JPS6132554B2 - - Google Patents

Info

Publication number
JPS6132554B2
JPS6132554B2 JP57022115A JP2211582A JPS6132554B2 JP S6132554 B2 JPS6132554 B2 JP S6132554B2 JP 57022115 A JP57022115 A JP 57022115A JP 2211582 A JP2211582 A JP 2211582A JP S6132554 B2 JPS6132554 B2 JP S6132554B2
Authority
JP
Japan
Prior art keywords
metal hydride
heat
hydrogen
pass
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57022115A
Other languages
Japanese (ja)
Other versions
JPS58140304A (en
Inventor
Kenji Nasako
Ikuro Yonezu
Naojiro Pponda
Takashi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57022115A priority Critical patent/JPS58140304A/en
Publication of JPS58140304A publication Critical patent/JPS58140304A/en
Publication of JPS6132554B2 publication Critical patent/JPS6132554B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 この発明は蓄熱装置に用いる金属水素化物容器
に関し、詳しくはドーナツ形ヒートパイプの中央
中空部に金属水素化物を充填し、その両端開口を
閉鎖する閉鎖部材に開閉弁付きの水素出入導管を
設け、その開口端に水素は通過しうるが金属水素
化物を通過しえない区画体を設置しさらに弾性断
熱部材を該区画体と金属水素化物の間に介挿して
なる金属水素化物容器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal hydride container used in a heat storage device, and more specifically, the central hollow part of a donut-shaped heat pipe is filled with metal hydride, and the closing member that closes the openings at both ends thereof is equipped with an on-off valve. A hydrogen inlet/output conduit is provided, a partition is installed at the open end of the pipe through which hydrogen can pass but not the metal hydride, and an elastic heat insulating member is inserted between the partition and the metal hydride. Relating to hydride containers.

金属水素化物を使用する蓄熱技術によれば熱
(例えば太陽熱、工場廃熱など)を長期にわたつ
て蓄熱することができ新しい蓄熱法として注目さ
れている。この方法の長所としては、(ア)長期蓄熱
が可能なこと、(イ)金属と水素との反応が速いこ
と、(ウ)反応の制御がガス流量制御だけで行えるの
で制御しやすいこと、(エ)単位体積当りの蓄熱量が
大きいことなどが挙げられる。
Heat storage technology using metal hydrides can store heat (for example, solar heat, factory waste heat, etc.) over long periods of time, and is attracting attention as a new heat storage method. The advantages of this method are (a) long-term heat storage is possible, (b) the reaction between metal and hydrogen is fast, (c) the reaction is easy to control because it can be controlled only by controlling the gas flow rate, and ( d) The amount of heat stored per unit volume is large.

一方欠点としては、(ア)金属水素化物は水素化脱
水素化を繰り返すと微粉化し、体積減少を起こす
ことと(イ)金属水素化物自体の熱伝導率が低いこと
から伝熱(反応熱の伝達)面で不利なことが挙げ
られる。この欠点の改善策としては、できるだけ
金属水素化物の容器を分割して、体積減少が生じ
たときでも伝熱管との接触の可能性を大にする多
管式熱交管法が有利になる、また(イ)の欠点の改善
策についても上記多管式熱交換法が有利であり更
に金属水素化物に熱伝導性の粉末(例えば銅、
銀、アルミニウムなど)を混在させることも有利
である。
On the other hand, the disadvantages are that (a) metal hydrides become pulverized when hydrodehydrogenation is repeated, causing volume reduction; and (b) metal hydrides themselves have low thermal conductivity, so heat transfer (reaction heat There are disadvantages in terms of communication. As a remedy for this drawback, it is advantageous to use the multi-tube heat exchanger method, which divides the metal hydride container as much as possible to increase the possibility of contact with the heat exchanger tubes even when volume decreases. The multi-tube heat exchange method described above is also advantageous for improving the drawback of (a).
It is also advantageous to mix silver, aluminum, etc.).

