JPS61127812A - Heat treatment of steel - Google Patents

Heat treatment of steel

Info

Publication number
JPS61127812A
JPS61127812A JP24791984A JP24791984A JPS61127812A JP S61127812 A JPS61127812 A JP S61127812A JP 24791984 A JP24791984 A JP 24791984A JP 24791984 A JP24791984 A JP 24791984A JP S61127812 A JPS61127812 A JP S61127812A
Authority
JP
Japan
Prior art keywords
steel
hardening
treatment
quenching
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24791984A
Other languages
Japanese (ja)
Inventor
Takeshi Naito
武志 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP24791984A priority Critical patent/JPS61127812A/en
Publication of JPS61127812A publication Critical patent/JPS61127812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a sufficient depth of hardening and high fatigue strength by specifying the composition of a steel and applying austempering as pretreatment and high frequency treatment as surface hardening treatment. CONSTITUTION:The composition of a steel is composed of, by weight, 0.45-0.65% C, 0.9-1.2% Mn, 0.7-1.2% Ni, 0.5-1.2% Cr, 0.19-0.12% Mo, Si, P, S and Cu by amounts as ordinary impurities and the balance Fe. The steel is heated and held at a conventional hardening temp. such as 800-850 deg.C, and it is isothermally hardened by quenching from the hardening temp. in an isothermal bath at 200-400 deg.C, holding for a fixed time and air cooling. The steel is then subjected to induction hardening.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鋼の表面を硬化させる熱処理方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat treatment method for hardening the surface of steel.

従来の技術 従来の鋼の表面を硬化させる方法には、(イ)浸炭法、
(ロ)窒化法、(ハ)高周波焼入法などがある。
Conventional technology Conventional methods for hardening the surface of steel include (a) carburizing method;
(b) Nitriding method, (c) induction hardening method, etc.

これらの各方法において、硬化深さは、(イ)の浸炭法
の場合0.5〜3襲程度、(ロ)の窒化法の場合0・1
〜0・5調、ヒ→の高周波焼入法の場合1〜5−であっ
た。
In each of these methods, the hardening depth is approximately 0.5 to 3 strokes in the case of (a) carburizing method, and 0.1 in the case of (b) nitriding method.
In the case of the induction hardening method of ~0.5 tone, H→, it was 1~5-.

発明が解決しようとする問題点 近年、機械の大型化や高速化の要望が強くなり、従来の
方法で得られる硬化深さよりもさらに深く、また疲労強
度の高いものが望まれてい   ゛る。
Problems to be Solved by the Invention In recent years, there has been a strong demand for machines to be larger and faster, and there is a desire for machines that have a deeper hardening depth and higher fatigue strength than those obtained by conventional methods.

しかしながら、硬化深さをより深くすると、前記(イ)
の浸炭法や(ロ)の窒化法の場合には、処理時間がさら
に長くなり、多量のエネルギーを消費するため、コスト
アップとなる欠点があった。
However, if the hardening depth is made deeper,
In the case of the carburizing method (2) and the nitriding method (2), the processing time is longer and a large amount of energy is consumed, resulting in increased costs.

一方、eつの高周波焼入れの場合には、硬化深さは周波
数によるところが大であり、技術的に現状以上に深く硬
化させることは非常に困難である。
On the other hand, in the case of induction hardening, the hardening depth largely depends on the frequency, and it is technically very difficult to harden the material deeper than the current state.

従って、本発明の目的は、前記のような従来法の欠点を
改善し、極めて短時間の処理により、充分な硬化深さお
よび高い疲労強度が得られる鋼の熱処理方法を提供する
ことにある。
Accordingly, an object of the present invention is to provide a method for heat treating steel, which improves the drawbacks of the conventional methods as described above and provides a sufficient hardening depth and high fatigue strength in an extremely short treatment time.

問題点を解決するための手段 本発明は、必要とする硬さを得るのに適当な鋼を用い、
オーステンパー処理と高周波焼入れとを組み合わせるこ
とKよって前記目的を達成しようとするものである。
Means for Solving the Problems The present invention uses a suitable steel to obtain the required hardness,
The above objective is achieved by combining austempering treatment and induction hardening.

