JPS6135491B2 - - Google Patents
Info
- Publication number
- JPS6135491B2 JPS6135491B2 JP7548680A JP7548680A JPS6135491B2 JP S6135491 B2 JPS6135491 B2 JP S6135491B2 JP 7548680 A JP7548680 A JP 7548680A JP 7548680 A JP7548680 A JP 7548680A JP S6135491 B2 JPS6135491 B2 JP S6135491B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- interdigital
- film
- pvf
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000642 polymer Polymers 0.000 claims description 6
- 244000126211 Hericium coralloides Species 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
【発明の詳細な説明】
本発明は一般に赤外線センサに関し、特に例え
ばPVF2(ポリふつ化ビニリデン)からなるごと
き高分子圧電フイルムを基板とする超音波変換素
子を用いた赤外線センサに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to an infrared sensor, and more particularly to an infrared sensor using an ultrasonic transducer whose substrate is a polymeric piezoelectric film such as PVF 2 (polyvinylidene fluoride).
PVF2は著るしい圧電性と焦電性とを有するの
で、このような特質を活かすためのオーデイオ分
野においては、例えば小形のマイクロホンに利用
されるエレクトレツトなどを作るのに用いられ、
更には他方面における実用化の検討が行なわれて
いるものであり、その一応用として本出願人は先
にPVF2を基板として用いる超音波変換素子を提
案した(特願昭54−081485)。 PVF 2 has significant piezoelectricity and pyroelectricity, so it is used in the audio field to take advantage of these properties, for example to make electrets used in small microphones.
Furthermore, practical applications are being studied on the other side, and as one application of this, the present applicant has previously proposed an ultrasonic transducer using PVF 2 as a substrate (Japanese Patent Application No. 54-081485).
本発明は特願昭54−081485を更に発展させたも
ので、その目的は検出感度の良好な赤外線センサ
を提供することにある。この目的を達成するため
の本発明の特徴は、高分子圧電フイルムの一面に
互いに離間してもうけられる第1および第2のす
だれ状電極と当該フイルムの他面で該第1および
第2のすだれ状電極と当該フイルムの他面で該第
1および第2のすだれ状電極に対向して夫々もう
けられる第1および第2の平板状電極とを有する
超音波変換素子と、前記第1のすだれ状電極を構
成する1対のくしの歯状電極の一方と第1の平板
状電極間に交流電気信号を印加する手段と、前記
第2のすだれ状電極を構成する1対のくしの歯状
電極の各々と第2の平板状電極間で得られる各出
力が印加される差動増幅器とを有するごとき赤外
線センサにある。以下図面により実施例を説明す
る。 The present invention is a further development of Japanese Patent Application No. 54-081485, and its purpose is to provide an infrared sensor with good detection sensitivity. A feature of the present invention for achieving this object is that first and second interdigital electrodes are provided spaced apart from each other on one surface of a polymer piezoelectric film, and the first and second interdigital electrodes are provided on the other surface of the film. an ultrasonic transducer element having a shaped electrode and first and second flat plate electrodes provided on the other surface of the film to face the first and second interdigital electrodes, and the first interdigital electrode; means for applying an alternating current electrical signal between one of a pair of comb-tooth electrodes constituting an electrode and a first flat electrode; and a pair of comb-tooth electrodes constituting the second interdigital electrode. and a differential amplifier to which each output obtained between the second flat electrode is applied. Examples will be described below with reference to the drawings.
