JPS6135585A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6135585A
JPS6135585A JP15522284A JP15522284A JPS6135585A JP S6135585 A JPS6135585 A JP S6135585A JP 15522284 A JP15522284 A JP 15522284A JP 15522284 A JP15522284 A JP 15522284A JP S6135585 A JPS6135585 A JP S6135585A
Authority
JP
Japan
Prior art keywords
layer
laser device
ingaasp
semiconductor laser
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15522284A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
伸二 辻
Hitoshi Nakamura
均 中村
Akio Oishi
大石 昭夫
Takeyuki Hiruma
健之 比留間
Tadashi Fukuzawa
董 福沢
Naoki Kayane
茅根 直樹
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15522284A priority Critical patent/JPS6135585A/en
Priority to US06/759,136 priority patent/US4775980A/en
Publication of JPS6135585A publication Critical patent/JPS6135585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1225Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers with a varying coupling constant along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser device which operates stably in the longitudinal single mode even during the modulation, by providing variations in the refractive index in the direction of propagation of light in a region on or near an active layer to which a photoelectric field extends. CONSTITUTION:Diffraction gratings having different pattern dimensions and a constant period of about 2,300Angstrom are formed all over the surface of an N type InP substrate 1 by X-ray lithography using a metal pattern as a mask. A diffraction grating having a depth of 400Angstrom and a width which varies in a range from 300-1,500Angstrom is transferred by employing the RIE method. An N type InGaAsP light guide layer 2, an InGaAsP active layer 3, a P type InGaAsP buffer layer 4, a P type InP layer 5 and InGaAsP surface layer 6 are laminated. A P-side electrode 8 and an N-side electrode 9 are respectively deposited on the upper and lower surfaces by evaporation, and cleavage is effected to obtain a desired semiconductor laser device. In this device, an average refractive index near the center of the cavity is larger than those near both ends of the cavity. Therefore, an oscillation molde is selectively obtained at a wavelength which is shorter than the Bragg wavelength, and the laser device operates in a single mode.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a semiconductor laser device.

光通信用光源として好適である6 〔発明の背景〕 縦単一モード半導体レーザの一例としては分布帰還形レ
ーザがあり、その横断面図を第1図に示す、第1図にお
いて表面に回折格子を形成したn型1. n P基板1
上にn型InGaAsPガイド層2゜InGaAsP活
性M3 、 InGaAsPバッファ層atP型InP
クラッド層5yp型InGaAsP表面層6を順次積層
し、p型InGaAsP表面層6の上面にp側電極8を
n型InP基板1の裏面にn側電極9をそれぞれ設けて
いる。上記のように植成された分布帰還形レーザ装置で
は、ブラッグ波長を中心とする異なる2つの波長の光が
同時に発振しやすいという欠点があった。このため光の
伝搬方向に回折格子の周期よりも長周期の不均一な実効
屈折率分布を持たせることで軸モードの単一化を図る方
法が文献1で提案されている。
6 [Background of the Invention] An example of a longitudinal single mode semiconductor laser is a distributed feedback laser, whose cross-sectional view is shown in FIG. 1. In FIG. n-type formed 1. nP substrate 1
On top, an n-type InGaAsP guide layer 2° InGaAsP active M3, an InGaAsP buffer layer atP-type InP
A cladding layer 5yp-type InGaAsP surface layer 6 is sequentially laminated, and a p-side electrode 8 is provided on the upper surface of the p-type InGaAsP surface layer 6, and an n-side electrode 9 is provided on the back surface of the n-type InP substrate 1. The distributed feedback laser device implanted as described above has a drawback in that light having two different wavelengths centered around the Bragg wavelength tends to oscillate simultaneously. For this reason, Document 1 proposes a method of unifying the axial mode by providing a non-uniform effective refractive index distribution with a period longer than the period of the diffraction grating in the light propagation direction.

しかし、従来の装置は活性層幅を可変とする(たとえば
文献2)ことで上記の効果を満足するものであった。こ
の場合には、活性層の幅を精密に制御する必要があり、
素子の作製上再現性を期待するのは困難であった。また
、他の手法として、キャビティの中央部近傍で、回折格
子の位相とλ/4だけずらすことで軸モードの単一化を
図る方法も文献3,4で提案されている。
However, the conventional device satisfies the above effect by making the width of the active layer variable (for example, Document 2). In this case, it is necessary to precisely control the width of the active layer.
It was difficult to expect reproducibility in device fabrication. Further, as another method, a method of unifying the axial mode by shifting the phase of the diffraction grating by λ/4 near the center of the cavity has been proposed in References 3 and 4.

