2 seconds, and at the same time air was jetted at high speed to cauterize and scatter the insulating film. Next, I connected it to the commutator part by fusing it electrically. In this case, no connection failure with a contact resistance of 10 mΩ or more occurred. The adhesive strength of the connection part is 4 to 8
It was Kgf.

実施例 7 シリコーン樹脂とアルミナ微粉末、マイカ微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分に出力50Wの炭酸ガス
レーザーを2秒照射すると同時に空気を高速にて
噴射し絶縁皮膜を焼灼すると共に飛散させた。次
に出力120Wの炭酸ガスレーザーを2秒接続爪の
照射して加熱すると同時に治具にて押圧し接続し
た。この場合接触抵抗が10mΩ上の接続不良は発
生しなかつた。接続部の接着力は11〜14Kgfであ
つた。
Example 7 An insulating paint consisting of silicone resin, fine alumina powder, and fine mica powder was applied and baked on a 0.7 mmφ copper wire to obtain an insulated wire with a coating thickness of 27 μm that can be made into ceramic. After wrapping this wire around the rotor of the motor, a carbon dioxide laser with an output of 50W was irradiated for 2 seconds on the part where it was wrapped around the connecting claw, and at the same time air was jetted at high speed to cauterize and scatter the insulating film. Next, a carbon dioxide laser with an output of 120 W was used to irradiate the connecting claw for 2 seconds to heat it up, and at the same time press it with a jig to connect. In this case, no connection failure with a contact resistance of 10 mΩ or more occurred. The adhesive force at the connection portion was 11 to 14 kgf.

実施例 8 シリコーン樹脂とアルミナ微粉末、マイカ微粉
末とから成る絶縁塗料を0.7mmφの銅線に塗布焼
付して皮膜厚27μmのセラミツク化可能絶縁電線
とした。この線をモーターの回転子に巻き付けた
後接続爪にひつかけた部分90Wの炭酸ガスレーザ
ーを0.8秒照射すると同時に空気を高速にて絶縁
皮膜を焼灼すると共に飛散させた。次に電気的に
ヒユージングしてコミユテータ部に接続していつ
た。この場合接触抵抗が10mΩ以上の接続不良は
発生しなかつた。接続部の接着力は4〜8Kgfで
あつた。
Example 8 An insulating paint consisting of a silicone resin, fine alumina powder, and fine mica powder was applied and baked on a 0.7 mm diameter copper wire to obtain an insulated wire with a coating thickness of 27 μm that can be made into ceramic. This wire was wrapped around the rotor of the motor, and then the part connected to the connecting claw was irradiated with a 90W carbon dioxide laser for 0.8 seconds, simultaneously blowing air at high speed to cauterize and scatter the insulating film. Next, I connected it to the commutator part by fusing it electrically. In this case, no connection failure with a contact resistance of 10 mΩ or more occurred. The adhesive force at the connection portion was 4 to 8 kgf.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例とならるワイパ
ーモーターの整流子部の接続工程を示す模式的構
成図、第2図は従来の接続方法におけるヒユージ
ング部分の模式的断面図、第3図は第1図図示工
程における本発明に係わるヒユージング部分の模
式的断面図を夫々例示している。 1,2……通電加電用の電極、3……モーター
の電機子に隣接する整流子片、4……整流子、5
……モーターのシヤフト、6……他の電気導体と
なる接続爪、7……絶縁伝線、7a……残存セラ
ミツク化絶縁層、7b……絶縁電線の導体、8…
…整流子片の表面に設けられたZn及びSnメツキ
等から成る低温度にて溶融する導体層、10……
レーザー光線照射具兼ガス噴射ノズル、A……絶
縁電線と接続爪のヒユージング部分。
Fig. 1 is a schematic block diagram showing the process of connecting the commutator part of a wiper motor according to an embodiment of the method of the present invention, Fig. 2 is a schematic cross-sectional view of the fusing part in the conventional connection method, and Fig. 3 1A and 1B illustrate schematic cross-sectional views of the fusing portion according to the present invention in the steps illustrated in FIG. 1, respectively. 1, 2... Electrode for applying current, 3... Commutator piece adjacent to the armature of the motor, 4... Commutator, 5
. . . Shaft of motor, 6 . . . Connection claw serving as another electric conductor, 7 . . . Insulated wire, 7a .
...A conductor layer that melts at low temperature and is made of Zn, Sn plating, etc. and is provided on the surface of a commutator piece, 10...
Laser beam irradiation tool and gas injection nozzle, A... Fusing part of insulated wire and connecting claw.

