JPS6134493B2 - - Google Patents

Info

Publication number
JPS6134493B2
JPS6134493B2 JP58110052A JP11005283A JPS6134493B2 JP S6134493 B2 JPS6134493 B2 JP S6134493B2 JP 58110052 A JP58110052 A JP 58110052A JP 11005283 A JP11005283 A JP 11005283A JP S6134493 B2 JPS6134493 B2 JP S6134493B2
Authority
JP
Japan
Prior art keywords
gallium
acid
solution
concentration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110052A
Other languages
Japanese (ja)
Other versions
JPS602636A (en
Inventor
Kotaro Hirayanagi
Akira Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Keikinzoku KK
Original Assignee
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Keikinzoku KK filed Critical Showa Keikinzoku KK
Priority to JP58110052A priority Critical patent/JPS602636A/en
Publication of JPS602636A publication Critical patent/JPS602636A/en
Publication of JPS6134493B2 publication Critical patent/JPS6134493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、含ガリりム鉱酞氎溶液より、過剰の
酞を分離し、぀いで電解によりガリりムを回収す
る方法に関する。 ガリりムは、電子材料の原料ずしお、極めお重
芁な金属であるが、ガリりムを豊富に含有する鉱
石はなく、工業的な補造法ずしおは、䟋えば埮量
のガリりムを含有するボヌキサむト鉱石より、ア
ルミナをアルカリ抜出しお埗られるバむダヌ液
アルミン酞ナトリりム溶液より分離回収する
方法、黒鉱の亜鉛補緎工皋で回収する方法などが
知られおいる。 これらの方法は倚岐にわたるが、バむダヌ液で
の盎接電解法を陀き、䞀般的方法ずしおは埮量な
ガリりムを含む出発原料に぀いお、溶媒抜出、沈
でん分離、等の前凊理操䜜により、ガリりム成分
の濃瞮ず䞍玔物の陀去を行ない、埗られたガリり
ム成分を含む氎溶液を、倚くはアルカリ性氎溶液
においお電解しお、ガリりムを埗る方法がある。
この前凊理操䜜には、鉱酞を䜿甚する堎合が倚
く、電解に際し、倚量のアルカリを添加せねばな
らず、倚量の酞およびアルカリが無駄に消費され
るこず、倚量の塩の共存による電解のトラブルが
避け難いこずなどの欠点の倖に、䞭和操䜜に起因
しお凊理する氎溶液の量が増加するために装眮の
容量増を来たし、蚭備費の増倧を招くなど倚くの
欠点があり、このような欠点の無い効率的な方法
の開発が匷く望たれおいた。 アルミン酞ナトリりム溶液よりガリりムを回収
する方法ずしおは、䟋えば特開昭51−32411号公
報に蚘茉されおいる方法がある。この方法は、バ
むダヌ工皋からのアルミン酞ナトリりム溶液に含
たれるガリりムを、氎䞍溶性の眮換ヒドロキシノ
リンにより液―液抜出し䞍玔物を陀去した埌、こ
れを逆抜出するもので、含ガリりム鉱酞氎溶液が
埗られるが、この電解は、倚くはアルカリ性にお
いお行なわれるので、前述のような問題点があ
る。 䞀方、すでに述べたように、ガリりムを豊富に
含有する鉱石が存圚しないこずから、GaP
GaAsGaAs1―xPxGaxIn1―xPGaxA―
xAsGd3Ga5O12等の結晶玠材を電子材料玠子ぞ
加工する際に発生する廃棄物も極めお貎重な資源
である。これらガリりム廃棄物は、電子工業の発
展に䌎ない幎々増加しおおり、廃棄物からのガリ
りム回収技術も、倚数提案されおいる。 ガリりムを含有しおいる廃棄物を䟋瀺するず、 (1) GaPGaAsGaAs1―xPxGaxIn1―xP
GaxA―xAsGd3Ga5O12等金属間化合
物、金属酞化物の倚結晶質及び単結晶補造時の
廃棄物 (2) 倚結晶及び単結晶からり゚ハヌを切り出す際
の切削局 (3) り゚ハヌ鏡面仕䞊甚酞溶液 等がある。 廃棄物からの金属ガリりムの回収法ずしおはた