すなわち1本発明に係る鋼の熱処理方法は。Namely, the method for heat treatment of steel according to the present invention is as follows.

C0.45〜0.65 %、 Mn0.90〜1.20
 %、 Ni0.70〜1.2 %、(:’rQ、5Q
 〜1.2%、MO0.Il〜0.211通常の不純物
として混入する範囲のSi、p、S又はCu、残部F−
よりなる鋼を1通常の焼入温度から250〜350℃に
恒温焼入れし。
C0.45~0.65%, Mn0.90~1.20
%, Ni0.70~1.2%, (:'rQ, 5Q
~1.2%, MO0. Il ~ 0.211 Si, p, S or Cu in the range mixed as normal impurities, balance F-
1. Constant temperature quenching is carried out from the normal quenching temperature to 250 to 350°C.

空冷した後1表面を誘導加熱することによって硬化させ
ることを特徴とするものである。
It is characterized in that it is air-cooled and then hardened by induction heating on one surface.

発明の作用及び態様 前記したように1本発明は必要とする硬さを得るのに適
当な鋼の選定、前処理としてオーステンパー処理の採用
、及び表面硬化処理として高周波焼入れの採用を特長と
し、これらの組合せにより、内部硬さが高く硬化深さも
1.o+o+以上かなシの深さまで表面硬化され、しか
も疲労強度の高い鋼が短時間の処理によって得られるも
のである。本発明の特長を従来法と比較してまとめると
1表−IK示すとおシである。
Functions and Modes of the Invention As mentioned above, the present invention is characterized by the selection of an appropriate steel to obtain the required hardness, the adoption of austempering treatment as a pretreatment, and the adoption of induction hardening as a surface hardening treatment, With these combinations, the internal hardness is high and the hardening depth is 1. Steel that is surface hardened to a depth of o+o+ or more and has high fatigue strength can be obtained in a short time. A summary of the features of the present invention in comparison with conventional methods is shown in Table 1-IK.

表−1 次に、処理プロセスについて説明する。Table-1 Next, the processing process will be explained.

普通の表面硬化用鋼は、その表面硬化処理する前に調質
処理あるいは焼ならし処理を実施してから当該表面硬化
処理に移る。即ち、通常の調質または焼ならしは、焼入
温度または焼入温度以上に加熱後、水あるいは油に焼入
れするか。
Ordinary steel for surface hardening is subjected to heat treatment or normalizing treatment before surface hardening treatment, and then to the surface hardening treatment. That is, in normal refining or normalizing, is the material heated to the quenching temperature or above the quenching temperature and then quenched in water or oil?

その温度から空冷する0焼入れしたものについてはさら
に焼もどしを実施する。
For those that have been air-cooled from that temperature, they are further tempered.

これに対して1本発明の方法では1通常の焼゛ 大温度
例えば800〜850℃に加熱保持した後。
On the other hand, in the method of the present invention, after heating and holding at a normal sintering temperature, for example, 800 to 850°C.

続いて恒温焼入れを行なう。すなわち、焼入温度から2
00〜400℃の恒温浴例えばソルトノクス中に急冷し
、一定時間保持後それから取出し。
Subsequently, constant temperature quenching is performed. In other words, 2 from the quenching temperature
It is rapidly cooled in a constant temperature bath of 00 to 400°C, for example, in a salt bath, and after being kept for a certain period of time, it is taken out.

空冷するものである。その後、高周波焼入れを施す。こ
の本発明方法の前処理の熱サイクルの例を第1図に示す
。なお、恒温保持温度は、後述する理由から250〜3
50℃の範囲が好ましいQ実施例 以下、実施例及び各種試験例を示しながら、本発明の効
果について具体的に説明する。
It is air cooled. After that, induction hardening is applied. An example of a thermal cycle for pretreatment in the method of the present invention is shown in FIG. Note that the constant temperature is maintained at 250 to 3
Q Examples where the temperature is preferably in the range of 50° C. The effects of the present invention will be specifically explained below with reference to Examples and various test examples.

試験に供した鋼の化学組成を表−2に示す。The chemical composition of the steel used in the test is shown in Table 2.

