JPS6135556Y2 - - Google Patents

Info

Publication number
JPS6135556Y2
JPS6135556Y2 JP1985081708U JP8170885U JPS6135556Y2 JP S6135556 Y2 JPS6135556 Y2 JP S6135556Y2 JP 1985081708 U JP1985081708 U JP 1985081708U JP 8170885 U JP8170885 U JP 8170885U JP S6135556 Y2 JPS6135556 Y2 JP S6135556Y2
Authority
JP
Japan
Prior art keywords
steel wire
quenching
soaking furnace
frequency heating
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985081708U
Other languages
Japanese (ja)
Other versions
JPS612445U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985081708U priority Critical patent/JPS612445U/en
Publication of JPS612445U publication Critical patent/JPS612445U/en
Application granted granted Critical
Publication of JPS6135556Y2 publication Critical patent/JPS6135556Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は高抗張力、強靭性の細径鋼線の製造装
置に関するものである。 (従来技術) 鋼材の焼入れおよび焼戻しによる熱処理におい
て、高周波加熱は急速加熱の手段として有用であ
り、急速加熱は結晶粒を微細化して強度と靭性を
高める上に利点があることは知られている。そし
て、特公昭41−13363号公報に見られるように、
比較的太い鋼線(例えば7mmφ程度以上)の焼入
れおよび焼戻しを高周波加熱により行うようにし
た装置に従来においても知られている。この装置
は焼入れおよび焼戻しにおいてそれぞれ、単に高
周波加熱後に冷却するようにしているが、特に6
mmφ以下の細径鋼線に適用しようとすると次のよ
うな問題が生じる。 すなわち、細径鋼線を高周波加熱しようとする
場合、加熱コイルの輪径を極端に小さくすること
は製作技術的に難しいため、鋼線径の割りには加
熱コイルの輪径が大きくなつて加熱効率が低くな
る。また一般に鋼線径が細くなるとランニングコ
スト等との関係で作業速度(鋼線の移動速度)が
速くなる一方、経済的な理由で加熱コイルをあま
り長くすることはできないので、加熱時間が短く
なる。さらに細径鋼線は太径鋼線と比べて熱容量
が小さいで、大気中での冷却速度が速くなる。こ
れらの原因により、上記従来装置で細径鋼線を熱
処理すると変態(パーライトからオーステナイト
への変態、マルテンサイトから焼戻しマルテンサ
イトへの変態)に要する時間が充分に得られず、
高品質の製品を得ることが難しい。 このため一般に細径鋼線の焼入れおよび焼戻し
は、高周波加熱によらず。雰囲気炉と鉛炉、鉛炉
と鉛炉、雰囲気炉と雰囲気炉等の組合わせが用い
られていたが、雰囲気炉では急速加熱が行えない
ので強靭性にすぐれた鋼線を得ることはできず、
また、鉛炉では鉛蒸気が発生して公害、衛生上に
大きな問題点であつた。 (考案の目的) 本考案はこれらの事情に鑑み、高周波誘導加熱
による急速加熱の利点を生かし、しかも焼入れお
よび焼戻し時に変態時間をもたせることにより高
強度および強靭性を兼ね備えた高品質の細径鋼線
が得られ、かつこれらの処理を能率良く行なうこ
とができる強靭性細径鋼線の製造装置を提供する
ものである。 (考案の構成) 本考案は、細径鋼線の供給送出部と受取部との
間に焼入用高周波加熱コイルと、該コイルの直後
に設けた均熱炉と、焼入急冷部と、焼戻し用高周
波加熱コイルと、該コイルの直後に設けた均熱炉
とを順次直線状の鋼線移動経路に沿つて配置した
ものである。 (実施例) 第1図は本考案装置の一実施例を示し、周図に
おいて、1は細径の被熱処理鋼線11を積載する
サプライスタンド、2は案内ローラ、3…は矯正
ローラで、これらにより被熱処理鋼線11を直線
状に送り出す供給送出部を構成している。上記案
内ローラ2および矯正ローラ3…は、被熱処理鋼
線の目的に応じて適宜ギヤプスタン等に置き換え
てもよい。この鋼線供給送出部と後述する受取部
との間には、焼入れ用高周波加熱コイル4と、該
コイル4の直後に設けた均熱炉5と、油、水、鉛
ソルト等の焼入れ剤を収容した焼入槽(焼入急冷
部)6と、焼戻し用高周波加熱コイル7と、該コ
イル7の直後に設けた均熱炉8とをこの順に鋼線
移動径路につて直線的に連続して配置している。
上記各加熱コイル4,7はそれぞれ図外の高周波
電源装置に接続され、焼入れおよび焼戻しに必要
な温度に鋼線11を加熱するようにしてある。ま
た上記各均熱炉5,8は、それぞれの直前に配置
された加熱コイル4,7と同程度の温度で鋼線1
1を均一加熱するようになつている。また、9は
キヤプスタン、10は巻取り装置で、これらは鋼
線移動径路終端部における引取部を構成する。上
記キヤプスタン9はピンチローラ等に置き換えて
もよい。 次に、この装置を用いて強靭性鋼線を製造する
方法の具体例を説明する。 先ず所定寸法に伸線されてサプライスタンド1
に積載された被熱処理鋼線11は、案内ローラ
2、矯正ローラ3を通つて高周波加熱コイル4に
入る。該加熱コイル4に高周波電源装置から電圧
が印加されることにより鋼線内に誘導電流が生
じ、このときの鋼線横断面内を円周方向に流れる
誘導電流は、高周波特有の表皮効果によつて鋼線
の表面層に集中し、その浸透深さδが次式で表わ
されることは知られている。 δ=√ :周波数、μ:透磁率、ρ:抵抗率 そして、この誘導過電流と鋼線固有抵抗の相乗
作用による電気抵抗熱で鋼線が急速加熱され、加
熱コイル4においては100゜C/sec以上の加熱速
度でAc1温度以上の830〜950゜C程度に加熱され
る。続いて鋼線11は、均熱炉5により、上記加
熱コイル4による加熱温度と同程度の温度で、オ
ーステナイトの結晶粒が粗大化せず、且つ鋼線が
均一なオーステナイト組織に変態するのに最適な
所定時間、具体的には5〜30秒程度保持され、オ
ーステナイト化が完了される。この場合、鋼線1
1が移動しながら均熱炉5で所定時間保温される
ように、予め鋼線11の移動速度に応じて均熱炉
5の長さが定められている。均熱炉5を通過した
後、直ちに鋼線11は焼入槽6中にて急冷され
る。 この焼入れ段階において、オーステナイト化の
際高周波の急速加熱によりオーステナイト結晶粒
の成長は行なわれず、その結果極めて微細なマル
テンサイト組織を得ることが可能となる。また、
高周波加熱だけでは前記の表皮効果により鋼線の
表層に比べて中心部の方がどうしても温度が低く
なるが、均熱炉5により温度の均一化が図られて
鋼線の温度上昇曲線が第2図に示すようになり、
均一な組織が得られる。さらに、均熱炉5にDX
ガス、窒素ガス、AXガス等の非酸化性ガスを通
気することにより、被熱処理鋼線を雰囲気ガス中
で加熱して酸化、脱炭の防止を図ることも可能で
ある。 次いで被熱処理鋼線11は、焼戻し用高周波加
熱コイルにて100゜C/sec以上の加熱速度でAc1
温度以下の450〜550゜C程度に再加熱され、続い
て均熱炉9により同程度の温度で10〜40秒保持さ
れ、焼戻しされる。このように焼戻し時にも均熱
炉9で所定時間保温しているのは、本来的に細径