ずえば特公昭56−38661号公報に蚘茉されおいる
方法がある。この方法は、ガリりムを含む廃棄
物、すなわちガリりムずVb族元玠ずからなる金
属間化合物等のガリりムを含む組成物を酞化剀の
存圚䞋、酞性たたは塩基性溶液に溶解埌PHを調敎
しお、ガリりム分を析出させた埌、析出物を分離
し、぀いでこれら分離物をアルカリ溶液に溶解
し、぀いで溶解液を電解しおガリりムを回収する
ものである。この堎合析出物がゲルで生ずる堎合
が倚く、この堎合該公報欄13〜20行に蚘茉され
おいるように析出物を加熱䞋に保持し、熟成する
こずが必芁である。そしお析出物の分離は沈降、
ろ過、遠心分離等の公知の手段により行ないうる
ずされおいる。 このプロセスでは、取り扱いの面倒なゲルにか
かわる分離工皋を必芁ずするため、蚭備的にも、
䜜業性の面でも極めお倧がかりなものになるずい
う欠点がある。 本発明者らは、このような珟状に鑑み、含ガリ
りム鉱酞氎溶液から、効率的に高玔床のガリりム
を、高収率で回収する方法に぀いお研究を重ね、
本発明を完成した。即ち本発明は、含ガリりム鉱
酞氎溶液よりガリりムを回収するに際し、むオン
亀換膜を介しお、䞀方に鉱酞氎溶液を、他方に氎
を向流通液せしめる拡散透析槜に、該含ガリりム
鉱酞氎溶液及び氎を通液しお、過剰の酞を分離
し、埗られた透析液のPHを、電解によりガリりム
が単離されうる範囲に調敎埌、電解するこずを特
城ずする含ガリりム鉱酞氎溶液よりのガリりムの
回収法に関する。 本発明においお、含ガリりム鉱酞氎溶液ずしお
は、䟋えば、特開昭51−32411号公報蚘茉のバむ
ダヌ法からのアルミン酞ナトリりム溶液䞭のガリ
りムを氎䞍溶性の眮換ヒドロキシノリンで抜出
し、䞍玔物を陀去した埌、これを匷鉱酞で逆抜出
した溶液、特公昭56−38661号公報蚘茉のガリり
ム含有廃棄物を酞化剀存圚䞋で、濃塩酞、濃硝酞
に溶解しお埗られた溶液、特開昭54−117315号お
よび特開昭56−9223号公報蚘茉のガリりム含有廃
棄物を鉱酞により溶解しお埗られた溶液などが䜿
甚できる。 拡散透析槜は、むオン亀換膜を通しおの酞ず塩
類の拡散速床差を利甚し、酞ず塩類を効率的に分
離する装眮であり、廃酞の回収などに広く利甚さ
れおいる。透析操䜜は、むオン亀換膜以䞋拡散
透析膜ずいうによ぀お垂盎に隔離された䞀方の
宀の䞋郚から原液を入れお䞊昇流ずし、他方の宀
の䞊郚から氎を入れお䞋降流で流すこずにより、
氎は拡散しおきた酞によ぀お次第に酞濃床が倧き
くな぀お䞋郚に至り、原液䞭の酞を回収するもの
である。 次に本発明に぀いお、ガリりムを含有しおいる
廃棄物からのガリりムの回収方法およびバむダヌ
法によるアルミン酞ナトリりム溶液からのガリり
ム回収法を䟋にずり、詳しく説明するが、本発明
は、これらに限定されるものでないこずはいうた
でもない。 ガリりム含有廃棄物からの回収においおは、た
ずガリりム含有廃棄物を酞化分解するが、この廃
棄物がたずえば切削屑の堎合には切削油等の有機
物が付着しおおり、この堎合は焌成、又は溶剀掗
浄等によりこれらを予め陀く必芁がある。又この
廃棄物は酞化分解し易いように必芁に応じお粉砕
するこずが必芁である。このような前凊理がなさ
れた廃棄物をたず、湿匏酞化分解する。酞化分解
は塩酞―硝酞、フツ酞―硝酞、硝酞―過塩玠酞等
の酞化性酞により行なう。 次に未溶解分を陀去した埌に酞濃床IN以䞊ガ
リりム濃床1g以䞊にお拡散透析槜に通液す
る。酞濃床がINより䜎い堎合には酞の回収が充
分行なわれない。たたガリりム濃床が1gに
達しない堎合は透析液より調敎する電解液での電
流効率が䜎䞋する。 拡散透析槜に通液する堎合の凊理速床は䞀般に
0.2〜hr・m2が適である。あたり速いず酞
ず塩の分離が充分行なわれず、遅い堎合には塩を
回収酞偎にロスしおしたう䞊に装眮効率が䜎くな
る。 本発明に甚いられる拡散透析槜はスチレン―ゞ
ビニルベンれン系膜でペヌスト法により補膜され
た厚さ0.10〜0.20mmのフむルム状の陰むオン亀換
膜であ぀お、垂販のネオセプタAFNおよびAFA
埳山曹達(æ ª)補商品名、セレミオンDSVDMV
旭硝子(æ ª)補商品名等が適圓である。 拡散透析槜での酞ず塩ずの分離に぀いおは凊理
速床以倖に酞の皮類塩酞、硝酞、リン酞、フツ
酞等による違いが倧きく、䞀般的に塩酞、硝
酞、フツ酞に぀いおは良奜な分離がなされたリン
酞に぀いおはほずんど分離が行なわれない。よ぀
お該酞化分解液を拡散透析槜に通液するず酞のう
ち塩酞、硝酞、フツ酞は高効率で回収される䞀方
Vb族元玠の酞化物酞は回収されにくく透析液䞭
に残存する。 次に酞を回収した埌の透析液にアルカリ溶液を
加えお電解により金属ガリりムが析出し易い範囲
にアルカリ濃床を調敎する。この奜たしいアルカ