ところが、この場合にも、臂開面における波動の位相関
係によっては、単一化の条件が破壊されるため、特に外
部からの戻り光が存在する場合に安定な単一モード動作
を行なうことは困難であった。
However, even in this case, the unification condition is destroyed depending on the phase relationship of the waves in the arm opening plane, so it is difficult to perform stable single mode operation, especially when there is return light from the outside. It was difficult.

なお、上記文献1〜4は次のものである。In addition, the above-mentioned documents 1 to 4 are as follows.

1)多田他、 1983年春季応用物理学会予稿4a−
H−I   P117゜ 2)鈴木、多田、電気通信学会研究冷資料0QE3)江
田他、昭和59年電通大会予稿P4−38(1984ン
 。
1) Tada et al., 1983 Spring Proceedings of the Japan Society of Applied Physics 4a-
H-I P117゜2) Suzuki, Tada, Institute of Electrical Communication Research Materials 0QE3) Eda et al., 1984 Dentsu Conference Proceedings P4-38 (1984).

4)内山他、昭和59年電通大会予稿P4−67(19
84) 。
4) Uchiyama et al., 1981 Dentsu Convention Proceedings P4-67 (1981)
84).

〔発明の目的〕[Purpose of the invention]

本発明は変調時においても単一軸モード動作を行う半導
体レーザ装置を得ることを目的とする。
An object of the present invention is to obtain a semiconductor laser device that operates in a single-axis mode even during modulation.

〔発明の概要〕 分布帰還形レーザの発振波長は、レーザの共振器長が有
限であるため、ブラッグ波長を中心とする多数の発振モ
ードが存在し、ここでしきい値利得の一番低いモードが
選択的に発振することで定まる。軸方向に実効的な屈折
率分布が無い場合にはブラッグ波長を挾んだ2つのモー
ドのしきい値利得が等しく単一モード比は困難である。
[Summary of the Invention] The oscillation wavelength of a distributed feedback laser has a finite resonator length, so there are many oscillation modes centered around the Bragg wavelength, and the mode with the lowest threshold gain is is determined by selective oscillation. If there is no effective refractive index distribution in the axial direction, the threshold gains of the two modes sandwiching the Bragg wavelength are equal, making it difficult to achieve a single mode ratio.

これに対し、屈折率分布を持たせる事で、2つのモード
間に利得差を生ぜしめ、単一モード化を図った。
On the other hand, by providing a refractive index distribution, a gain difference is created between the two modes, and a single mode is achieved.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面とともに説明する。第2 −図は
本発明による半導体レーザ装置の第1の実施例を示す断
面図、第3図は第2の実施例を示す断面図である。第2
図に示す第1の実施例は導波路の屈折率をキャビティに
わたってほぼ周期的に変化させ、かつその平均的な屈折
率がキャビティの中央近傍とキャビティの端面側で変化
するように光ガイドJi13の結晶厚さがほぼ周期的に
変化し、かつその厚さを異にする飢位の幅がキャビティ
にわたって変化するように作製して得られた構造である
。n型InP基板1上全面にレジストを塗布し、周知の
電子ビームによる直線描画法あるいは電子ビーム描画を
用いて形成した金属バタンをマスクとしたX線リソグラ
フィ法を用いてバタン寸法の異なる一定周期約2300
人の回折格子を形成した後、RI E (reacti
ve ion etching)法を用いて深さ400
人の幅が300〜1500人の範囲で変化する回折格子
をInP基板1表面に転写する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a sectional view showing a first embodiment of a semiconductor laser device according to the present invention, and FIG. 3 is a sectional view showing a second embodiment. Second
The first embodiment shown in the figure changes the refractive index of the waveguide almost periodically over the cavity, and the optical guide Ji13 is arranged such that the average refractive index changes near the center of the cavity and on the end face side of the cavity. This is a structure obtained by manufacturing such that the crystal thickness changes almost periodically, and the width of the gap that makes the thickness different varies across the cavity. A resist is applied to the entire surface of the n-type InP substrate 1, and a pattern of constant periodicity with different batten dimensions is applied using the well-known linear writing method using an electron beam or an X-ray lithography method using a metal batten formed using electron beam writing as a mask. 2300
After forming the human diffraction grating, RIE (reacti
depth 400 using the ve ion etching) method.
A diffraction grating whose width varies in the range of 300 to 1,500 people is transferred onto the surface of an InP substrate 1.