鋼線は冷却速度が速いので外気温等の影響を受け
易く、また特に低合金鋼で油焼入れされたものは
残留オーステナイトが安定していて分解に時間を
要するためである。従つてこの焼戻し時の均熱炉
9による保温も鋼線の品質向上に重要なものであ
つて、これにより確実に均一な焼戻しソルバイト
組織が得られる。このようにして高強度および強
靭性を備えた鋼線が製造される。 ここで、本考案の装置により製造された強靭性
鋼線について効果を確認するため、当考案者が行
なつた実験の結果を示す。この実験は鋼種
AISI9254(Si−Cr鋼)を用い、本考案の装置に
よる場合と、高周波加熱を用いない従来の一般的
な装置による場合とについて、材料の機械的性質
を比較試験したもので、本考案については、3mm
φの素線を高周波加熱により290゜C/secの加熱
速度で890゜Cに加熱し、同温度に保持した均熱
炉中で18秒間保持した後油焼入れし、さらに連続
的に高周波加熱により150゜C/secで470゜Cに
加熱し、同温度に保持した均熱炉中にて30秒間保
持し、焼戻しを行なつた。これによる実験の結果
は次の表の通りである。尚、焼入れ時のオーステ
ナイト結晶粒度は、本考案装置によるものでは粒
度番号12,5、従来品では粒度10〜11である(粒
度番号はJIS.G0551による)。
(Industrial Application Field) The present invention relates to an apparatus for manufacturing a small diameter steel wire with high tensile strength and toughness. (Prior art) In the heat treatment of steel materials by quenching and tempering, high-frequency heating is useful as a means of rapid heating, and it is known that rapid heating has the advantage of refining crystal grains and increasing strength and toughness. . And, as seen in Special Publication No. 41-13363,
BACKGROUND OF THE INVENTION Conventionally, apparatuses have been known that use high-frequency heating to harden and temper relatively thick steel wires (for example, about 7 mmφ or more). This equipment simply cools after high-frequency heating in quenching and tempering, but in particular,
When trying to apply it to thin steel wires with a diameter of mmφ or less, the following problems arise. In other words, when attempting to high-frequency heat a small-diameter steel wire, it is technically difficult to make the ring diameter of the heating coil extremely small, so the ring diameter of the heating coil becomes large relative to the diameter of the steel wire. Efficiency decreases. Additionally, in general, as the steel wire diameter becomes smaller, the working speed (speed of movement of the steel wire) increases due to running costs, etc. However, for economic reasons, it is not possible to make the heating coil too long, so the heating time becomes shorter. . Furthermore, a thin diameter steel wire has a smaller heat capacity than a thicker diameter steel wire, so the cooling rate in the atmosphere is faster. Due to these reasons, when a small diameter steel wire is heat treated using the conventional equipment described above, the time required for transformation (transformation from pearlite to austenite, transformation from martensite to tempered martensite) cannot be obtained sufficiently.
Difficult to obtain high quality products. For this reason, quenching and tempering of small-diameter steel wires generally does not involve high-frequency heating. Combinations of atmosphere furnaces and lead furnaces, lead furnaces and lead furnaces, atmosphere furnaces and atmosphere furnaces, etc. were used, but because rapid heating cannot be performed in atmosphere furnaces, it was not possible to obtain steel wire with excellent toughness. ,