リ濃床は0.5〜5Nであり、0.5N未満の堎合電解䞭
に氎玠発生を促し、又5Nを越える堎合は、液粘
床の䞊昇等による発生ガスの脱泡䞍良や拡散䞍足
によりいずれも電流効率を䜎䞋させる。析出物を
生成した堎合は濟過により容易に陀去できる。 電解は通垞の氎溶液電解であ぀お、次のような
条件で行なうこずが奜たしい。即ち、陰極ずしお
ニツケル板、液状金属ガリりム等陜極は癜金板、
ニツケル板等を甚い、陰極電流密床0.01〜0.5A
cm2、济枩40〜80℃、電解液䞭のガリりム金属の濃
床0.02〜1.5molが適圓である。これらの条件
範囲は高い電流効率を埗るために必芁である。 液䞭のガリりムはガリりム酞むオンGaO2ずし
お存圚し、電解により陰極に析出する。 このようにしおガリりムを含む各皮の廃棄物よ
り効率よく高玔床のガリりムを回収するこずがで
きる。 なお酞化分解液を拡散透析膜に通液せずに盎接
アルカリを加えおアルカリ濃床を調敎し、沈柱物
を陀去した埌に同䞀条件にお電解を行぀おもガリ
りムは析出しなか぀た。このように拡散透析を甚
いるず酞回収できなか぀た䞭和甚アルカリが簡玄
でき、さらに、透析液にアルカリを加えおアルカ
リ濃床を調敎し電解を行なうこずにより金属ガリ
りムが回収できるために䞭和ゲルの生成、濟過、
掗浄等耇雑な工皋を陀く事が出きるずいう倧きな
効果をもたらす。 以䞋実斜䟋、比范䟋により、曎に詳しく説明す
る。 実斜䟋  ガリりム・リン り゚ハヌ切削屑油性ペヌス
ト状を開攟電気炉䞭で焌成しお付着しおいる最
滑油等の有機物を燃焌陀去し、ガリりム・リン粉
未10.0gを埗た。この粉未1.0重量郚に酞化性混酞
conc.HC1.2重量郚conc.HNO31.0重量郚22
重量郚を加え、液を撹拌しおGaPを酞化分解し
た。぀ぎに酞化分解液をろ過し、未溶液残枣0.1g
をろ別しお透明ろ液を埗た。このろ液を拡散透析
膜ずしお旭硝子(æ ª)補セレミオンDMVを䜿甚した
拡散透析槜にm2・hrの速さで通液し同時に
拡散透析膜を介しお氎を同様察眮せしめ、該氎偎
に酞を拡散させお回収した。 ろ液、回収酞、透析液の液組成を衚に瀺す。
The present invention relates to a method for separating excess acid from an aqueous gallium-containing mineral acid solution and then recovering gallium by electrolysis. Gallium is an extremely important metal as a raw material for electronic materials, but there are no ores containing abundant gallium, and the only industrial manufacturing method is, for example, alkali extraction of alumina from bauxite ore, which contains a small amount of gallium. Methods of separating and recovering from Bayer's solution (sodium aluminate solution) obtained by the process, and methods of recovering in the black ore zinc smelting process are known. These methods are diverse, but with the exception of the direct electrolysis method using Bayer's solution, the general method is to concentrate the gallium component using pretreatment operations such as solvent extraction and precipitation separation for a starting material containing a trace amount of gallium. There is a method of obtaining gallium by removing impurities and electrolyzing the resulting aqueous solution containing a gallium component, often in an alkaline aqueous solution.