Claims (1)

【特許請求の範囲】 1 セラミツク化可能絶縁電線を他の電気導体に
接続する際、該絶縁電線の接続部分にレーザー光
線を照射して絶縁皮膜を焼灼し、続いて電気導体
の接続部を加熱し、絶縁電線に押圧して前記絶縁
電線の導体に溶着接続することを特徴とするセラ
ミツク化可能絶縁電線の接続方法。 2 電気導体の接続部の加熱に際し通電加熱を用
いることを特徴とする特許請求の範囲第1項のセ
ラミツク化可能絶縁電線の接続方法。 3 電気導体の接続部の加熱に際しレーザー光線
の照射によることを特徴とする特許請求の範囲第
1項のセラミツク化可能絶縁電線の接続方法。 4 レーザー光線の照射条件が出力10〜100W、
照射時間0.5〜5秒であることを特徴とする特許
請求の範囲第1項のセラミツク化可能絶縁電線の
接続方法。 5 セラミツク化可能絶縁電線が回転電機の電機
子巻線を構成し、他の電気導体が回転電機の整流
子片より成ることを特徴とする特許請求の範囲第
1項のセラミツク化可能絶縁電線の接続方法。 6 セラミツク化可能絶縁電線を他の電気導体に
接続する際、該絶縁電線の接続部分にレーザー光
線を照射して絶縁皮膜を焼灼すると同時にあるい
は後にガスを噴射して絶縁皮膜を除去し続いて電
気導体の接続部を加熱し絶縁電線に押圧して前記
絶縁電線の導体に溶着接続することを特徴とする
セラミツク化可能絶縁電線の接続方法。 7 電気導体の接続部の加熱に際し通電加熱を用
いることを特徴とする特許請求の範囲第6項のセ
ラミツク化可能絶縁電線の接続方法。 8 電気導体の接続部の加熱に際してレーザー光
線の照射によることを特徴とする特許請求の範囲
第6項のセラミツク化可能絶縁電線の接続方法。 9 レーザー光線の照射条件が出力10〜100W、
照射時間0.5〜5秒であることを特徴とする特許
請求の範囲第6項のセラミツク化可能絶縁電線の
接続方法。 10 セラミツク化可能絶縁電線が回転電機の電
機子巻線を構成し、他の電気導体が回転電気の整
流子片より成ることを特徴とする特許請求の範囲
第6項のセラミツク化可能絶縁電線の接続方法。
[Claims] 1. When connecting an insulated wire that can be made into ceramic to another electrical conductor, the connecting portion of the insulated wire is irradiated with a laser beam to cauterize the insulating film, and then the connecting portion of the electrical conductor is heated. . A method for connecting an insulated wire capable of being made into ceramic, which comprises pressing the insulated wire to weld and connect it to a conductor of the insulated wire. 2. The method for connecting insulated wires capable of being made into ceramic according to claim 1, characterized in that electrical heating is used to heat the connecting portion of the electric conductor. 3. A method for connecting insulated wires capable of being made into ceramic according to claim 1, characterized in that heating the connecting portion of the electric conductor is performed by irradiating a laser beam. 4 Laser beam irradiation conditions are output 10-100W,
A method for connecting insulated wires capable of being made into ceramic according to claim 1, wherein the irradiation time is 0.5 to 5 seconds. 5. The ceramicizable insulated wire of claim 1, wherein the ceramicizable insulated wire constitutes an armature winding of a rotating electrical machine, and the other electrical conductor is a commutator piece of the rotating electrical machine. Connection method. 6 When connecting an insulated wire that can be made into ceramic to another electrical conductor, the connecting portion of the insulated wire is irradiated with a laser beam to cauterize the insulating film, and at the same time or afterwards, a gas is injected to remove the insulating film and then the electrical conductor is connected. 1. A method for connecting an insulated wire that can be made into ceramic, the method comprising heating the connecting portion of the insulated wire and pressing it against the insulated wire to weld and connect it to the conductor of the insulated wire. 7. The method for connecting ceramicizable insulated wires according to claim 6, characterized in that electrical heating is used to heat the connection portion of the electric conductor. 8. The method for connecting insulated wires capable of being made into ceramic according to claim 6, characterized in that the heating of the connection portion of the electric conductor is performed by irradiation with a laser beam. 9 Laser beam irradiation conditions are output 10-100W,
7. The method of connecting insulated wires capable of being made into ceramic according to claim 6, wherein the irradiation time is 0.5 to 5 seconds. 10. The ceramicizable insulated wire of claim 6, characterized in that the ceramicizable insulated wire constitutes an armature winding of a rotating electric machine, and the other electrical conductor consists of a commutator piece of the rotating electrical machine. Connection method.
JP11414981A 1981-07-20 1981-07-20 Method of connecting insulated wire capable of forming ceramic Granted JPS5816487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11414981A JPS5816487A (en) 1981-07-20 1981-07-20 Method of connecting insulated wire capable of forming ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11414981A JPS5816487A (en) 1981-07-20 1981-07-20 Method of connecting insulated wire capable of forming ceramic