つぎにOMVPE (organo l1etalli
c、vapor phaseepitaxial)法を
用いてn型InGAsP光ガイド層2(Teドープ、キ
ャリア密度2×1o口alす、平均厚さ0.1〜0.2
 μm、15〜1.3μm)、InGaAgP活性層3
(アンドープ、厚さ0.1〜0.27zm、λg〜1.
5  μm)p型InGaAsPバッファ層4(Znド
ープ、キャリア密度1x10”am−”、厚さO−1〜
O−2p m +  λg〜x、s um)w p型I
nP層5 (Znドープ、キャリア密度〜I X 10
”am−”、厚さ2〜4μm)。
Next, OMVPE (organo l1etalli
n-type InGAsP optical guide layer 2 (Te-doped, carrier density 2 x 10mm, average thickness 0.1-0.2
μm, 15-1.3 μm), InGaAgP active layer 3
(Undoped, thickness 0.1~0.27zm, λg~1.
5 μm) p-type InGaAsP buffer layer 4 (Zn doped, carrier density 1x10"am-", thickness O-1 ~
O-2p m + λg~x, sum) w p type I
nP layer 5 (Zn doped, carrier density ~ I x 10
"am-", thickness 2-4 μm).

InGaAsP p表面層6 (Znドープ、キャリア
密度3 X 10”am−”、厚さ0.2 〜0.4 
 μm) を順次積層する0次いで上面および下面にそ
れぞれp側電極8(Au/Cr)およびn側ffl極(
Au/AuGeN1)を蒸着により形成し、へき開を行
って所望の半導体レーザ装置を得た。上記半導体レーザ
ではキャビティ中央近傍の平均的な屈折率がキャビティ
の両端近傍に比して大きくなるため、ブラッグ波長より
も短波長側の発振モードが選択的に発振し、単一モード
動作が生じた。なお上記半導体レーザ装置においても、
λ/4に相当する膜厚のSiNx反射防止膜を少なくと
も−へき開面あるいは両へき開面に形成することは、 
Fabri−Parotモードの混在を防止する観点か
ら有効であった。また、上記実施例では、回折格子の周
期を一定値としたが、必ずしもこの必要はなく、キャビ
ティ方向にその周期を可変とするチャープトゲレーティ
ングレーザにおいても有効であった。
InGaAsP p surface layer 6 (Zn doped, carrier density 3 x 10"am-", thickness 0.2-0.4
A p-side electrode 8 (Au/Cr) and an n-side ffl electrode (
Au/AuGeN1) was formed by vapor deposition and cleaved to obtain a desired semiconductor laser device. In the above semiconductor laser, the average refractive index near the center of the cavity is larger than that near both ends of the cavity, so the oscillation mode on the shorter wavelength side than the Bragg wavelength selectively oscillates, resulting in single mode operation. . Note that also in the above semiconductor laser device,
Forming an SiNx anti-reflection film with a thickness corresponding to λ/4 on at least the − cleavage plane or both cleavage planes is as follows:
This was effective from the viewpoint of preventing mixture of Fabri-Parot modes. Further, in the above embodiments, the period of the diffraction grating was set to a constant value, but this is not necessarily necessary, and it is also effective in a chirped gelating laser in which the period is variable in the cavity direction.

第3図に示す第2の実施例は1本特許の概念を面発光型
レーザー;適用したものである1分布帰還のキャビティ
となる発光層13が層131とこれよりも屈折率の低い
層132から成るL1層枯造であり、これらの層厚の比
率がキャビティの各所において変化するようにして作y
Qた荷造である。
The second embodiment shown in FIG. 3 is an application of the concept of this patent to a surface-emitting laser.The light-emitting layer 13 serving as the cavity of monodistribution feedback is a layer 131 and a layer 132 with a lower refractive index than this. This is an L1-layer dry structure consisting of L1 layers, and the ratio of these layer thicknesses is made to vary in various parts of the cavity.
Q: I'm packing.

n型InP基板1上にOMVPE (orHano v
otallicvapor phaoe epitax
ial)法を用いて、n型InGaAsP層11(Te
ドープ、キャリア密度2×101″C!l−”、厚さ0
.2 〜0.3  μm、  λg〜1.15  μm
)、n型InP層12.(Teドープ。
OMVPE (or Hano v
otallic vapor phaoe epitax
n-type InGaAsP layer 11 (Te
Doped, carrier density 2×101"C!l-", thickness 0
.. 2 ~ 0.3 μm, λg ~ 1.15 μm
), n-type InP layer 12. (Te doped.