In addition, lead furnaces generated lead vapor, which was a major problem in terms of pollution and hygiene. (Purpose of the invention) In view of these circumstances, the present invention takes advantage of rapid heating by high-frequency induction heating, and also provides a transformation time during quenching and tempering, thereby creating a high-quality small-diameter steel that has both high strength and toughness. It is an object of the present invention to provide an apparatus for manufacturing a strong, thin-diameter steel wire that can obtain a wire and efficiently carry out these treatments. (Structure of the invention) The invention comprises: a high-frequency heating coil for quenching between a feeding section and a receiving section of a small diameter steel wire, a soaking furnace provided immediately after the coil, a quenching quenching section, A high-frequency heating coil for tempering and a soaking furnace provided immediately after the coil are sequentially arranged along a linear steel wire moving path. (Example) Fig. 1 shows an embodiment of the device of the present invention, and in the circumferential diagram, 1 is a supply stand for loading small-diameter heat-treated steel wires 11, 2 is a guide roller, 3... is a correction roller, These constitute a supply and delivery section that feeds out the heat-treated steel wire 11 in a straight line. The guide rollers 2 and straightening rollers 3 may be replaced with gap stamps or the like as appropriate depending on the purpose of the heat-treated steel wire. Between this steel wire supply and delivery section and a receiving section to be described later, there is a high-frequency heating coil 4 for quenching, a soaking furnace 5 installed immediately after the coil 4, and a quenching agent such as oil, water, or lead salt. The accommodated quenching tank (quenching quenching section) 6, the high-frequency heating coil 7 for tempering, and the soaking furnace 8 provided immediately after the coil 7 are linearly connected in this order along the steel wire movement path. It is placed.
Each of the heating coils 4 and 7 is connected to a high frequency power supply (not shown), and is configured to heat the steel wire 11 to a temperature necessary for hardening and tempering. In addition, each of the soaking furnaces 5 and 8 heats the steel wire at a temperature similar to that of the heating coils 4 and 7 disposed immediately before each one.
1 is heated evenly. Further, 9 is a capstan, and 10 is a winding device, which constitute a take-off section at the end of the steel wire movement path. The capstan 9 may be replaced with a pinch roller or the like. Next, a specific example of a method for producing a strong steel wire using this apparatus will be described. First, the wire is drawn to a predetermined size and placed on supply stand 1.
The steel wire 11 to be heat treated loaded on the holder passes through a guide roller 2 and a straightening roller 3 and enters a high frequency heating coil 4 . An induced current is generated in the steel wire by applying a voltage to the heating coil 4 from the high frequency power supply, and the induced current flowing in the circumferential direction within the cross section of the steel wire at this time is caused by the skin effect peculiar to high frequencies. It is known that the penetration depth δ is expressed by the following equation. δ=√: Frequency, μ: Magnetic permeability, ρ: Resistivity Then, the steel wire is rapidly heated by electrical resistance heat due to the synergistic effect of this induced overcurrent and the steel wire's specific resistance, and the heating coil 4 heats up to 100°C/ It is heated to about 830 to 950°C, which is higher than Ac 1 temperature, at a heating rate of sec or more. Next, the steel wire 11 is heated in a soaking furnace 5 at a temperature comparable to the heating temperature by the heating coil 4, so that the austenite crystal grains do not become coarse and the steel wire transforms into a uniform austenite structure. The austenitization is completed by holding for an optimal predetermined time, specifically about 5 to 30 seconds. In this case, steel wire 1
