JPS6135477B2 - - Google Patents

Info

Publication number
JPS6135477B2
JPS6135477B2 JP57045600A JP4560082A JPS6135477B2 JP S6135477 B2 JPS6135477 B2 JP S6135477B2 JP 57045600 A JP57045600 A JP 57045600A JP 4560082 A JP4560082 A JP 4560082A JP S6135477 B2 JPS6135477 B2 JP S6135477B2
Authority
JP
Japan
Prior art keywords
heat
metal hydride
hydrogen
container
hollow part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57045600A
Other languages
Japanese (ja)
Other versions
JPS58164994A (en
Inventor
Naojiro Honda
Kenji Nasako
Ikuro Yonezu
Takashi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4560082A priority Critical patent/JPS58164994A/en
Publication of JPS58164994A publication Critical patent/JPS58164994A/en
Publication of JPS6135477B2 publication Critical patent/JPS6135477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Description

【発明の詳細な説明】 この発明は蓄熱装置に用いる金属水素化物容器
に関し、詳しくはドーナツ形ヒートパイプの中央
中空部に金属水素化物を充填してなる金属水素化
物容器であつて、該中空部に複数の仕切り板を設
け、金属水素化物を該中空部内に均一に充填した
金属水素化物容器に関する。 金属水素化物を使用する蓄熱技術によれば熱
(例えば太陽熱、工場廃熱など)を長期にわたつ
て蓄熱することができ新しい蓄熱法として注目さ
れている。この方法の長所としては、(ア)長期蓄熱
法が可能なこと、(イ)金属と水素との反応が速いこ
と、(ウ)反応の制御がガス流量制御だけで行えるの
で制御しやすいこと、(エ)単位体積当りの蓄熱量が
大きいことなどが挙げられる。 一方欠点としては、(ア)金属水素化物は水素化脱
水素化を繰り返すと微粉化し、体積減少を起こす
ことと(イ)金属水素化物自体の熱伝導率が低いこと
から伝熱(反応熱の伝達)面で不利なことが挙げ
られる。この欠点の改善策としては、できるだけ
金属水素化物の容器を分割して、体積減少が生じ
たときでも伝熱管との接触の可能性を大にする多
管式熱交換法が有利になる。また(イ)の欠点の改善
策についても上記多管式熱交換法が有利であり更
に金属水素化物に熱伝導性の粉末(例えば銅、
銀、アルミニウムなど)を混在させることも有効
である。 更に金属水素化物を用いる蓄熱装置は、金属水
素化物の反応熱がその容器への顕熱分として失わ
れるという欠点も有している。従つて前記多管式
熱交換法とか、単に耐圧容器中に金属水素化物を
充填し反応熱を直接に(容器内への銅コイルなど
の熱交換器を入れ、水などの熱媒により反応熱を
回収する方法)、あるいは間接に(容器内へ予め
ヒートパイプなどの伝熱管を挿入し、ヒートパイ
プの他の一端に設けられた熱交換器を介して反応
熱を回収する方法)回収する方法では顕熱損失を
小さくするという点では満足すべきものではな
い。 このような状況において、この発明の発明者ら
は、先に特願昭56−145602号明細書(特開昭58−
47989号公報)に、顕熱損失が小さく効果的な熱
交換が行える金属水素化物容器としてドーナツ形
ヒートパイプの中央中空部に金属水素化物を充填
〓〓〓〓〓
してなる金属水素化物容器を開示した。 この発明はこの金属水素化物容器をさらに改良
したものであつてドーナツ形ヒートパイプ、その
中央中空部の両端開口を閉鎖する閉鎖部材、その
閉鎖部材を介して中央中空部に挿入される水素出
入導管からなるドーナツ形ヒートパイプ水素貯蔵
器ユニツトであつて、その中央中空部に、水素透
過性、耐熱性、弾性の仕切り板を、該中空部の長
手方向にほゞ等間隔で平行に設け、かつ仕切り板
の間に金属水素化物を均一に充填してなる金属水
素化物容器を提供するものである。 なおこの発明において“水素出入導管”とは、
閉鎖部材に設置した開閉弁付きの導管と、該導管
の該閉鎖部材への取付け部から該中空部に延出さ
れた水素は通過しうるが金属水素化物は通過しえ
ない多孔質たとえば焼結合金製の区画体とから構
成された導管を意味する。 この発明の容器は上記の水素透過性、弾性、耐
熱性の仕切り板を用いることによつて、ドーナツ
形ヒートパイプ内への金属水素化物の均一な充填
を容易に行うことができる。従つて金属水素化物
のスウエリング現象が局部的に集中にて起るのを