第1図は本発明による赤外線センサの一実施例
で、図中の1はPVF2フイルム、2はくしの歯状
の電極を交互にインターデイジタルに配置するこ
とにより構成される第1のすだれ状電極で、
PVF2フイルム1の一面に設けられる。3は第1
のすだれ状電極2と同様にインターデイジタルに
構成される第2のすだれ状電極で、PVF2フイル
ム1の一面で第1のすだれ状電極2に離間して設
〓〓〓〓
けられる。4は第1のすだれ状電極2に対向して
PVF2フイルム1の他面に設けられる第1の平板
状電極、5は第2のすだれ状電極3に対向して同
様にPVF2フイルム1の他面に設けられる第2の
平板状電極A及びBは第1のすだれ状電極2を構
成する2個のくしの歯状の電極から夫々引き出さ
れる端子、Oは第1の平板状電極から引き出され
る端子、A′及びB′は第2のすだれ状電極3を構
成する2個のくしの歯状の電極から夫々引き出さ
れる端子、O′は第2の平板状電極から引き出さ
れる端子、6は端子A―Oに接続される周波数
の信号源、7は端子A′―O′,B′―O′に接続され
る差動増幅器である。 FIG. 1 shows an embodiment of the infrared sensor according to the present invention, in which 1 is a PVF 2 film, and 2 is a first interdigital electrode formed by interdigitally arranging comb-like electrodes. in,
It is provided on one side of the PVF 2 film 1. 3 is the first
A second interdigital interdigital structure similar to the interdigital interdigital electrode 2 is provided at a distance from the first interdigital electrode 2 on one side of the PVF 2 film 1.
I get kicked. 4 faces the first interdigital electrode 2
A first flat electrode 5 is provided on the other surface of the PVF 2 film 1, and a second flat electrode A and 5 are similarly provided on the other surface of the PVF 2 film 1, facing the second interdigital electrode 3. B is a terminal drawn out from the two comb-shaped electrodes constituting the first interdigital electrode 2, O is a terminal drawn out from the first flat electrode, and A' and B' are the second interdigital electrodes. Terminals drawn out from the two comb-shaped electrodes constituting the shaped electrode 3, O' a terminal drawn out from the second flat electrode, 6 a frequency signal source connected to the terminals A-O, 7 is a differential amplifier connected to terminals A'-O' and B'-O'.
以上のごとき構成で、周波数の交流電気信号
を端子A―Oに印加すれば音波が励起され、該音
波はPVF2フイルム1上に伝搬した後、第2のす
だれ状電極3に到達する。到達した音波は電気信
号に変換され、端子A′―O′と端子B′―O′とで互
いに180゜位相の異なる信号として差動増幅器7
に印加され、増幅された後出力端子OUTに出力
信号が与えられる。この場合、出力端子OUTで
得られる電気信号は、フイルム1に照射される赤
外線により著るしい影響を受け、従つてその値が
変化することになる。 With the above configuration, when an alternating current electric signal of the frequency is applied to the terminals AO, a sound wave is excited, and after propagating on the PVF 2 film 1, the sound wave reaches the second interdigital electrode 3. The arriving sound waves are converted into electrical signals, which are sent to the differential amplifier 7 as signals with a phase difference of 180° between terminals A′-O′ and terminals B′-O′.
After being amplified, an output signal is given to the output terminal OUT. In this case, the electrical signal obtained at the output terminal OUT will be significantly affected by the infrared rays irradiated onto the film 1, and its value will therefore change.
第2図は上述した概念を明らかにするための本
発明による赤外線センサの実験構成例で、図中の
20は長さ50mm、幅20mm、厚さ9μmのPVF2フ
イルムに電極周期が2mmのすだれ状電極をもうけ
て構成した超音波変換素子で、赤外線照射時の特
性を測定するという観点から、入力端子に掃引発
振器21を接続し、出力信号はスペクトラムアナ
ライザ22を介してX―Yレコーダ23にて測定
結果を記録するごとく構成した。赤外線の照射
は、タツプ付トランス24を介しカーボンのごと
き黒体25に電流を流すことにより行ない、セン
サと黒体との間の距離を変えることによりセンサ
に対する照射強度を変えるごとく構成したもの
で、回路を流れる電流を調節することによつて
968〓、798〓、および908〓の3種類の黒体温度
で実験を行なつた。なお、26は熱電対である。 Figure 2 shows an example of the experimental configuration of an infrared sensor according to the present invention to clarify the above-mentioned concept, and 20 in the figure is a PVF 2 film with a length of 50 mm, a width of 20 mm, and a thickness of 9 μm, and an electrode period of 2 mm. The ultrasonic transducer is configured with shaped electrodes, and from the viewpoint of measuring the characteristics during infrared irradiation, a sweep oscillator 21 is connected to the input terminal, and the output signal is sent to an XY recorder 23 via a spectrum analyzer 22. The system was configured to record measurement results. Irradiation of infrared rays is carried out by passing a current through a black body 25 such as carbon through a transformer 24 with a tap, and the intensity of irradiation to the sensor is changed by changing the distance between the sensor and the black body. by regulating the current flowing through the circuit
The experiment was conducted at three different blackbody temperatures: 968〓, 798〓, and 908〓. Note that 26 is a thermocouple.