以下余白 上記表−2に示す試料を用いて、第1図に示すサイクル
で処理した鋼の内部硬さの関係を第2図に示す。なお、
各恒温保持時間を30分から60分の範囲で変化させた
が、それKよる内部硬さの変化は第2図に示す結果とほ
ぼ同じであった。
Figure 2 shows the relationship between the internal hardness of steel treated in the cycle shown in Figure 1 using the samples shown in Table 2 above. In addition,
Although the constant temperature holding time was varied within the range of 30 minutes to 60 minutes, the change in internal hardness depending on the constant temperature K was almost the same as the results shown in FIG. 2.

表面硬化深さは、浸炭の場合HxC50〜55の値を示
す表面からの距離で表示される。従って、第2図から、
内部の硬さが表面硬化深さの定義を満足する条件は、炭
素t0.45%以上0.70チの鋼で恒温保持温度は2
50℃から350℃の範囲の場合となる。
In the case of carburizing, the surface hardening depth is expressed as a distance from the surface showing a value of HxC50-55. Therefore, from Figure 2,
The conditions for internal hardness to satisfy the definition of surface hardening depth are steel with a carbon content of 0.45% or more and 0.70 t, and a constant temperature of 2.
This is the case in the range of 50°C to 350°C.

但し、炭素量0.7oチの試料/I67の鋼では、後述
するように高周波焼入れの際に焼割れを生じ易く、また
引張残留応力を生じるので適当でない。従って、炭素量
の上限は0゜65%とする。
However, sample/I67 steel with a carbon content of 0.7 oz is not suitable because it tends to cause quench cracking during induction hardening and generates tensile residual stress, as will be described later. Therefore, the upper limit of the carbon content is set at 0°65%.

炭素以外の合金元素は、恒温保持する上での作業性を考
慮して決定した。すなわち、850℃から250℃に急
冷した際、被処理材が急冷中に変化(拡散変態)を生じ
ないようにするためにはS曲線を右側に移動させる必要
がある。−回の処理量100kP、−個の被処理材の肉
浮8Owaaを対象とした場合、Ihf、〜9インチが
必要であり、この値を満足する組成を実験により決定し
た。その結果、Mnは0.90〜1.20%、 Niは
0.70〜1.2%、 Crは0.50〜1.2%、 
Noは0.19〜0゜21%、Si、p、S、CtLは
通常の不純物として混入する範囲とする。
Alloying elements other than carbon were determined in consideration of workability in maintaining constant temperature. That is, when rapidly cooling from 850° C. to 250° C., it is necessary to move the S curve to the right in order to prevent the material to be processed from undergoing change (diffusion transformation) during the rapid cooling. When the processing amount is 100 kP per cycle and the weight floatation of - pieces of processed material is 8 Owaa, an Ihf of ~9 inches is required, and a composition that satisfies this value was determined through experiments. As a result, Mn was 0.90 to 1.20%, Ni was 0.70 to 1.2%, Cr was 0.50 to 1.2%,
No. 0.19 to 0.21%, and Si, p, S, and CtL to be mixed as normal impurities.

第1図に示すプロセスに続いて高周波焼入れを施した。Following the process shown in FIG. 1, induction hardening was performed.

試料は第2図の結果よシ選ばれた試料/162〜7を用
いた。また、各試料の直径は60畷、長さは300 m
mであった。
The samples used were Samples/162-7, which were selected based on the results shown in FIG. The diameter of each sample is 60 m, and the length is 300 m.
It was m.

用いた周波数はl OKHz、  100 KHz(0
2aI類で。
The frequencies used were l OKHz, 100 KHz (0
In class 2aI.

焼入加熱深さは1.oo+mを狙いとした。焼入後の硬
さ分布(表面から内部)は第3図に示すとおりであった
The quenching heating depth is 1. I aimed for oo+m. The hardness distribution (from the surface to the inside) after quenching was as shown in FIG.

周波数を変えても、硬化深さの分布は第3図の斜線の範
囲内であり1周波数の影響は実用上問題とならないこと
がわかった。
It was found that even if the frequency was changed, the distribution of the hardening depth remained within the shaded range in FIG. 3, and that the influence of one frequency did not pose a practical problem.