Mineral acids are often used in this pretreatment operation, and a large amount of alkali must be added during electrolysis, resulting in a large amount of acid and alkali being wasted, and the coexistence of a large amount of salt causing electrolysis. In addition to the disadvantages that troubles are difficult to avoid, there are many disadvantages such as the increase in the amount of aqueous solution to be treated due to the neutralization operation, which increases the capacity of the equipment and increases equipment costs. There is a strong desire to develop an efficient method that does not have these drawbacks. As a method for recovering gallium from a sodium aluminate solution, for example, there is a method described in JP-A-51-32411. This method involves liquid-liquid extraction of gallium contained in the sodium aluminate solution from the Bayer process using water-insoluble substituted hydroxynoline to remove impurities, and then back extraction. However, since this electrolysis is mostly carried out under alkaline conditions, there are problems as mentioned above. On the other hand, as already mentioned, GaP,
GaAs, GaAs 1 ―xPx, GaxIn 1 ―xP, GaxA 1 ―
The waste generated when processing crystalline materials such as xAs and Gd 3 Ga 5 O 12 into electronic material elements is also an extremely valuable resource. The amount of gallium waste is increasing year by year with the development of the electronic industry, and many techniques for recovering gallium from waste have been proposed. Examples of waste containing gallium are: (1) GaP, GaAs, GaAs 1 -xPx, GaxIn 1 -xP,
GaxA 1 - Waste from the production of polycrystalline and single crystals of intermetallic compounds and metal oxides such as xAs, Gd 3 Ga 5 O 12 (2) Cutting layer when cutting wafers from polycrystals and single crystals (3) There are acid solutions for mirror-finishing wafers, etc. An example of a method for recovering metallic gallium from waste is the method described in Japanese Patent Publication No. 38661/1983. This method involves dissolving gallium-containing waste, that is, a gallium-containing composition such as an intermetallic compound consisting of gallium and a group Vb element, in an acidic or basic solution in the presence of an oxidizing agent, and then adjusting the pH. After precipitating the gallium component, the precipitate is separated, the separated product is then dissolved in an alkaline solution, and the solution is then electrolyzed to recover gallium. In this case, the precipitate is often formed as a gel, and in this case, it is necessary to maintain the precipitate under heat and ripen it as described in column 4, lines 13 to 20 of the publication. And the separation of precipitates is sedimentation,
It is said that this can be done by known means such as filtration and centrifugation. This process requires a separation step involving a gel that is difficult to handle, so it is difficult to use in terms of equipment.
It also has the disadvantage of being extremely large-scale in terms of workability. In view of the current situation, the present inventors have conducted repeated research on a method for efficiently recovering high-purity gallium at a high yield from a gallium-containing mineral acid aqueous solution.