ここで、黒体温度と輻射が最大となる赤外線の
波長λmとの間にはウイーン(Wien)の変位法
測が存在するが、上述の温度に対して波長λmは
夫々4.2μm(698〓の場合)、3.6μm(798〓の
場合)、3.2μm(908〓の場合)である。 Here, there is a Wien displacement method between the blackbody temperature and the wavelength λm of infrared light at which the radiation is maximum, but the wavelength λm is 4.2 μm (698〓) for the above temperature. ), 3.6 μm (for 798〓), and 3.2 μm (for 908〓).
第3図、第4図および第5図は以上の仕様にお
けるセンサの出力振幅の周波数特性の測定結果を
示すもので、第3図は黒体温度が698〓、第4図
は黒体温度が798〓、第5図は黒体温度908〓の場
合を示す。 Figures 3, 4, and 5 show the measurement results of the frequency characteristics of the output amplitude of the sensor under the above specifications. 798〓, Figure 5 shows the case where the black body temperature is 908〓.
第6図は第3図、第4図および第5図に基づい
て求めた750KHzにおけるセンサの出力振幅と照
射パウー密度との関係で、赤外線を照射しない場
合のセンサの出力値を基準として示したものであ
る。図から明らかなように、大きい波長の場合に
出力振幅が大となることがわかる。例えば照射密
度が30(mW/cm2)の場合、698〓では約7.3dB、
798〓では約5.3dB、908〓では4.5dBである。 Figure 6 shows the relationship between the sensor output amplitude and irradiation power density at 750KHz, determined based on Figures 3, 4, and 5, with the sensor output value when no infrared rays are irradiated as a reference. It is something. As is clear from the figure, the output amplitude becomes large when the wavelength is large. For example, when the irradiation density is 30 (mW/cm 2 ), 698〓 is approximately 7.3 dB,
It is approximately 5.3dB for 798〓 and 4.5dB for 908〓.
以上はPVF2フイルムが半透明ですだれ状電極
がA蒸着によつてフイルム面上に形成されるも
のについて説明したが、フイルムにブラツクニン
グ処理を施こせば、例えば油性インクによりフイ
ルムを黒色にすることにより熱吸収性をより向上
させることが可能である。 The above description is based on a case where the PVF 2 film is translucent and a droop-like electrode is formed on the film surface by A vapor deposition.However, if the film is subjected to a blackening process, for example, it can be made black using oil-based ink. This makes it possible to further improve heat absorption.
第7図、第8図および第9図はブラツクニング
処理により黒色にしたフイルムを用いて第3図、
第4図および第5図と同様の実験を行なつた測定
結果で、従つて第7図は黒体温度が698〓、第8
図は黒体温度が798〓、第9図は黒体温度が908〓
の場合を示す。 Figures 7, 8, and 9 are made using films made black by blackening treatment.
Figures 4 and 5 show the measurement results of the same experiment, so Figure 7 shows the black body temperature of 698〓,
In the figure, the blackbody temperature is 798〓, and in Figure 9, the blackbody temperature is 908〓.
The case is shown below.