Publications (2)

Publication Number Publication Date
JPS5816487A JPS5816487A (en) 1983-01-31
JPS6135668B2 true JPS6135668B2 (en) 1986-08-14

Family

ID=14630369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11414981A Granted JPS5816487A (en) 1981-07-20 1981-07-20 Method of connecting insulated wire capable of forming ceramic

Country Status (1)

Country Link
JP (1) JPS5816487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107066U (en) * 1990-02-19 1991-11-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050881A (en) * 1983-08-31 1985-03-20 富士通株式会社 Method of connecting wirings of coated electric conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107066U (en) * 1990-02-19 1991-11-05

Also Published As

Publication number Publication date
JPS5816487A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
US3610874A (en) Laser welding technique
JP4646177B2 (en) Method for producing high-value insulators for conductors or conductor bundles of rotating electrical machines by thermal spraying
US5057661A (en) Process for terminating insulated conductor wires
JPS63235081A (en) Spot welding machine
JP3995058B2 (en) Alloy type temperature fuse
JPS6135668B2 (en)
JPH06203942A (en) Manufacture of electric part
JPH0719075Y2 (en) Substrate type thermal fuse
US2984903A (en) Brazing alloy and ultrasonic process for using the same
JP2001243863A (en) Fuse with flux
US4687900A (en) Fusing methods and apparatus therefor
CN115427186A (en) Laser welding method and method for manufacturing rotating electric machine using same
JP2000299240A (en) Soldering device with film separating function
JP6459150B2 (en) Thin film oxide superconducting wire and method for producing the same
JP2706726B2 (en) Electric joining method of ceramics
EP0416704B1 (en) Method of connecting a conductor wire to a hook-shaped element, and rotor and/or stator for an electrical machine in which the method is used
JP2000030930A (en) Superconducting coil and its manufacture
JP2006315043A (en) Reflow welding equipment
JPS5951113B2 (en) How to connect heat-resistant insulated wires
JP2001230040A (en) Soldering method and soldering device
JPH086354Y2 (en) Alloy type thermal fuse
JPH0831298B2 (en) Thermal switch
JP2001143588A (en) Alloy fuse
JPH0436530Y2 (en)
JPS6329922B2 (en)