更に金属水素化物を用いる蓄熱装置は、金属水
素化物の反応熱がその容器への顕熱分として失わ
れるという欠点も有している。従つて前記多管式
熱交換法とか、単に耐圧容器中に金属水素化物を
充填し反応熱を直接に(容器内へ銅コイルなどの
熱交換器を入れ、水などの熱媒により反応熱を回
収する方法)、あるいは間接に(容器内へ予めヒ
ートパイプなどの伝熱管を挿入し、ヒートパイプ
の他の一端に設けられた熱交換器を介して反応熱
を回収する方法)回収する方法では顕熱損失を小
さくするという点では満足すべきものではない。
Furthermore, heat storage devices using metal hydrides also have the disadvantage that the reaction heat of the metal hydride is lost as sensible heat to the container. Therefore, the above-mentioned shell-and-tube heat exchange method simply fills a pressure-resistant container with metal hydride and transfers the reaction heat directly (a heat exchanger such as a copper coil is placed inside the container, and the reaction heat is transferred using a heat medium such as water). (recovery method) or indirect method (method in which a heat transfer tube such as a heat pipe is inserted into the container in advance and the reaction heat is recovered via a heat exchanger installed at the other end of the heat pipe). This is not satisfactory in terms of reducing sensible heat loss.

この発明は、前記の欠点を解消するためになさ
れたものであつて、ドーナツ形ヒートパイプの中
央中空部に金属水素化物を充填し、その閉鎖部材
に、開閉弁を有する水素出入導管を、その一方の
開口端がヒートパイプの中央中空部に向かつて開
口するように設置し、その開口端に、水素は通過
しうるが金属水素化物を通過しえない区画体を前
記開口端が閉鎖されるように設置しかつその区画
体と前記金属水素化物との間に弾性断熱部材を介
挿させてなる金属水素化物容器を提供するもので
ある。
The present invention was made in order to solve the above-mentioned drawbacks, and the central hollow part of a doughnut-shaped heat pipe is filled with metal hydride, and a hydrogen inlet/outlet conduit having an on-off valve is installed in the closing member. One open end is installed so as to open toward the central hollow part of the heat pipe, and the open end is closed with a partition body that allows hydrogen to pass through but does not allow metal hydride to pass through. The object of the present invention is to provide a metal hydride container in which an elastic heat insulating member is inserted between the compartment and the metal hydride.

この発明の金属水素化物容器は上記の様に、ド
ーナツ形ヒートパイプの両端中央開口を閉鎖し、
その中央中空部に金属水素化物が充填され、該ヒ
ートパイプ自体が金属水素化物容器であることを
一つの特徴とするものである。
As described above, the metal hydride container of the present invention closes the center opening at both ends of the donut-shaped heat pipe,
One feature of the heat pipe is that its central hollow portion is filled with a metal hydride, and the heat pipe itself is a metal hydride container.

その結果、従来の金属水素化物容器の様な耐圧
容器への顕熱としての熱損失が少なくなり、ヒー
トパイプと金属水素化物の接触面積が大きいので
効果的な熱交換が可能であり、また金属水素化物
が水素の吸収、放出を繰り返して微粉化しても、
上記接触面積の減少はほとんどない。
As a result, there is less heat loss as sensible heat to the pressure container like conventional metal hydride containers, and the large contact area between the heat pipe and metal hydride allows for effective heat exchange. Even if the hydride repeatedly absorbs and releases hydrogen and becomes fine powder,
There is almost no decrease in the contact area.

さらに微粉化により充填された金属水素化物粉
末内部に生じる応力等も前記弾性断熱部材の圧縮
により吸収することができるためスウエリング現
象により、ヒートパイプの内壁等に大きな圧力が
かかることはない。
Furthermore, stress generated inside the metal hydride powder filled by pulverization can be absorbed by compression of the elastic heat insulating member, so that no large pressure is applied to the inner wall of the heat pipe due to the swelling phenomenon.

なお、この発明に用いられる弾性断熱部材とし
ては水素は通過しうるが金属水素化物は通過しえ
ない多孔性で弾性を有する断熱材であつて金属水
素化物容器内の最高温度に対して充分な耐熱性を
有するものである。例えばSiO2とAl2O3とを主成
分とするセラミツクウール(カオウール、イソラ
イト工業〓登録商標;イビウール、楫斐川電気工
業〓登録商標など)、グラスウールなどが挙げら
れ、その成形品非成形品のいずれも用いられる。
The elastic heat insulating member used in this invention is a porous and elastic heat insulating material that allows hydrogen to pass through but not metal hydride, and is sufficient for the maximum temperature inside the metal hydride container. It has heat resistance. For example, ceramic wool whose main components are SiO 2 and Al 2 O 3 (Kao Wool, Isolite Industries (registered trademark); Ibi Wool, Kasuhikawa Electric Industries (registered trademark), etc.), glass wool, etc. Both can be used.