防止できるので、容器内の局部に大きな圧力がか
かることなく容器の破損が防げると共に金属水素
化物の水素の吸収・放出を円滑に行うことができ
る。さらに、仕切り板が弾性を有するので上記ス
ウエリング現象による圧力を吸収するという効果
も有する。 この発明の仕切り板の材料としては金属水素化
物の水素の吸収・放出を阻害せず水素と反応しな
い、水素透過性、弾性、耐熱性のアスベスト、セ
ラミツクスフアイバーもしくはウール、グラスフ
アイバーもしくはウールなどの成形品が挙げられ
る。 またこの発明の蓄熱容器に充填される金属水素
化物は水素化反応熱が大で80〜100℃近傍での脱
水素化及び常温近傍での水素化を行いうるもの
で、例えばCaNi5、Ca0.8Mmo0.2Ni5(Mmはミツ
シユメタル)などの合金の水素化物が挙げられ
る。一方水素貯蔵部に充填される金属水素化物は
常温近傍で水素化及び脱水素化を行いうるもの
で、例えばLaNi5などのような合金の水素化物が
挙げられる。 次にこの発明の金属水素化物容器を図面によつ
て説明する。第1図と第2図はそれぞれこの発明
の金属水素化物容器の一実施例の縦断面図とA−
B横断面図である。1と2はそれぞれドーナツ形
ヒートパイプの外管と内管を3はウイツクを示
す。そしてこのヒートパイプの両端開口は閉鎖板
4と5で閉鎖され、閉鎖板4には開閉弁7を有す
る導管8の閉鎖板4への取付け部からヒートパイ
プ中央中空部に水素は通過しうる金属水素化物は
通過しえないたとえば焼結合金のごとき多孔性導
管9が同軸に延出されている。さらに第3図に示
した形態のセラミツクスフアイバー成形品の水素
透過性、弾性、耐熱性仕切り板10の複数個がそ
の中央部の通孔に多孔性導管9を貫通させてほゝ
等間隔平行に挿着されている。なお仕切り板の形
態としては第3図の円板状のもの以外に第4図の
aおよびbの形態のものでもよく、また中央部の
通孔以外に別の通孔があつてもよい。 この容器への水素化しうる金属粉の充填は次の
ようにして行われる。閉鎖板5を取付けたドーナ
ツ形ヒートパイプ中にまず多孔性導管9を固定
し、閉鎖板5を底にして該ヒートパイプを直立さ
せ、次いで上記金属粉末を適当量充填する。次い
で1枚の仕切り板を中央部通孔に多孔性導管9を
貫通させ閉鎖板5とほゞ平行に挿着する。次いで
上記とほぼ同量の水素化しうる金属粉を充填した
後2枚目の仕切り板を1枚目と同様にして挿着す
る。この操作を繰り返して水素化しうる金属粉の
充填を完了した後、閉鎖板4と導管8を取付け
る。 この実施例の金属水素化物容器はヒートパイプ
自体が容器になつているので顕熱としての熱損失
が少なく、ヒートパイプと金属水素化物との接触
面積が大きいので効果的な熱交換が可能であり、
また金属水素化物が水素の吸収・放出を繰り返し
て微粉化しても上記接触面積は殆んど低下しな
い。 また上記のような仕切り板を用いることによつ
て、金属水素化物をヒートパイプ中央中空部に偏
在することなく均一に簡単な操作で充填できる。
従つて金属水素化物の水素化時のスウエリング現
象が局部的に集中して起るのが防止されるので、
容器内の局部に大きな圧力がかゝることなく容器
の破損が防げると共に金属水素化物の水素の吸
収・放出を円滑に行うことができる。さらに仕切
〓〓〓〓〓
り板が弾性を有するので上記スウエリング現象に
よる圧力を吸収するという効果がある。 次にこの発明の金属水素化物容器を用いた蓄熱
装置を図面によつて説明する。第5図は前記第1
図に示した金属水素化物容器を3台づつ用いた蓄
熱部と水素貯蔵部とを有する蓄熱装置の部分
断面を含む斜視図である。 蓄熱部と水素貯蔵部において金属水素化物
容器21a,21b,21cと31a,31b,
31cは、1本づつ、断熱本体22と32の横面
に水平に並設した凹条23a,23b,23cと
33a,33b,33cとに挿入される。またこ
の凹条と金属水素化物容器との間には断熱材が充
填され、次いで断熱本体の断熱蓋体でふたがなさ
れる。一方断熱本体22と32には、内部に熱媒
が充填された熱交換器24と34がそれぞれ接設
されている。この熱交換器24と34の断熱本体
22と32の側面には各凹条に対応してそれぞれ
仕欠きが設けられており、凹条に各金属水素化物
容器をその熱交換器30a,30b,30cと4
0a,40b,40cとがそれぞれ熱交換器24
と34の中に突出するように挿入され、シール部
材25a,25b,25cと35a,35b,3
5cとでそれぞれシールされる。もとろん熱交換
器24と34には更にシール材を介して側蓋が装
着される(図示せず)。また金属水素化物容器2
1a,21b,21cと31a,31b,31c
とはそれぞれ結合部27a,27b,27cと、
37a,37b,37cとで水素分配器28と3
8に連結され更にこれら蓄熱部と水素貯蔵部
は開閉返26dを有する導管で連結される。また
29a,29bと39a,39bとはそれぞれ熱
交換器24と34の熱媒出入口である。 次にこの蓄熱装置の作動方法を説明する。 例えば太陽熱を集熱した熱媒が29bの熱媒入
口から熱交換器24に導かれ、その熱によつて金
属水素化物容器の熱交換器内への突出した熱交換
部30a,30b,30cを加熱することによつ
て金属水素化物容器21a,21b,21c内の