第10図は第8図および第9図に基づいて周波
数750KHzにおいてのセンサの出力振幅と照射パ
ワー密度との関係を示すものである。図から明ら
かなように、ブラツクニング処理によつてセンサ
の出力感度が向上することがわかる。 FIG. 10 shows the relationship between the output amplitude of the sensor and the irradiation power density at a frequency of 750 KHz based on FIGS. 8 and 9. As is clear from the figure, it can be seen that the output sensitivity of the sensor is improved by the blackening process.
以上説明した黒体からの熱輻射下での実験結果
では、黒体からの輻射エネルギーが最大となる波
長が赤外域であり、その波長が大きい方が出力感
度も大となり、本発明による装置が赤外線センサ
として有効に機能することがわかる。 According to the experimental results under heat radiation from the black body described above, the wavelength at which the radiant energy from the black body is maximum is in the infrared region, and the larger the wavelength, the higher the output sensitivity, and the device according to the present invention It can be seen that it functions effectively as an infrared sensor.
なお、可視レーザ光(5145Å)を照射した場合
の出力振幅の変化の測定では、100mW照射した
場合、照射しない場合のセンサ出力に対して約50
%程度の出力の増加が認められたにすぎず、赤外
領域での感度上昇に比較し極めて小さいことがわ
かつた。 In addition, when measuring the change in output amplitude when irradiated with visible laser light (5145 Å), when irradiated with 100 mW, there was a difference of about 50% compared to the sensor output without irradiation.
It was found that the increase in output was only about %, which was extremely small compared to the increase in sensitivity in the infrared region.
以上述べた実施例においては基板としてPVF2
フイルムを用いたが、本発明はこれに限定される
〓〓〓〓
ものではなく、例えばフツソ系の高分子とPZTと
の複合物よりなる高分子圧電フイルムを用いても
本発明を有効に構成することが可能である。 In the embodiment described above, PVF 2 is used as the substrate.
Although a film was used, the present invention is limited to this.
For example, the present invention can be effectively constructed using a polymer piezoelectric film made of a composite of a fluorine-based polymer and PZT.
以上説明したように本発明によれば、PVF2の
特性を利用することにより、検出感度の良好な赤
外線センサを提供することができる。 As explained above, according to the present invention, by utilizing the characteristics of PVF 2 , an infrared sensor with good detection sensitivity can be provided.
第1図は本発明による赤外線センサの一実施
例、第2図は実験構成例、第3図、第4図および
第5図は実験結果、第6図は第3図、第4図およ
び第5図に基づいて求めた出力振幅と照射パワー
密度との関係を示す図、第7図、第8図および第
9図は別の実験結果、第10図は第8図および第
9図に基づいて求めた出力振幅と照射パワー密度
との関係を示す図である。
1:高分子圧電フイルム、2,3:すだれ状電
極、4,5:平板状電極、6:信号源、7:差動
増幅器。
〓〓〓〓
Fig. 1 shows an example of an infrared sensor according to the present invention, Fig. 2 shows an example of an experimental configuration, Figs. 3, 4 and 5 show experimental results, and Fig. 6 shows Figs. 3, 4 and 5. A diagram showing the relationship between the output amplitude and irradiation power density determined based on Figure 5, Figures 7, 8, and 9 are the results of another experiment, and Figure 10 is based on Figures 8 and 9. FIG. 3 is a diagram showing the relationship between the output amplitude and the irradiation power density determined by the method. 1: polymer piezoelectric film, 2, 3: interdigital electrodes, 4, 5: flat plate electrodes, 6: signal source, 7: differential amplifier. 〓〓〓〓
Claims (1)
もうけられる第1および第2のすだれ状電極と当
該フイルムの他面で該第1および第2のすだれ状
電極に対向して夫々もうけられる第1および第2
の平板状電極とを有する超音波変換素子と、前記
第1のすだれ状電極を構成する1対のくしの歯状
電極の一方と第1の平板状電極に交流電気信号を
印加する手段と、前記第2のすだれ状電極を構成
する1対のくしの歯状電極の各々と第2の平板状
電極間で得られる各出力が印加される差動増幅器
とを有することを特徴とする赤外線センサ。 2 前記高分子圧電フイルム面がほぼ黒色である
ごとき特許請求の範囲第1項の赤外線センサ。[Claims] 1. First and second interdigital electrodes provided spaced apart from each other on one surface of a polymer piezoelectric film, and opposing to the first and second interdigital electrodes on the other surface of the film. 1st and 2nd produced respectively