この発明の蓄熱容器に充填される金属水素化物
は水素化反応熱が大で80〜100℃近傍での脱水素
化及び常温近傍での水素化を行いうるもので、例
えばCaNi5、Ca0.8Mm0.2Ni5など の合金の水素化物が挙げられる。
The metal hydride filled in the heat storage container of the present invention has a large heat of hydrogenation reaction and can be dehydrogenated at around 80 to 100°C and hydrogenated at around room temperature, such as CaNi 5 , Ca 0 . Examples include hydrides of alloys such as 8 Mm 0.2 Ni 5 .

一方水素貯蔵部に充填される金属水素化物は常
温近傍で水素化及び脱水素化を行いうるもので、
例えばLaNi5などのような合金の水素化物が挙げ
られる。
On the other hand, the metal hydride filled in the hydrogen storage unit can undergo hydrogenation and dehydrogenation at around room temperature.
Examples include hydrides of alloys such as LaNi 5 .

次にこの発明の金属水素化物容器を図面によつ
て説明する。第1図と第2図はそれぞれ、この発
明の金属水素化物容器の一実施例の縦断面図とA
―B横断面図である。1及び2はそれぞれ、ドー
ナツ形ヒートパイプの外管と内管を、3はウイツ
クを示す。そしてこのドーナツ形ヒートパイプの
両端開口は閉鎖板4,5で閉鎖され、閉鎖板4に
は開閉弁7を有する水素出入導管8が取付けら
れ、更にこの水素出入導管8の閉鎖板4への取付
け部からヒートパイプ中央中空部に水素は通過し
うるが、金属水素化物は通過しえない区画体、例
えば焼結合金などで作製された有底の多孔性導管
9が同軸に延出されている。更にこの多孔性導管
9のまわりには、水素は通過しうるが金属水素化
物は通過しえない弾性断熱部材10例えばセラミ
ツクウール(カオウール、イソライト工業社登録
商標)で覆われ、さらにこの弾性断熱部材10は
ステンレス製などの水素もしくは水素化金属と反
応しない金網11によつて覆われている。また同
じ弾性断熱材の成形品12および13が閉鎖部材
4および5の内面に密着されている。そして該中
央中空部に金属水素化物6が充填されている。
Next, the metal hydride container of the present invention will be explained with reference to the drawings. FIG. 1 and FIG. 2 are a longitudinal sectional view and an A of an embodiment of the metal hydride container of the present invention, respectively.
-B is a cross-sectional view. 1 and 2 indicate the outer and inner tubes of the donut-shaped heat pipe, respectively, and 3 indicates the wick. The openings at both ends of this doughnut-shaped heat pipe are closed by closing plates 4 and 5, and a hydrogen inlet/output conduit 8 having an on-off valve 7 is attached to the closing plate 4. Furthermore, the hydrogen inlet/outlet conduit 8 is attached to the closing plate 4. A porous conduit 9 with a bottom, made of a sintered alloy, etc., extends coaxially from the central hollow part of the heat pipe through which hydrogen can pass, but metal hydrides cannot pass through. . Furthermore, the porous conduit 9 is covered with an elastic heat insulating member 10 that allows hydrogen to pass through but not metal hydrides, such as ceramic wool (Kao Wool, a registered trademark of Isolite Kogyo Co., Ltd.). 10 is covered with a wire mesh 11 made of stainless steel or the like that does not react with hydrogen or hydrogenated metals. Moldings 12 and 13 of the same elastic heat insulating material are also tightly attached to the inner surfaces of the closing members 4 and 5. The central hollow portion is filled with metal hydride 6.