金属水素化物を加熱して脱水素化させる。発生し
た水素ガスを開閉弁26a,26b,26c,2
6d,36a,36b,36cを開いて水素貯蔵
の金属水素化物容器31a,31b,31c
に導き、内部に充填された金属と反応させて金属
水素化物とし水素を貯蔵する。次いで蓄熱した熱
を利用したときは、廃熱を集熱した低温の熱媒を
熱媒入口39aから熱交換器34に導入し、その
熱よつて金属水素化物容器の熱交換部40a,4
0b,40cを加熱することによつて金属水素化
物容器31a,31b,31c内の金属水素化物
を加熱して脱水素化させ、発生した水素を開放し
た開閉返37a,37b,37c,26a,26
b,26c,26dを通じて蓄熱部の金属水素
化物容器21a,21b,21cに導き、内部の
金属と反応させ発生した熱を金属水素化物容器の
熱交換部30a,30b,30cを通じて熱媒に
伝達し、この熱媒によつて冷暖房や給湯用などの
用途に利用される。 そしてこの蓄熱装置は、その蓄熱部と水素貯蔵
部とにおいて次のような利点を有する。 すなわち前記のようなヒートパイプを用いてい
るので顕熱としての損失が少ない。また金属水素
化物容器の数を増減することによつて蓄熱装置自
体の容量を簡単に変えることができる。また複数
個の金属水素化物容器を用いているので1台の蓄
熱装置で、該容器の数に対応する段階の容量で稼
動させることができる。更に各金属水素化物容器
はそれぞれ他の容器とは独立して取換えることが
できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal hydride container used in a heat storage device, and more specifically, a metal hydride container formed by filling a central hollow part of a doughnut-shaped heat pipe with a metal hydride, the hollow part being filled with metal hydride. The present invention relates to a metal hydride container in which a plurality of partition plates are provided, and the metal hydride is uniformly filled in the hollow portion. Heat storage technology using metal hydrides can store heat (for example, solar heat, factory waste heat, etc.) over long periods of time, and is attracting attention as a new heat storage method. The advantages of this method are (a) long-term thermal storage is possible, (b) the reaction between the metal and hydrogen is fast, and (c) the reaction is easy to control because it can be controlled only by controlling the gas flow rate. (d) The amount of heat stored per unit volume is large. On the other hand, the disadvantages are that (a) metal hydrides become pulverized when hydrodehydrogenation is repeated, causing volume reduction; and (b) metal hydrides themselves have low thermal conductivity, so heat transfer (reaction heat There are disadvantages in terms of communication. As a remedy for this drawback, a shell-and-tube heat exchange method is advantageous, in which the metal hydride container is divided as much as possible to increase the possibility of contact with the heat exchanger tubes even when volume reduction occurs. In addition, the above-mentioned multi-tube heat exchange method is advantageous as a measure to improve the drawback of (a).