また、試料/i67の鋼は、10本処理した中で3本焼
割れを生じた。
In addition, for the steel sample /i67, quench cracking occurred in three of the ten steels treated.

3点曲げ疲労試験: 上記のように処理して得られた試料/162〜7の鋼を
用いて、3点曲げによる疲労試験を実施した。結果は第
4図に示す。なお、通常の浸炭焼入材及び通常の高周波
焼入材についての結果も併せて示す。
3-point bending fatigue test: A fatigue test by 3-point bending was conducted using the steel samples/162-7 obtained by processing as described above. The results are shown in Figure 4. Note that the results for ordinary carburized and quenched materials and ordinary induction quenched materials are also shown.

第4図から明らかなように1本発明の処理材(試料/1
62〜6)は高い疲労強度を示した。
As is clear from Fig. 4, the treated material of the present invention (sample/1
62-6) showed high fatigue strength.

これに対して、試料/167の鋼は異常に低い値を示し
だ。疲労強度に寄与する残留応力を測定したところ、試
料/162〜6については圧縮の残留応力が70〜1o
ok)/−あった。しかし、試料/167は引張残留応
力10kp/−を示した。すなわち、試料/167は炭
素量が高く、内部硬さも高いため、引張残留応力を生じ
た。従って、試料167のように炭素量が高い鋼は1本
発明の方法には不通であることがわかった。
On the other hand, steel sample /167 showed an abnormally low value. When we measured the residual stress that contributes to fatigue strength, we found that for samples /162-6, the compressive residual stress was 70-1o.
ok)/-There was. However, sample /167 exhibited a tensile residual stress of 10 kp/-. That is, sample /167 had a high carbon content and high internal hardness, so it generated tensile residual stress. Therefore, it was found that steel with a high carbon content, such as sample 167, cannot be used in the method of the present invention.

0−ラビンテ/グ試験: 本発明の方法に従って処理された上記試料層2〜6の鋼
について1表面疲労強度(耐ピツチング性)を調査した
。結果を第5図に示す。なお、試験面圧は200kIP
/−であった。
0-Rabinte/G Test: The surface fatigue strength (pitting resistance) of the steels of sample layers 2 to 6 treated according to the method of the present invention was investigated. The results are shown in Figure 5. In addition, the test surface pressure is 200kIP
It was /-.

いずれも、従来の最も強い浸炭を施したものよシも優れ
ていることがわかった。
All of them were found to be superior to the conventional carburized version.

発明の効果 以上のように1本発明に係る鋼の熱処理方法は、必要と
する硬さを得るに適当な特定の鋼を選定し、前処理とし
てオーステンパー処理1表面硬化処理として高周波焼入
れを採用するものであるため、従来の方法のように前処
理としての調質や焼ならしが必要でなく、また焼もどし
処理も必要なく、また上記各処理の組合せにより、内部
硬さが高く、硬化深さも1.0m以上かなりの深さまで
表面硬化でき、しかも従来の浸炭材や高周波焼入材よシ
も疲労強度の高い鋼が。
Effects of the Invention As described above, 1. The method for heat treatment of steel according to the present invention involves selecting a specific steel suitable for obtaining the required hardness, and employing austempering treatment as a pretreatment and induction hardening as a surface hardening treatment. Therefore, there is no need for thermal refining or normalizing as a pre-treatment as in conventional methods, and there is no need for tempering treatment.The combination of the above treatments results in high internal hardness and hardening. This steel can be surface hardened to a considerable depth of 1.0 m or more, and has higher fatigue strength than conventional carburized materials or induction hardened materials.

極めて短時間の処理によって得られるという特有の効果
を有する。
It has the unique effect of being obtained through extremely short processing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の恒温焼入れ処理の熱サイクル図
、第2図は第1図のサイクルで処理した鋼の内部硬さく
ロンフラニル硬さ)と恒温保持温度との関係を示すグラ
フ、第3図は恒温焼入れ後高周波焼入れした試料42〜
7の鋼の硬さ分布を示すグラフ、第4図は3点曲げ疲労
試験の結果を示すグラフ、第5図はローラピッチング試
験の結果を示すグラフである。
Figure 1 is a thermal cycle diagram of the constant temperature quenching treatment of the method of the present invention, Figure 2 is a graph showing the relationship between the internal hardness (ronfuranil hardness) and constant temperature holding temperature of the steel treated with the cycle of Figure 1; Figure 3 shows sample 42~ which was induction hardened after constant temperature hardening.
FIG. 4 is a graph showing the results of a three-point bending fatigue test, and FIG. 5 is a graph showing the results of a roller pitting test.