この金属水素化物容器はヒートパイプ自体が容
器になつているので顕熱としての熱損失が少なく
なり、ヒートパイプと金属水素化物との接触面積
が大きいので効果的な熱交換が可能でありまた金
属水素化物が水素の吸収、放出を繰り返して微粉
化しても上記接触面積は殆んど減少しない。さら
に断熱部材10,12および多孔性導管9や閉鎖
板4および5への顕熱ロスを防止すると共に、金
属水素化物の吸収・放出を繰り返した際の体積変
化に対して緩衝材の役割を果たす。すなわち金属
水素化物が水素の吸収・解離を繰り返して微粉化
し体積減少が起つた場合には金属水素化物粉末を
ヒートパイプ内壁に押しつける働きをして、ヒー
トパイプと金属水素化物粉末との接触面積の低下
を押さえ、良好な熱交換機能を維持し続ける。ま
た、金属水素化物が微粉化により、その内部で応
力を生じた場合には、弾性断熱部材10,12お
よび13が圧縮されてからの力を吸収する形とな
り、ヒートパイプ内壁等に大きな圧力がかかるこ
とが防止されると共に、金属水素化物の水素吸
収・解離能力が保持される。またこの発明の蓄熱
容器には、上記態様のもので弾性断熱部材12と
13を有しないものも含まれる。
In this metal hydride container, the heat pipe itself is a container, so there is less heat loss as sensible heat, and the contact area between the heat pipe and the metal hydride is large, so effective heat exchange is possible. Even if the hydride is pulverized by repeatedly absorbing and desorbing hydrogen, the above-mentioned contact area hardly decreases. Furthermore, it prevents sensible heat loss to the heat insulating members 10 and 12, the porous conduit 9, and the closing plates 4 and 5, and also acts as a buffer against volume changes when metal hydride is repeatedly absorbed and released. . In other words, when the metal hydride repeatedly absorbs and dissociates hydrogen and becomes fine and its volume decreases, it acts to press the metal hydride powder against the inner wall of the heat pipe, reducing the contact area between the heat pipe and the metal hydride powder. It suppresses the drop and continues to maintain good heat exchange function. Furthermore, if stress is generated inside the metal hydride due to its pulverization, the elastic heat insulating members 10, 12, and 13 will be compressed and absorb the force, resulting in large pressure on the inner wall of the heat pipe, etc. This is prevented, and the metal hydride's ability to absorb and dissociate hydrogen is maintained. The heat storage container of the present invention also includes one having the above-mentioned embodiment but not having the elastic heat insulating members 12 and 13.

次に、この発明の金属水素化物容器の他の実施
例を図面によつて説明する。第3図と第4図は、
それぞれ、この発明の金属水素化物容器の他の実
施例の縦断面図とA―B横断面図である。21及
び22は、それぞれドーナツ形ビートパイプの外
管と内管を、23はウイツクを示し33は熱交換
フインを示す。そしてこのドーナツ形ヒートパイ
プの両端開口は、閉鎖板24,25で閉鎖され、
閉鎖板24には開閉弁27を有する水素出入導管
28が取付けられ、更にこの水素出入導管28の
ヒートパイプ側開口端には、水素は通過しうるが
金属水素化物は通過しえない板状の区画体、例え
ば焼結合金などで作製された多孔性板状区画体2
9が取り付けられている(この板状体は該開口内
に挿着されていてもよい)。また30は水素は通
過しうるが金属水素化物を通過しえない弾性断熱
部材の筒状または棒状(棒状の場合は図示せず)
のセラミツクフアイバー成形品(カオウール、イ
ソライト工業社登録商標)である。またこの弾性
断熱部材と同質の弾性断熱部材31と32が閉鎖
部材24と25のそれぞれの内面に密着され、筒
状または棒状の弾性断熱部材30を保持固定して
いる。そして該中央中空部に金属水素化物26が
充填されている。
Next, other embodiments of the metal hydride container of the present invention will be described with reference to the drawings. Figures 3 and 4 are
FIG. 3 is a vertical cross-sectional view and an AB cross-sectional view of another embodiment of the metal hydride container of the present invention, respectively. 21 and 22 are the outer tube and inner tube of the donut-shaped beat pipe, respectively, 23 is the wick, and 33 is the heat exchange fin. The openings at both ends of this donut-shaped heat pipe are closed by closing plates 24 and 25,
A hydrogen inlet/outlet conduit 28 having an on-off valve 27 is attached to the closing plate 24, and a plate-shaped hydrogen inlet/outlet conduit 28, which allows hydrogen to pass through but not metal hydrides, is attached to the open end of the hydrogen inlet/outlet conduit 28 on the heat pipe side. Compartment body, for example, porous plate-shaped compartment body 2 made of sintered alloy etc.
9 is attached (this plate-like body may be inserted into the opening). 30 is a cylindrical or rod-shaped elastic heat insulating member that allows hydrogen to pass through but does not allow metal hydrides to pass through (the rod-shaped case is not shown)
Ceramic fiber molded product (Kao Wool, registered trademark of Isolite Kogyo Co., Ltd.). Further, elastic heat insulating members 31 and 32 of the same quality as this elastic heat insulating member are closely attached to the inner surfaces of the closing members 24 and 25, respectively, to hold and fix the cylindrical or rod-shaped elastic heat insulating member 30. The central hollow portion is filled with metal hydride 26 .