It is also effective to mix silver, aluminum, etc. Furthermore, heat storage devices using metal hydrides also have the disadvantage that the reaction heat of the metal hydride is lost as sensible heat to the container. Therefore, the shell-and-tube heat exchange method described above simply involves filling a pressure-resistant container with metal hydride and transferring the reaction heat directly (a heat exchanger such as a copper coil is placed inside the container, and the reaction heat is transferred using a heat medium such as water). ) or indirectly (a method in which a heat transfer tube such as a heat pipe is inserted into the container in advance and the reaction heat is recovered via a heat exchanger installed at the other end of the heat pipe). This is not satisfactory in terms of reducing sensible heat loss. Under such circumstances, the inventors of the present invention have previously filed the specification of Japanese Patent Application No. 145602/1983
47989), a metal hydride is filled in the central hollow part of a donut-shaped heat pipe as a metal hydride container that allows effective heat exchange with low sensible heat loss〓〓〓〓〓
A metal hydride container is disclosed. The present invention further improves this metal hydride container, and includes a donut-shaped heat pipe, a closing member that closes both openings of the central hollow part, and a hydrogen inlet/output conduit inserted into the central hollow part through the closing member. A donut-shaped heat pipe hydrogen storage unit consisting of a donut-shaped heat pipe hydrogen storage unit, in which hydrogen-permeable, heat-resistant, elastic partition plates are provided in parallel at approximately equal intervals in the longitudinal direction of the hollow part, and A metal hydride container is provided in which metal hydride is uniformly filled between partition plates. In this invention, “hydrogen in/out conduit” means
A conduit with an on-off valve installed in the closing member, and a porous material, such as a sintered bond, through which hydrogen can pass but metal hydrides cannot pass, extending from the attachment part of the conduit to the closing member to the hollow part. means a conduit consisting of a gold compartment. By using the hydrogen-permeable, elastic, and heat-resistant partition plate described above, the container of the present invention can easily uniformly fill the donut-shaped heat pipe with metal hydride. Therefore, it is possible to prevent the swelling phenomenon of the metal hydride from occurring locally and concentratedly, thereby preventing damage to the container without applying large pressure to local parts of the container, and preventing hydrogen absorption and release from the metal hydride. It can be done smoothly. Furthermore, since the partition plate has elasticity, it also has the effect of absorbing the pressure caused by the swelling phenomenon. Materials for the partition plate of this invention include hydrogen-permeable, elastic, and heat-resistant asbestos, ceramic fiber, wool, glass fiber, or molded wool that does not inhibit the absorption and release of hydrogen from metal hydrides and does not react with hydrogen. Examples include items. In addition, the metal hydride filled in the heat storage container of the present invention has a large heat of hydrogenation reaction and can be dehydrogenated at around 80 to 100°C and hydrogenated at around room temperature, such as CaNi 5 , Ca 0 Examples include hydrides of alloys such as .8 Mmo 0.2 Ni 5 (Mm is Mitsushi Metal). On the other hand, the metal hydride filled in the hydrogen storage section can undergo hydrogenation and dehydrogenation at around room temperature, and examples include alloy hydrides such as LaNi 5 . Next, the metal hydride container of the present invention will be explained with reference to the drawings. FIG. 1 and FIG. 2 are a vertical cross-sectional view and an A-