The length of the soaking furnace 5 is determined in advance according to the moving speed of the steel wire 11 so that the steel wire 11 is kept warm in the soaking furnace 5 for a predetermined time while moving. Immediately after passing through the soaking furnace 5, the steel wire 11 is rapidly cooled in a quenching tank 6. In this quenching step, austenite crystal grains do not grow due to rapid high-frequency heating during austenitization, and as a result, it becomes possible to obtain an extremely fine martensitic structure. Also,
If high-frequency heating alone is used, the temperature at the center of the steel wire will inevitably be lower than the surface layer due to the above-mentioned skin effect, but the soaking furnace 5 will equalize the temperature, and the temperature rise curve of the steel wire will become second. As shown in the figure,
A uniform tissue is obtained. Furthermore, DX in soaking furnace 5
It is also possible to prevent oxidation and decarburization by heating the steel wire to be heat-treated in an atmospheric gas by passing a non-oxidizing gas such as gas, nitrogen gas, or AX gas. Next, the steel wire 11 to be heat-treated is heated to Ac 1 at a heating rate of 100°C/sec or higher using a high-frequency heating coil for tempering.
It is reheated to about 450 to 550 degrees Celsius, which is below the temperature, and then kept at the same temperature for 10 to 40 seconds in a soaking furnace 9 to be tempered. The reason why the temperature is kept in the soaking furnace 9 for a predetermined period of time even during tempering is because small-diameter steel wire naturally has a fast cooling rate, so it is susceptible to the effects of outside temperature, etc. This is because retained austenite is stable and takes time to decompose. Therefore, heat retention by the soaking furnace 9 during tempering is also important for improving the quality of the steel wire, and this ensures that a uniform tempered sorbite structure can be obtained. In this way, a steel wire with high strength and toughness is produced. Here, we will show the results of an experiment conducted by the present inventor in order to confirm the effects of the high-strength steel wire produced by the apparatus of the present invention. This experiment is based on steel type
Using AISI9254 (Si-Cr steel), the mechanical properties of the material were compared between the device of the present invention and the conventional general device that does not use high-frequency heating. , 3mm
A wire of φ was heated to 890°C at a heating rate of 290°C/sec by high-frequency heating, kept at the same temperature for 18 seconds in a soaking furnace, then oil-quenched, and then continuously heated by high-frequency heating to 890°C. It was heated to 470°C at 150°C/sec and kept at the same temperature in a soaking furnace for 30 seconds to perform tempering. The results of this experiment are shown in the table below. Note that the austenite crystal grain size during quenching is grain size numbers 12 and 5 for those produced by the device of the present invention, and grain sizes 10 to 11 for conventional products (grain size numbers are based on JIS.G0551).