この金属水素化物容器では、ヒートパイプ自体
が容器となつていることによる効果は前記実施例
と同様である。そして多孔性板状区画体29によ
つて、金属水素化物の系外への飛散が防止され
る。また弾性断熱部材30,31および32は、
顕熱ロスを防止すると共に金属水素化物の水素吸
収・解離を繰り返した際の体積変化に対する緩衝
作用を果たす。
In this metal hydride container, the effect obtained by using the heat pipe itself as a container is similar to that of the previous embodiment. The porous plate-shaped partition 29 prevents the metal hydride from scattering out of the system. In addition, the elastic heat insulating members 30, 31 and 32 are
It prevents sensible heat loss and acts as a buffer against volume changes when metal hydrides repeatedly absorb and dissociate hydrogen.

即ち、金属水素化物が水素吸収・解離を繰り返
して微粉化し、その充填層内部で応力を生じた場
合には、その応力を吸収する役目を果たし、ヒー
トパイプ内壁等に大きな圧力がかかることが防止
される。またこの発明の蓄熱容器には、上記態様
のもので弾性断熱部材31および32を有しない
ものも含まれる。
In other words, when the metal hydride repeatedly absorbs and dissociates hydrogen and becomes pulverized, and stress is generated inside the packed layer, it serves to absorb the stress and prevents large pressure from being applied to the inner wall of the heat pipe, etc. be done. The heat storage container of the present invention also includes one having the above-mentioned embodiment but not having the elastic heat insulating members 31 and 32.

この発明の金属水素化物容器を用いた蓄熱装置
を第5図に示した。第5図は、前記第1図または
第3図に示した金属水素化物容器を3台ずつ用い
た蓄熱部と水素貯蔵部とを有する金属水素化
物蓄熱装置の部分断面を含む斜視図である。
A heat storage device using the metal hydride container of this invention is shown in FIG. FIG. 5 is a perspective view including a partial cross section of a metal hydride heat storage device having a heat storage section A and a hydrogen storage section B using three metal hydride containers each shown in FIG. 1 or FIG. be.

蓄熱部と水素貯蔵部とにおいて金属水素化
物容器41a,41b,41cと51a,51
b,51cは、1本づつ断熱本体42と52の横
面に水平に並設した凹条43a,43b,43c
と53a,53b,53cとに挿入される。また
凹条と金属水素化物容器との間には断熱材が充填
され、次いで断熱本体の断熱蓋体でふたがなさら
る。一方断熱本体42と52には内部に熱媒が充
填された熱交換器44と54がそれぞれ接設され
ている。この熱交換器44と54の断熱本体42
と52の側面には、各凹条に対応してそれぞれ切
欠きが設けられており、凹条に各金属水素化物容
器をその熱交換部50a,50b,50cと60
a,60b,60cとがそれぞれ熱交換器44と
54の中に突出するように挿入され、シール部材
45a,45b,45cと55a,55b,55
cとでそれぞれシールされる。もちろん熱交換器
44と55には更にシール材を介して側蓋が装着
される(図示せず)。また金属水素化物容器41
a,41b,41cと51a,51b,51cと
はそれぞれ結合部47a,47b,47cと57
a,57b,57cとで水素分配器48と58に
連結され更にこれら蓄熱部と水素貯蔵部は開
閉弁46dを有する導管で連結される。また49
a,49bと59a,59bとはそれぞれ熱交換
器44と54の熱媒出入口である。
Metal hydride containers 41a, 41b, 41c and 51a, 51 in heat storage section A and hydrogen storage section B
b, 51c are concave strips 43a, 43b, 43c horizontally arranged on the side surfaces of the heat insulating bodies 42 and 52, respectively.
and 53a, 53b, and 53c. Further, a heat insulating material is filled between the groove and the metal hydride container, and then the lid is closed with a heat insulating lid of the heat insulating body. On the other hand, heat exchangers 44 and 54 each filled with a heat medium are connected to the heat insulating bodies 42 and 52, respectively. The heat insulating body 42 of the heat exchangers 44 and 54
and 52 are provided with notches corresponding to the respective grooves, and each metal hydride container is attached to the grooves in its heat exchange parts 50a, 50b, 50c and 60.
a, 60b, 60c are inserted so as to protrude into the heat exchangers 44 and 54, respectively, and seal members 45a, 45b, 45c and 55a, 55b, 55
They are each sealed with c. Of course, side covers are further attached to the heat exchangers 44 and 55 via a sealing material (not shown). Also, metal hydride container 41
a, 41b, 41c and 51a, 51b, 51c are joint parts 47a, 47b, 47c and 57, respectively.
a, 57b, and 57c are connected to hydrogen distributors 48 and 58, and furthermore, these heat storage section A and hydrogen storage section B are connected by a conduit having an on-off valve 46d. Also 49
a, 49b and 59a, 59b are heat medium inlets and outlets of the heat exchangers 44 and 54, respectively.