B is a cross-sectional view. 1 and 2 indicate the outer and inner tubes of the donut-shaped heat pipe, respectively, and 3 indicates the wick. The openings at both ends of this heat pipe are closed by closing plates 4 and 5, and the closing plate 4 has an on-off valve 7. A metal pipe through which hydrogen can pass from the attachment part of the conduit 8 to the closing plate 4 to the central hollow part of the heat pipe. A porous conduit 9, for example of sintered metal, through which hydrides cannot pass, extends coaxially. Furthermore, a plurality of hydrogen-permeable, elastic, and heat-resistant partition plates 10 made of ceramic fiber molded products having the configuration shown in FIG. It is inserted. The form of the partition plate may be the form shown in a and b in Fig. 4 in addition to the disk-like form shown in Fig. 3, and there may be other through holes in addition to the central through hole. The container is filled with metal powder that can be hydrogenated as follows. First, the porous conduit 9 is fixed in a donut-shaped heat pipe to which the closing plate 5 is attached, and the heat pipe is stood upright with the closing plate 5 at the bottom, and then an appropriate amount of the metal powder is filled. Next, one partition plate is inserted into the central through hole so that the porous conduit 9 passes through it and is substantially parallel to the closing plate 5. Next, after filling approximately the same amount of hydrogenatable metal powder as above, a second partition plate is inserted in the same manner as the first partition plate. After repeating this operation to complete the filling of the metal powder that can be hydrogenated, the closing plate 4 and the conduit 8 are attached. In the metal hydride container of this example, the heat pipe itself is a container, so there is little heat loss as sensible heat, and the contact area between the heat pipe and the metal hydride is large, so effective heat exchange is possible. ,
Furthermore, even if the metal hydride repeatedly absorbs and releases hydrogen and becomes pulverized, the contact area hardly decreases. Furthermore, by using the partition plate as described above, the metal hydride can be uniformly filled in the heat pipe central hollow portion without being unevenly distributed by a simple operation.
Therefore, the swelling phenomenon during hydrogenation of metal hydrides is prevented from occurring locally.
Breakage of the container can be prevented without applying large pressure locally within the container, and hydrogen absorption and release from the metal hydride can be performed smoothly. Further partitions〓〓〓〓〓
Since the sliding plate has elasticity, it has the effect of absorbing the pressure caused by the swelling phenomenon. Next, a heat storage device using the metal hydride container of the present invention will be explained with reference to the drawings. Figure 5 shows the first
FIG. 2 is a perspective view including a partial cross section of a heat storage device having a heat storage section A and a hydrogen storage section B using three metal hydride containers shown in the figure. In the heat storage part A and the hydrogen storage part B , metal hydride containers 21a, 21b, 21c and 31a, 31b,
The grooves 31c are inserted one by one into grooves 23a, 23b, 23c and 33a, 33b, 33c which are horizontally arranged in parallel on the lateral surfaces of the heat insulating bodies 22 and 32. Further, a heat insulating material is filled between the groove and the metal hydride container, and then a lid is formed with a heat insulating lid of the heat insulating body. On the other hand, heat exchangers 24 and 34, each of which is filled with a heat medium, are connected to the heat insulating bodies 22 and 32, respectively. The side surfaces of the heat insulating bodies 22 and 32 of the heat exchangers 24 and 34 are provided with slots corresponding to the respective grooves, and each metal hydride container is attached to the groove in the heat exchanger 30a, 30b, 30c and 4
0a, 40b, and 40c are heat exchangers 24, respectively.
and 34, and the seal members 25a, 25b, 25c and 35a, 35b, 3
5c and are each sealed. Of course, side covers are further attached to the heat exchangers 24 and 34 via a sealing material (not shown). Also metal hydride container 2
1a, 21b, 21c and 31a, 31b, 31c
are joint parts 27a, 27b, 27c, respectively, and
37a, 37b, 37c and hydrogen distributor 28 and 3
8 and further connected to these heat storage section A and hydrogen storage section B.
are connected by a conduit having an opening/closing return 26d. Further, 29a, 29b and 39a, 39b are heat medium inlets and outlets of the heat exchangers 24 and 34, respectively. Next, a method of operating this heat storage device will be explained. For example, the heat medium that collects solar heat is guided to the heat exchanger 24 from the heat medium inlet 29b, and the heat exchanges parts 30a, 30b, and 30c that protrude into the heat exchanger of the metal hydride container. By heating, the metal hydride in the metal hydride containers 21a, 21b, and 21c is heated and dehydrogenated. The generated hydrogen gas on-off valves 26a, 26b, 26c, 2
6d, 36a, 36b, 36c are opened to open the metal hydride containers 31a, 31b, 31c of hydrogen storage section B.