キャリア密度2 X 101層1m −”厚さ204m
)を積層した後、次いで周期を234.n mと一定に
しつつ、n型InP層131 (Teド、−ブ、キャリ
ア密度I X 10”as−”)とn型InGaAsP
層132(Teドープ、キャリア密度I X 10”t
x弓組成λg〜1.5 μm)を交互にそれらの1良厚
比を10対1から1対゛1の範囲で50〜400の和暦
13を形成した後、引きつづきp型I n P層5(Z
nドープ、キャリア密度7 X 10”am−”、厚さ
〜20μm)、アンドープInGaAsP層6 (厚さ
0.2〜0.3 μm9組成λg〜1.3 μm)を積
層してレーザ結晶を得る0次いで素子のp側表面にスパ
ッタリング法によってS13 N4 / SiO□の二
重膜絶縁層を形成し1部分励起を行うために20μmφ
の円形の窓をあけ、この部分にZn拡散を行う、この後
上面及び下面にn(llffl極(AuGo Ni/A
u)、p側Trf1m (A u / Cr )を蒸着
により形成し、n側に100μmφの窓を形成すること
で所望の素子を得た。窓形成は円形の窓を有するレジス
トマスクを用いて電極層をBr、、或いは工2 を含有
するエツチング液を用いて除去した後、次いでCQ、を
含有するエツチング液によってInP層9のエツチング
を行い、最後に、HeSO4を主成分とするエツチング
液によって11層の窓あけを行なった。
Carrier density 2 x 101 layers 1m-”thickness 204m
), then the period is 234. While keeping n m constant, the n-type InP layer 131 (Te do, -, carrier density I x 10"as-") and n-type InGaAsP
Layer 132 (Te doped, carrier density I x 10"t
x bow composition λg ~ 1.5 μm), and after forming 50 to 400 Japanese calendars 13 with a thickness ratio of 1 to 1 in a range of 10 to 1 to 1 to 1, successively p-type I n P Layer 5 (Z
A laser crystal is obtained by laminating n-doped, carrier density 7 x 10"am-", thickness ~20 μm) and undoped InGaAsP layer 6 (thickness 0.2-0.3 μm9 composition λg ~1.3 μm). Next, a double film insulating layer of S13N4/SiO□ was formed on the p-side surface of the device by sputtering, and a diameter of 20 μm was formed for partial excitation.
A circular window is opened and Zn is diffused into this part. After that, an n(llffl pole (AuGo Ni/A
u), p-side Trf1m (A u /Cr ) was formed by vapor deposition, and a window of 100 μmφ was formed on the n-side to obtain a desired element. To form the window, use a resist mask having a circular window to remove the electrode layer using an etching solution containing Br or etching solution, and then etching the InP layer 9 using an etching solution containing CQ. Finally, 11 layers of windows were opened using an etching solution containing HeSO4 as a main component.

得られた素子は、実施例1に示した素子と同様に安定な
単一モード動作を行なった。なお上記レーザ装置におい
ても実施例1に述べたようなチャープトゲレーティング
の併用も可能である。さらに、実施例に述べた131,
132の各層は、必ずしも同一組成で形成された単層膜
である必要は無く、それぞれのうち、/pなくとも−っ
がInGaAsPとInP或いは組成を異にするInG
nAsPによって形成された多層膜であっても良い。
The obtained device performed stable single mode operation like the device shown in Example 1. Note that chirp gelating as described in Example 1 can also be used in combination with the above laser device. Furthermore, 131 mentioned in the example,
Each layer of 132 does not necessarily have to be a single layer film formed with the same composition, and at least /p of each layer is InGaAsP and InP or InG having a different composition.
A multilayer film formed of nAsP may also be used.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による半導体レーザ装置は活性層あ
るいは活性層近傍の光電界がおよぶ範囲に、光の伝搬方
向に周期的ではあるが、平均的には不均一な屈折率の変
化を有することにより、ブラッグ波長の長波長側と短波
長側のしきい値利得に差異が生じるため1発振モードの
選択が生じ、変調時においても安定に縦単一モードで動
作する半導体レーザ装置を得ることができる。
As described above, the semiconductor laser device according to the present invention has a refractive index change that is periodic in the light propagation direction but non-uniform on average in the range covered by the optical electric field in or near the active layer. As a result, a difference occurs in the threshold gain between the longer wavelength side and the shorter wavelength side of the Bragg wavelength, resulting in the selection of one oscillation mode, making it possible to obtain a semiconductor laser device that stably operates in a single longitudinal mode even during modulation. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の縦単一モード半導体レーザ装置の断面図
、第2図は本発明の半導体レーザ装置の第1の実施例を
示す断面図、第3図は上記第2の実施例を示す断面図で
ある。 1−n型InP基板、2− n型InGaAsP光ガイ
ド層、3−InGaAsP活性W、4−p型1nGaA
sPバッファ層、5・・・p型InPクラッド層、6・
・・InGaAsP表面層、7・・・回折格子、8・・
・P側電極、9・・・n側電極、 11−InGaAs
P層、12− I n P層、13・・・多層積層部、
15・・・拡散部、18・・・絶縁層、石 1 図  
      近 Z 図篤 3 図
FIG. 1 is a sectional view of a conventional longitudinal single mode semiconductor laser device, FIG. 2 is a sectional view of a first embodiment of the semiconductor laser device of the present invention, and FIG. 3 is a sectional view of the second embodiment. FIG. 1-n-type InP substrate, 2-n-type InGaAsP light guide layer, 3-InGaAsP active W, 4-p-type 1nGaA
sP buffer layer, 5... p-type InP cladding layer, 6.
...InGaAsP surface layer, 7... Diffraction grating, 8...
・P side electrode, 9...n side electrode, 11-InGaAs
P layer, 12-I n P layer, 13... multilayer laminated part,
15... Diffusion part, 18... Insulating layer, stone 1 Figure
Kin Z Zu Atsushi 3 Figure