次にこの蓄熱装置の作動方法を説明する。 Next, a method of operating this heat storage device will be explained.

例えば太陽熱を集熱した熱媒が49bの熱媒入
口から熱交換器44に導かれ、その熱によつて金
属水素化物容器の熱交換器内への突出した熱交換
部50a,50b,50cを加熱することによつ
て金属水素化物容器41a,41b,41c内の
金属水素化物を加熱して脱水素化させる。発生し
た水素ガスを開閉弁46a,46b,46c,4
6d,56a,56b,56cを開いて水素貯蔵
の金属水素化物容器51a,51b,51c
に導き、内部に充填された金属と反応させて金属
水素化物とし水素を貯蔵する。次いで蓄熱した熱
を利用したいときは、廃熱を集熱した低温の熱媒
を熱媒入口59bから熱交換器54に導入し、そ
の熱によつて金属水素化物容器の熱交換部60
a,60b,60cを加熱することによつて金属
水素化物容器51a,51b,51c内の金属水
素化物を加熱して脱水素化させ、発生した水素を
開放した開閉弁57a,57b,57c,46
a,46b,46c,46dを通じて蓄熱部
金属水素化物容器41a,41b,41cに導
き、内部の金属と反応させ発生した熱を金属水素
化物容器の熱交換部50a,50b,50cを通
じて熱媒に伝達し、この熱媒によつて冷暖房や給
湯用などの用途に利用される。
For example, a heating medium that collects solar heat is guided to the heat exchanger 44 from the heating medium inlet 49b, and the heat exchanges parts 50a, 50b, and 50c that protrude into the heat exchanger of the metal hydride container. By heating, the metal hydride in the metal hydride containers 41a, 41b, and 41c is heated and dehydrogenated. The generated hydrogen gas on-off valves 46a, 46b, 46c, 4
6d, 56a, 56b, 56c are opened to open the metal hydride containers 51a, 51b, 51c of hydrogen storage section B.
It reacts with the metal filled inside to form a metal hydride and stores hydrogen. Next, when it is desired to utilize the stored heat, a low-temperature heat medium that has collected waste heat is introduced into the heat exchanger 54 from the heat medium inlet 59b, and the heat is used to transfer the heat exchange part 60 of the metal hydride container.
The on-off valves 57a, 57b, 57c, 46 are heated to dehydrogenate the metal hydride in the metal hydride containers 51a, 51b, 51c by heating the metal hydride containers 51a, 60b, 60c, and open the generated hydrogen.
a, 46b, 46c, 46d to the metal hydride containers 41a, 41b, 41c of the heat storage section A , and the heat generated by reacting with the metal inside is transferred to the heat medium through the heat exchange sections 50a, 50b, 50c of the metal hydride container. This heat medium is used for purposes such as air conditioning and hot water supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図並びに第3図と第4図はそれぞ
れこの発明の金属水素化物容器の2つの実施例の
縦断面図と横断面図、第5図はこの発明の金属水
素化物容器を用いる1つの金属水素化物蓄熱装置
の内部構造を説明する部分断面を含む斜視図であ
る。 …蓄熱部、…水素貯蔵部、1および21…
ドーナツ形ヒートパイプの外管、2および12…
ドーナツ形ヒートパイプの内管、3および23…
ドーナツ形ヒートパイプのウイツク、4,5,2
4および25…閉鎖部材、6および26…金属水
素化物、7,27,46a,46b,46c,4
6d,56a,56bおよび56c…開閉弁、8
および28…水素出入導管、9…多孔性管状区画
体、10,12,13,31および32…弾性断
熱部材、11…金網、29…板状区画体、30…
筒状弾性断熱部材、31および32…板状弾性断
熱部材、41a,41b,41c,51a,51
bおよび51c…金属水素化物容器、42および
52…断熱本体、43a,43b,43c,53
a,53bおよび53c…凹条、44および54
…熱交換器、45a,45b,45c,55a,
55bおよび55c…シール部材、47a,47
b,47c,57a,57bおよび57c…結合
部、48および58…水素ガス分配器、49a,
49bおよび59a,59b…熱媒出入口、50
a,50b,50c,60a,60bおよび60
c…金属水素化物容器の熱交換部。
Figures 1 and 2 and Figures 3 and 4 are longitudinal and cross-sectional views, respectively, of two embodiments of the metal hydride container of the present invention, and Figure 5 is a view of the metal hydride container of the present invention. It is a perspective view including a partial cross section explaining the internal structure of one metal hydride heat storage device to be used. A ... Heat storage section, B ... Hydrogen storage section, 1 and 21...
Outer tubes of donut-shaped heat pipes, 2 and 12...
Inner tubes of donut-shaped heat pipes, 3 and 23...
Donut-shaped heat pipe wick, 4, 5, 2
4 and 25...Closing member, 6 and 26...Metal hydride, 7, 27, 46a, 46b, 46c, 4
6d, 56a, 56b and 56c...on/off valve, 8
and 28... hydrogen inlet/output conduit, 9... porous tubular compartment, 10, 12, 13, 31 and 32... elastic heat insulating member, 11... wire mesh, 29... plate-shaped compartment, 30...
Cylindrical elastic heat insulating members, 31 and 32...Plate elastic heat insulating members, 41a, 41b, 41c, 51a, 51
b and 51c...Metal hydride container, 42 and 52...Insulating main body, 43a, 43b, 43c, 53
a, 53b and 53c...concave stripes, 44 and 54
...Heat exchanger, 45a, 45b, 45c, 55a,
55b and 55c...Seal members, 47a, 47
b, 47c, 57a, 57b and 57c... joint portion, 48 and 58... hydrogen gas distributor, 49a,
49b and 59a, 59b...Heat medium inlet/outlet, 50
a, 50b, 50c, 60a, 60b and 60
c...Heat exchange section of metal hydride container.