It reacts with the metal filled inside to form a metal hydride and stores hydrogen. Next, when the stored heat is used, a low-temperature heat medium that has collected waste heat is introduced into the heat exchanger 34 from the heat medium inlet 39a, and the heat is used to transfer the heat exchange parts 40a and 4 of the metal hydride container.
The metal hydride in the metal hydride containers 31a, 31b, 31c is heated and dehydrogenated by heating the metal hydride containers 31a, 31b, 31c, and the generated hydrogen is released.
b, 26c, and 26d to the metal hydride containers 21a, 21b, and 21c of the heat storage section A , and the heat generated by reacting with the metal inside is transferred to the heat medium through the heat exchange sections 30a, 30b, and 30c of the metal hydride container. However, this heating medium is used for purposes such as heating and cooling and hot water supply. This heat storage device has the following advantages in its heat storage section and hydrogen storage section. That is, since the heat pipe as described above is used, loss as sensible heat is small. Furthermore, the capacity of the heat storage device itself can be easily changed by increasing or decreasing the number of metal hydride containers. Furthermore, since a plurality of metal hydride containers are used, one heat storage device can be operated at a capacity of stages corresponding to the number of containers. Furthermore, each metal hydride container can be replaced independently of the other containers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はこの発明の金属水素化物容器
の一実施例の縦断面図とA−B縦断面図、第3図
と第4図はこの発明に用いられる仕切り板の実施
例の斜視図、第5図はこの発明の金属水素化物容
器を用いる蓄熱装置の内部構造を説明する部分断
面を含む斜視図である。 ……蓄熱部、……水素貯蔵部、1……ドー
ナツ形ヒートパイプの外管、2……該ヒートパイ
プの内管、3……該ヒートパイプのウイツク、4
および5……閉鎖部材、6……金属水素化物、8
……導管、9……多孔性導管、10……仕切り
板、7,26a,26b,26c,26d,36
a,36bおよび36c……開閉弁、21a,2
1b,21c,31a,31b,31c……金属
水素化物容器、22及び32……断熱本体、23
a,23b,23c,33a,33b,33c…
…凹条、24及び34……熱交換器、25a,2
5b,25c,35a,35b及び35c……シ
〓〓〓〓〓
ール部材、27a,27b,27c,37a,3
7b及び37c……結合部、28及び38……水
素ガス分配器、29a,29b及び39a,39
b……熱媒出入口、並びに30a,30b,30
c,40a,40b及び40c……金属水素化物
容器の熱交換部。 〓〓〓〓〓
1 and 2 are a longitudinal sectional view and an A-B longitudinal sectional view of an embodiment of the metal hydride container of the present invention, and FIGS. 3 and 4 are sectional views of an embodiment of the partition plate used in the invention. FIG. 5 is a perspective view including a partial cross section, illustrating the internal structure of a heat storage device using the metal hydride container of the present invention. A ...Heat storage part, B ...Hydrogen storage part, 1...Outer pipe of the donut-shaped heat pipe, 2...Inner pipe of the heat pipe, 3...Width of the heat pipe, 4
and 5... closing member, 6... metal hydride, 8
... Conduit, 9 ... Porous conduit, 10 ... Partition plate, 7, 26a, 26b, 26c, 26d, 36
a, 36b and 36c...opening/closing valve, 21a, 2
1b, 21c, 31a, 31b, 31c...metal hydride container, 22 and 32...insulation main body, 23
a, 23b, 23c, 33a, 33b, 33c...