【表】 この表から明らかなように、本考案装置によつ
て熱処理した鋼線は、結晶粒が極細粒になること
により、高強度、強靭性が得られる上に耐遅れ破
壊性が改善される。さらに加熱雰囲気を選択する
ことによつて脱炭の無い疲労特性のすぐれた鋼線
が得られる。 また、第3図のグラフは本考案装置による場合
の焼入れ時のオーステナイト化温度と保持時間、
オーステナイト結晶粒度の関係を、鋼種
AISI9254を例にとつて示す。同グラフ中、No.10
〜No.13はJIS.GO551によるオーステナイト粒度を
示し、θ消失として表わしたラインはセメンタイ
ト消失の限界線を示すものである。この例におけ
る鋼線はCO.55wt%,SiI.45wt%,Mn0.72wt
%,Cr7.68wt%を含む。 このグラフからも高周波加熱による適正なオー
ステナイト化温度に応じ、均熱炉による均温化保
持時間を適宜選定することにより、極微細粒組織
の強靭性鋼線が得られることが解る。 (考案の効果) 以上のように本考案の装置は焼入れおよび焼戻
しに高周波加熱による急速加熱を用いて結晶の微
細化を図り、しかも、各高周波加熱コイルの直後
にそれぞれ均熱炉を設けることにより、焼入れ時
と焼戻し時とにおいてそれぞれ、高周波加熱後の
被熱処理鋼線が所定時間一定温度に保たれるよう
にしているため、細径鋼線においても焼入れ時の
パーライトからオーステナイトへの変態、および
焼戻し時のマルテンサイトから焼戻しソルバイト
の変態を達成するに充分な時間が得られる。従つ
て、鋼線全体にわたり均一な極微細粒組織をも
ち、高強度と強靭性を兼ね備え、機械的性質にす
ぐれた細径鋼線を製造することができる。しか
も、これらの処理を連続的に能率良く行うことが
でき、高品質の細径鋼線を簡単に製造することが
できるものである。
[Table] As is clear from this table, the steel wire heat-treated using the device of the present invention has high strength and toughness, as well as improved delayed fracture resistance due to the ultra-fine crystal grains. Ru. Furthermore, by selecting the heating atmosphere, a steel wire with excellent fatigue properties without decarburization can be obtained. In addition, the graph in Figure 3 shows the austenitizing temperature and holding time during quenching when using the device of the present invention.
The relationship between austenite grain size and steel type
Let's take AISI9254 as an example. No.10 in the same graph
~No. 13 indicates the austenite grain size according to JIS.GO551, and the line expressed as θ disappearance indicates the limit line of cementite disappearance. The steel wire in this example is CO.55wt%, SiI.45wt%, Mn0.72wt
%, including Cr7.68wt%. This graph also shows that a strong steel wire with an extremely fine grain structure can be obtained by appropriately selecting the soaking time in the soaking furnace in accordance with the appropriate austenitizing temperature by high-frequency heating. (Effects of the invention) As described above, the apparatus of the invention uses rapid heating by high-frequency heating for quenching and tempering to refine the crystals, and furthermore, by providing a soaking furnace immediately after each high-frequency heating coil, During quenching and tempering, the steel wire to be heat-treated after high-frequency heating is kept at a constant temperature for a predetermined period of time, so even in small diameter steel wires, the transformation from pearlite to austenite during quenching, Sufficient time is available to achieve the transformation of tempered martensite to tempered sorbite. Therefore, it is possible to produce a small diameter steel wire that has a uniform ultrafine grain structure throughout the steel wire, has both high strength and toughness, and has excellent mechanical properties. Furthermore, these treatments can be carried out continuously and efficiently, and high quality small diameter steel wires can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の実施例を示す概略図、第
2図は本考案装置における高周波加熱および均熱
炉による鋼線の温度変化を示すグラフ、第3図は
焼入れ時の適正なオーステナイト化温度と均熱炉
による等温保持時間とオーステナイト結晶粒度の
関係を示すグラフである。 1,2,3……鋼線供給送出部、4……焼入れ
用高周波加熱コイル、5……均熱炉、6……焼入
槽、7……焼戻し用高周波加熱コイル、8……均
熱炉、10,11……鋼線受取部。
Figure 1 is a schematic diagram showing an embodiment of the device of the present invention, Figure 2 is a graph showing temperature changes in steel wire due to high frequency heating and soaking furnace in the device of the present invention, and Figure 3 is proper austenitization during quenching. It is a graph showing the relationship between temperature, isothermal holding time in a soaking furnace, and austenite grain size. 1, 2, 3... Steel wire supply and delivery section, 4... High frequency heating coil for quenching, 5... Soaking furnace, 6... Quenching tank, 7... High frequency heating coil for tempering, 8... Soaking Furnace, 10, 11... steel wire receiving section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 細径鋼線の供給送出部と受取部との間に焼入用
高周波加熱コイルと、該コイルの直後に設けた均
熱炉と、焼入急冷部と、焼戻し用高周波加熱コイ
ルと、該コイルの直後に設けた均熱炉とを順次直
線状の鋼線移動経路に沿つて配置したことを特徴
とする強靭性細径鋼線の製造装置。
A high-frequency heating coil for quenching is provided between a feeding section and a receiving section for thin-diameter steel wire, a soaking furnace provided immediately after the coil, a quenching and quenching section, a high-frequency heating coil for tempering, and the coil. 1. An apparatus for manufacturing a strong, thin-diameter steel wire, characterized in that a soaking furnace provided immediately after the step is sequentially arranged along a linear steel wire movement path.
JP1985081708U 1985-05-30 1985-05-30 Manufacturing equipment for strong thin diameter steel wire Granted JPS612445U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985081708U JPS612445U (en) 1985-05-30 1985-05-30 Manufacturing equipment for strong thin diameter steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985081708U JPS612445U (en) 1985-05-30 1985-05-30 Manufacturing equipment for strong thin diameter steel wire