Claims (1)

【特許請求の範囲】 1 ドーナツ形ヒートパイプの中央中空部に金属
水素化物を充填し、その中央中空部の両端の中央
開口を閉鎖部材で閉鎖し、その閉鎖部材に、開閉
弁を有する水素出入導管を、その一方の開口端が
ヒートパイプの中央中空部に向かつて開口するよ
うに設置し、その開口端に、水素は通過しうるが
金属水素化物を通過しえない区画体を前記開口端
が閉鎖されるように設置しかつその区画体と前記
金属水素化物との間に弾性断熱部材を介挿させて
なる金属水素化物容器。 2 水素は通過しうるが金属水素化物を通過しえ
ない区画体が水素出入導管のヒートパイプの中央
中空部側の開口端から該中空部へ延出した有底導
管であり、該区画体を水素は通過しうるが金属水
素化物を通過しえない弾性断熱部材で覆つてなる
特許請求の範囲第1項記載の容器。 3 閉鎖部材の内面に弾性断熱部材を密接させた
特許請求の範囲第2項記載の容器。 4 筒状もしくは棒状で水素は通過しうるが金属
水素化物は通過しえない弾性断熱部材が、水素は
通過しうるが金属水素化物は通過しえない板状の
区画体を介して水素出入導管のヒートパイプの中
央中空部への開口端より同軸に該中空部に延出し
てなる特許請求の範囲第1項記載の容器。 5 閉鎖部材の内面に弾性断熱部材を密接させた
特許請求の範囲第4項記載の容器。
[Claims] 1. A central hollow part of a doughnut-shaped heat pipe is filled with a metal hydride, central openings at both ends of the central hollow part are closed by closing members, and the closing member has a hydrogen inlet/outlet having an on-off valve. A conduit is installed so that one open end thereof opens toward the central hollow part of the heat pipe, and a partition body through which hydrogen can pass but not metal hydride is provided at the open end. 1. A metal hydride container, which is installed so as to be closed, and an elastic heat insulating member is interposed between the compartment and the metal hydride. 2. The compartment body through which hydrogen can pass but not the metal hydride is a bottomed conduit extending from the open end on the central hollow side of the heat pipe of the hydrogen inlet/output conduit to the hollow part, and the compartment body is 2. A container according to claim 1, which is covered with an elastic heat insulating member that allows hydrogen to pass through but does not allow metal hydride to pass through. 3. The container according to claim 2, wherein an elastic heat insulating member is brought into close contact with the inner surface of the closing member. 4 A cylindrical or rod-shaped elastic insulation member through which hydrogen can pass but not metal hydrides is connected to a hydrogen inlet/output conduit via a plate-shaped compartment body through which hydrogen can pass but not metal hydrides. 2. The container according to claim 1, wherein the heat pipe extends coaxially into the central hollow portion from an open end thereof into the central hollow portion. 5. The container according to claim 4, wherein an elastic heat insulating member is brought into close contact with the inner surface of the closing member.
JP57022115A 1982-02-16 1982-02-16 Metallic hydride container Granted JPS58140304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022115A JPS58140304A (en) 1982-02-16 1982-02-16 Metallic hydride container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022115A JPS58140304A (en) 1982-02-16 1982-02-16 Metallic hydride container