an ultrasonic transducer having a flat plate electrode, and means for applying an alternating current electric signal to one of a pair of comb-tooth electrodes constituting the first interdigital electrode and the first flat electrode; An infrared sensor comprising a differential amplifier to which outputs obtained between each of the pair of comb-tooth electrodes constituting the second interdigital electrode and the second flat electrode are applied. . 2. The infrared sensor according to claim 1, wherein the surface of the polymer piezoelectric film is substantially black.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7548680A JPS571932A (en) | 1980-06-06 | 1980-06-06 | Infrared sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7548680A JPS571932A (en) | 1980-06-06 | 1980-06-06 | Infrared sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS571932A JPS571932A (en) | 1982-01-07 |
JPS6135491B2 true JPS6135491B2 (en) | 1986-08-13 |
Family
ID=13577663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7548680A Granted JPS571932A (en) | 1980-06-06 | 1980-06-06 | Infrared sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS571932A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116692U (en) * | 1988-02-03 | 1989-08-07 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5694927A (en) * | 1995-11-08 | 1997-12-09 | Bohmfalk; George L. | Disposable mask and suction catheter |
JP4203143B2 (en) * | 1998-02-13 | 2008-12-24 | 新日本製鐵株式会社 | Corrosion-resistant steel and anti-corrosion well pipe with excellent carbon dioxide corrosion resistance |
-
1980
- 1980-06-06 JP JP7548680A patent/JPS571932A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116692U (en) * | 1988-02-03 | 1989-08-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS571932A (en) | 1982-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4376302A (en) | Piezoelectric polymer hydrophone | |
US4258260A (en) | Pyroelectric infrared detector | |
US4126834A (en) | Bulk wave bragg cell | |
Lang | Laser intensity modulation method (LIMM): review of the fundamentals and a new method for data analysis | |
US4037174A (en) | Combined acoustic surface wave and semiconductor device particularly suited for signal convolution | |
CA1177126A (en) | Piezoelectric elastic-wave convolver device | |
US4634913A (en) | Application of lithium tetraborate to electronic devices | |
Hsiao et al. | Temperature field analysis for ZnO thin-film pyroelectric devices with partially covered electrode | |
JPS6135491B2 (en) | ||
CN113566979A (en) | Piezoelectric resonant infrared sensor, array thereof and manufacturing method thereof | |
EP0414831B1 (en) | A dielectric bolometer | |
US4065734A (en) | Elastic surface wave devices | |
US4233530A (en) | Elastic surface wave device | |
JPS6226240B2 (en) | ||
US4195244A (en) | CdS Solid state phase insensitive ultrasonic transducer | |
US3771856A (en) | Acousto-optical light diffraction device | |
KR101661113B1 (en) | Multiple light sensor and method of manufacturing the same | |
Urabe et al. | Voltage controlled monolithic SAW phase shifter using MZOS structure | |
RU2262157C1 (en) | Piezoelectric transducer | |
JPS6150291B2 (en) | ||
Hsiao et al. | Some design considerations on the electrode layout of ZnO pyroelectric sensors | |
JP2783928B2 (en) | Piezoelectric gas sensor and method of manufacturing the same | |
JP2870176B2 (en) | Photoacoustic cell | |
JP4059338B2 (en) | Linear sensor using fiber and its system | |
KR20150134780A (en) | Uv sensor and method of manufacturing the same |