Claims (1)

【特許請求の範囲】 1、光電界の及ぶ範囲に光の伝搬方向に屈折率が等価的
に異なる少なくとも二種以上の領域が交互に繰り返され
ており、これらの領域の幅がキャビティ方向にわたつて
変化したことを特徴とする半導体レーザ装置。 2、前記屈折率が等価的に異なる領域の繰り返しの周期
が一定であることを特徴とする特許請求の範囲第1項記
載の半導体レーザ装置。
[Claims] 1. At least two or more regions having equivalently different refractive indexes in the light propagation direction are alternately repeated in the range covered by the optical electric field, and the widths of these regions extend in the cavity direction. A semiconductor laser device characterized by a change in temperature. 2. The semiconductor laser device according to claim 1, wherein the repetition period of the regions having equivalently different refractive indexes is constant.
JP15522284A 1983-12-14 1984-07-27 Semiconductor laser device Pending JPS6135585A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15522284A JPS6135585A (en) 1984-07-27 1984-07-27 Semiconductor laser device
US06/759,136 US4775980A (en) 1983-12-14 1985-07-26 Distributed-feedback semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15522284A JPS6135585A (en) 1984-07-27 1984-07-27 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6135585A true JPS6135585A (en) 1986-02-20

Family

ID=15601192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15522284A Pending JPS6135585A (en) 1983-12-14 1984-07-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6135585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114820B1 (en) * 1998-12-30 2006-10-03 Nokia Mobile Phones, Ltd. Backlighting light pipe for illuminating a flat-panel display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114820B1 (en) * 1998-12-30 2006-10-03 Nokia Mobile Phones, Ltd. Backlighting light pipe for illuminating a flat-panel display
US7192175B2 (en) 1998-12-30 2007-03-20 Nokia Mobile Phones, Ltd. Backlighting light pipe for illuminating a flat-panel display
US7712942B2 (en) 1998-12-30 2010-05-11 Nokia Corporation Backlighting light pipe for illuminating a flat-panel display

Similar Documents

Publication Publication Date Title
Skogen et al. A quantum-well-intermixing process for wavelength-agile photonic integrated circuits
GB2151402A (en) Distributed-feedback semiconductor laser device
KR0142587B1 (en) Tunable semiconductor diode laser with distributed reflection and method of manufacturing such a semiconductor diode
US4720836A (en) Distributed feedback semiconductor laser
EP0533485B1 (en) Semiconductor device and method of making it
US4775980A (en) Distributed-feedback semiconductor laser device
JPH088394B2 (en) Semiconductor laser and manufacturing method thereof
JPS63256927A (en) Optical filter element
KR100632308B1 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
JPH0720506A (en) Optical switch and its production
EP1363368B1 (en) Gain-coupled semiconductor laser device lowering blue shift
JPH05145169A (en) Semiconductor distributed feedback laser apparatus
JPS6135585A (en) Semiconductor laser device
JP3485260B2 (en) Distributed reflection optical waveguide and optical device including the same
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
JPH10308553A (en) Semiconductor laser device
KR19980069797A (en) Distributed feedback semiconductor laser and manufacturing method thereof
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JP2713445B2 (en) Semiconductor laser device
JPS6184891A (en) Semiconductor laser element
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPH02257685A (en) Semiconductor laser element and manufacture thereof
Fernier et al. Design and realization of polarisation insensitive semiconductor optical amplifiers with low forward current
JPH07118563B2 (en) Semiconductor distributed feedback laser device
JPH0446477B2 (en)