...Concave stripes, 24 and 34...Heat exchanger, 25a, 2
5b, 25c, 35a, 35b and 35c... 〓〓〓〓〓
Roll member, 27a, 27b, 27c, 37a, 3
7b and 37c...Connection part, 28 and 38...Hydrogen gas distributor, 29a, 29b and 39a, 39
b... Heat medium inlet/outlet, and 30a, 30b, 30
c, 40a, 40b and 40c... Heat exchange section of metal hydride container. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 ドーナツ形ヒートパイプ、その中央中空部の
両端開口を閉鎖する閉鎖部材、その閉鎖部材を介
して中央中空部に挿入される水素出入導管からな
るドーナツ形ヒートパイプ水素貯蔵器ユニツトで
あつて、その中央中空部に、水素透過性、耐熱
性、弾性の仕切り板を、該中空部の長手方向に
ほゞ等間隔で平行に設け、かつ仕切り板の間に金
属水素化物を均一に充填してなる金属水素化物容
器。
1. A donut-shaped heat pipe hydrogen storage unit consisting of a donut-shaped heat pipe, a closing member that closes both openings of the central hollow part, and a hydrogen inlet/output conduit inserted into the central hollow part through the closing member, Metallic hydrogen produced by providing hydrogen-permeable, heat-resistant, elastic partition plates in the central hollow part in parallel at approximately equal intervals in the longitudinal direction of the hollow part, and uniformly filling the spaces between the partition plates with metal hydride. Monster container.
JP4560082A 1982-03-24 1982-03-24 Vessel for metal hydride Granted JPS58164994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4560082A JPS58164994A (en) 1982-03-24 1982-03-24 Vessel for metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4560082A JPS58164994A (en) 1982-03-24 1982-03-24 Vessel for metal hydride

Publications (2)

Publication Number Publication Date
JPS58164994A JPS58164994A (en) 1983-09-29
JPS6135477B2 true JPS6135477B2 (en) 1986-08-13

Family

ID=12723840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4560082A Granted JPS58164994A (en) 1982-03-24 1982-03-24 Vessel for metal hydride

Country Status (1)

Country Link
JP (1) JPS58164994A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510759A (en) * 1981-09-17 1985-04-16 Agency Of Industrial Science & Technology Metalhydride container and metal hydride heat storage system
JPH0694969B2 (en) * 1985-08-02 1994-11-24 千代田化工建設株式会社 Heat exchanger using hydrogen storage alloy
US5778972A (en) * 1996-03-28 1998-07-14 Energy Coversion Devices, Inc. Robust metal hydride hydrogen storage system with metal hydride support structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517280A (en) * 1978-07-25 1980-02-06 Toshiba Corp Excitation circuit for synchronous generator
JPS5684301A (en) * 1979-12-14 1981-07-09 Kawasaki Heavy Ind Ltd Holding apparatus for hydrogen storing metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517280A (en) * 1978-07-25 1980-02-06 Toshiba Corp Excitation circuit for synchronous generator
JPS5684301A (en) * 1979-12-14 1981-07-09 Kawasaki Heavy Ind Ltd Holding apparatus for hydrogen storing metal

Also Published As

Publication number Publication date
JPS58164994A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
US4548044A (en) Metal hydride container and metal hydride heat storage system
US4723595A (en) Heat exchanger using hydrogen storage alloy
JPS6135477B2 (en)
JPS6144237B2 (en)
JPS5925957B2 (en) Metal hydride heat storage device
JPS5925955B2 (en) Metal hydride heat storage device
JPS58164993A (en) Accumulation type heat exchanger
JPS58182087A (en) Heat accumulating device by metal hydride
JPS6132554B2 (en)
JPS6231239B2 (en)
JPS6231238B2 (en)
JPS6037395B2 (en) Portable heating or cooling device
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JPH0236521B2 (en) KINZOKUSUISOKABUTSUYOKI
JPH06194077A (en) Heat-exchanging device
JPS6060494A (en) Heat regenerative heater
JPS58156192A (en) Heat transfer device by use of solid/gas reversible reactant
JPS5981469A (en) Heat pump device
JPS6339829B2 (en)
JPH04369360A (en) Heat-exchanger having hydrogen storage alloy
JPS63161368A (en) Thermal converter
JPS6238637B2 (en)
JPH06273084A (en) Heat/cold storage apparatus
JPS6223240B2 (en)