Publications (2)

Publication Number Publication Date
JPS612445U JPS612445U (en) 1986-01-09
JPS6135556Y2 true JPS6135556Y2 (en) 1986-10-16

Family

ID=30628744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985081708U Granted JPS612445U (en) 1985-05-30 1985-05-30 Manufacturing equipment for strong thin diameter steel wire

Country Status (1)

Country Link
JP (1) JPS612445U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038817A1 (en) * 2000-11-10 2002-05-16 Neturen Co., Ltd. Double-taper steel wire and continuous heat treating method and device therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792230B2 (en) * 1988-07-22 1995-10-09 高木産業株式会社 Drainage mechanism of water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062809A (en) * 1973-10-09 1975-05-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062809A (en) * 1973-10-09 1975-05-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038817A1 (en) * 2000-11-10 2002-05-16 Neturen Co., Ltd. Double-taper steel wire and continuous heat treating method and device therefor
US7011720B2 (en) 2000-11-10 2006-03-14 Neturen Co., Ltd. Double-taper steel wire and continuous heat treating method and device therefor

Also Published As

Publication number Publication date
JPS612445U (en) 1986-01-09

Similar Documents

Publication Publication Date Title
US3666572A (en) Process for the continuous heat treatment of a low alloy steel wire material
US3477884A (en) Method of increasing the fatigue life of rolling contact elements and the resulting articles
US5885370A (en) Method of heat treatment of steel
EP2700724B1 (en) Method and apparatus for heat treating rails
Cao et al. Increased hardenability of steel by an external electric field
JP6252833B2 (en) Method for producing martensitic stainless steel strip
US3711338A (en) Method for cooling and spheroidizing steel rod
JP3699773B2 (en) Induction hardening method
CA1133287A (en) Lower bainite alloy steel article and method of making same
JPS6135556Y2 (en)
US6166360A (en) Heat treating of metallurgic article with varying aspect ratios
WO2023232159A1 (en) Method for heat treatment of austenitic stainless steel bar by means of induction heating
JP5534492B2 (en) Carbon tool steel strip manufacturing method
US2224998A (en) Heat conditioned steel and method of conditioning
US2170130A (en) Method of and apparatus for hardening a metal article
JPS63274713A (en) Heat treatment method for bar-like parts
CN111876677B (en) Forming process of hexagonal alloy tool steel S2
JP2017214621A (en) Manufacturing method of hyper-eutectoid steel wire
JPH04183822A (en) Method for heating metal wire
US3188248A (en) Method of effecting an austenite to martensite transformation in a sustained intensity magnetic field
JPH05112809A (en) Production of ultrahigh strength steel
JP3393677B2 (en) Direct heat treatment method for wire rod
JP2001220624A (en) Heat treatment method for wire and equipment for implementing the method
JPS61127812A (en) Heat treatment of steel
US3167460A (en) Method of surface-hardening steel workpieces in the form of bodies of revolution