Publications (2)

Publication Number Publication Date
JPS58140304A JPS58140304A (en) 1983-08-20
JPS6132554B2 true JPS6132554B2 (en) 1986-07-28

Family

ID=12073880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022115A Granted JPS58140304A (en) 1982-02-16 1982-02-16 Metallic hydride container

Country Status (1)

Country Link
JP (1) JPS58140304A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272320B2 (en) * 2007-03-29 2013-08-28 株式会社日立製作所 HYDROGEN SUPPLY DEVICE, ITS MANUFACTURING METHOD, AND DISTRIBUTED POWER SUPPLY AND AUTOMOBILE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128713A (en) * 1975-04-21 1976-11-09 Billings Energy Res Hydrogen storage method and apparatus therefor
US4134491A (en) * 1978-02-24 1979-01-16 The International Nickel Company, Inc. Hydride storage containment
JPS5684301A (en) * 1979-12-14 1981-07-09 Kawasaki Heavy Ind Ltd Holding apparatus for hydrogen storing metal
JPS6132554A (en) * 1984-07-25 1986-02-15 Sumitomo Electric Ind Ltd Formation of multilayer interconnection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128713A (en) * 1975-04-21 1976-11-09 Billings Energy Res Hydrogen storage method and apparatus therefor
US4134491A (en) * 1978-02-24 1979-01-16 The International Nickel Company, Inc. Hydride storage containment
JPS5684301A (en) * 1979-12-14 1981-07-09 Kawasaki Heavy Ind Ltd Holding apparatus for hydrogen storing metal
JPS6132554A (en) * 1984-07-25 1986-02-15 Sumitomo Electric Ind Ltd Formation of multilayer interconnection structure

Also Published As

Publication number Publication date
JPS58140304A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
US4548044A (en) Metal hydride container and metal hydride heat storage system
CA1123293A (en) Reaction heat storage method for hydride tanks
US4402915A (en) Metal hydride reactor
JP3626979B2 (en) Solid absorbent boiler / absorber apparatus, method of manufacturing the same, and refrigeration apparatus using the apparatus
JPS6132554B2 (en)
JPS5925956B2 (en) metal hydride container
JPS58164994A (en) Vessel for metal hydride
JPS6176887A (en) Vessel for accommodating metallic hydrides
JP2525152B2 (en) Metal hydride heat exchanger
JPS6144237B2 (en)
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JPH0253362B2 (en)
JPS5925955B2 (en) Metal hydride heat storage device
JPS5925957B2 (en) Metal hydride heat storage device
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JPS58182087A (en) Heat accumulating device by metal hydride
JPH0351987B2 (en)
JPS6037395B2 (en) Portable heating or cooling device
JPS5950300A (en) Container for metal hydride
JP2799866B2 (en) Heating and cooling system using hydrogen storage alloy
JPS6231238B2 (en)
JPH04369360A (en) Heat-exchanger having hydrogen storage alloy
JPS62204099A (en) Container for metal hydride
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPH0159203B2 (en)