Claims (1)

【特許請求の範囲】[Claims] C0.45〜0.65%、Mn0.90〜1.20%、
Ni0.70〜1.2%、Cr0.50〜1.2%、M
o0.19〜0.21%、通常の不純物として混入する
範囲のSi、P、S又はCu、残部Feよりなる鋼を、
通常の焼入温度から250〜350℃に恒温焼入れし、
空冷した後、表面を誘導加熱することによつて硬化させ
ることを特徴とする鋼の熱処理方法。
C0.45-0.65%, Mn0.90-1.20%,
Ni0.70-1.2%, Cr0.50-1.2%, M
o 0.19 to 0.21%, Si, P, S or Cu within the range of normal impurities, and the balance Fe.
Isothermal quenching from normal quenching temperature to 250-350℃,
A method for heat treating steel, which comprises air cooling and then hardening the surface by induction heating.
JP24791984A 1984-11-26 1984-11-26 Heat treatment of steel Pending JPS61127812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24791984A JPS61127812A (en) 1984-11-26 1984-11-26 Heat treatment of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24791984A JPS61127812A (en) 1984-11-26 1984-11-26 Heat treatment of steel

Publications (1)

Publication Number Publication Date
JPS61127812A true JPS61127812A (en) 1986-06-16

Family

ID=17170504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24791984A Pending JPS61127812A (en) 1984-11-26 1984-11-26 Heat treatment of steel

Country Status (1)

Country Link
JP (1) JPS61127812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361348A (en) * 1989-07-27 1991-03-18 Komatsu Ltd Steel for hardened gear
JP2015214756A (en) * 2015-07-02 2015-12-03 Ntn株式会社 Method of manufacturing bering ring, bearing ring, cylindrical roller bearing and tapered roller bearing
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361348A (en) * 1989-07-27 1991-03-18 Komatsu Ltd Steel for hardened gear
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2015214756A (en) * 2015-07-02 2015-12-03 Ntn株式会社 Method of manufacturing bering ring, bearing ring, cylindrical roller bearing and tapered roller bearing

Similar Documents

Publication Publication Date Title
US4343661A (en) Method of making a low temperature bainite steel alloy gear
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
CA1133287A (en) Lower bainite alloy steel article and method of making same
JPS61127812A (en) Heat treatment of steel
JPS58141331A (en) Heat treatment of forging
US3826694A (en) Thermal treatment of steel
JPS613878A (en) Carburizing method and carburization hardening method of surface layer of member
JPH0570924A (en) Method for carburizing heat treatment of high strength gear small in strain and the gear
JP2008045200A (en) Method for cooling steel member
JP6466152B2 (en) Heat treatment method for boron-containing steel
JPS61147815A (en) Production of roll having high hardened depth
JPH03162515A (en) Heat treatment method
Zhang et al. Effect of Austenitizing Temperature on the Quenching Microstructure and Properties of 51CrV4
CN114686655B (en) Rapid spheroidizing annealing method for GCr15 steel
JPH0236646B2 (en) SHINTANYAKIIREBUHINNOBUBUNYAKIMODOSHIHOHO
JPS63100130A (en) Manufacture of high strength cast iron crankshaft
SU812835A1 (en) Method of treatment of parts
JP2003055711A (en) Surface treatment method for steel member, and hardened component thereof
JPS63210236A (en) Manufacture of high-collapse oil well pipe having sour resistance
JPS6227515A (en) Method for strengthening surface
Singh et al. Enhancing Steel Properties through Microstructure Design Using Cyclic Heat Treatment: A Comprehensive Review
CN101240368A (en) Method for manufacturing forging member with 16.9+0.16 stage tensile characteristic
JPH0339459A (en) Surface hardened parts and their production
JPS6237690B2 (en)
SU926038A1 (en) Method for heat treating of austenite-martensite steels