The invention has been completed. That is, in the present invention, when recovering gallium from an aqueous gallium-containing mineral acid solution, the aqueous gallium-containing mineral acid solution is placed in a diffusion dialysis tank in which a mineral acid aqueous solution is passed through an ion exchange membrane on one side and water is counter-flowed on the other side. From a gallium-containing mineral acid aqueous solution, which is characterized by passing water through it to separate excess acid, adjusting the pH of the obtained dialysate to a range in which gallium can be isolated by electrolysis, and then electrolyzing it. Regarding the recovery method of gallium. In the present invention, as the gallium-containing mineral acid aqueous solution, for example, gallium in a sodium aluminate solution obtained by the Bayer method described in JP-A-51-32411 is extracted with water-insoluble substituted hydroxynoline to remove impurities. Then, a solution obtained by back-extracting this with a strong mineral acid, a solution obtained by dissolving the gallium-containing waste described in Japanese Patent Publication No. 56-38661 in concentrated hydrochloric acid and concentrated nitric acid in the presence of an oxidizing agent, Solutions obtained by dissolving gallium-containing wastes with mineral acids as described in No. 54-117315 and Japanese Patent Application Laid-Open No. 56-9223 can be used. A diffusion dialysis tank is a device that efficiently separates acids and salts by utilizing the difference in diffusion rate between the acids and salts through an ion exchange membrane, and is widely used for purposes such as recovering waste acids. In dialysis operation, stock solution is introduced from the bottom of one chamber vertically isolated by an ion exchange membrane (hereinafter referred to as a diffusion dialysis membrane) to create an upward flow, and water is introduced from the top of the other chamber to flow downward. By this,
The acid concentration of the water gradually increases due to the acid that has diffused and reaches the bottom, where the acid in the undiluted solution is recovered. Next, the present invention will be explained in detail by taking as examples a method for recovering gallium from waste containing gallium and a method for recovering gallium from a sodium aluminate solution using the Bayer method, but the present invention is not limited to these. Needless to say, this is not something that can be done. When recovering gallium-containing waste, the gallium-containing waste is first oxidized and decomposed, but if this waste is, for example, cutting waste, organic matter such as cutting oil is attached to it, and in this case, it is burned or treated with a solvent. These must be removed in advance by washing or the like. Moreover, it is necessary to crush this waste as necessary so that it can be easily oxidized and decomposed. The waste that has been pretreated in this way is first subjected to wet oxidative decomposition. Oxidative decomposition is carried out using oxidizing acids such as hydrochloric acid-nitric acid, hydrofluoric acid-nitric acid, nitric acid-perchloric acid, etc. Next, after removing undissolved matter, the solution is passed through a diffusion dialysis tank at an acid concentration of IN or higher and a gallium concentration of 1 g/ or higher. If the acid concentration is lower than IN, the acid will not be recovered sufficiently. Furthermore, if the gallium concentration does not reach 1 g/g, the current efficiency in the electrolytic solution to be adjusted is lowered than in the dialysate. Generally speaking, the processing speed when passing fluid through a diffusion dialysis tank is
0.2 to 2/hr·m 2 is suitable. If it is too fast, the acid and salt will not be separated sufficiently, and if it is too slow, the salt will be lost to the recovered acid side and the efficiency of the device will decrease. The diffusion dialysis tank used in the present invention is a film-like anion exchange membrane with a thickness of 0.10 to 0.20 mm formed by a paste method using a styrene-divinylbenzene membrane, and commercially available NeoSepta AFN and AFA
(Product name manufactured by Tokuyama Soda Co., Ltd.), Selemion DSV, DMV
(trade name manufactured by Asahi Glass Co., Ltd.) etc. are suitable. Regarding the separation of acids and salts in a diffusion dialysis tank, there are large differences depending on the type of acid (hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, etc.) in addition to the processing speed. Almost no phosphoric acid is separated. Therefore, when the oxidized decomposition solution is passed through a diffusion dialysis tank, among the acids, hydrochloric acid, nitric acid, and hydrofluoric acid are recovered with high efficiency.
Oxide acids of group Vb elements are difficult to recover and remain in the dialysate. Next, an alkaline solution is added to the dialysate after recovering the acid, and the alkaline concentration is adjusted to a range where metal gallium is easily deposited by electrolysis. The preferred alkali concentration is 0.5 to 5N; if it is less than 0.5N, it will promote hydrogen generation during electrolysis, and if it exceeds 5N, it will cause insufficient defoaming and insufficient diffusion of the generated gas due to an increase in liquid viscosity, etc. Reduce efficiency. If a precipitate is formed, it can be easily removed by filtration. The electrolysis is a normal aqueous solution electrolysis, and is preferably carried out under the following conditions. That is, a nickel plate is used as the cathode, a platinum plate is used as the anode, liquid metal gallium, etc.
Using a nickel plate, etc., the cathode current density is 0.01 to 0.5A/
cm 2 , a bath temperature of 40 to 80°C, and a concentration of gallium metal in the electrolyte of 0.02 to 1.5 mol/are appropriate. These condition ranges are necessary to obtain high current efficiency. Gallium in the liquid exists as gallate ions GaO 2 and is deposited on the cathode by electrolysis. In this way, highly purified gallium can be efficiently recovered from various types of waste containing gallium. In addition, even if the oxidized decomposition solution was not passed through the diffusion dialysis membrane, but the alkali concentration was adjusted by directly adding alkali, and the precipitate was removed, electrolysis was performed under the same conditions, but no gallium was deposited. In this way, by using diffusion dialysis, the amount of neutralizing alkali that could not be recovered from the acid can be reduced.Furthermore, by adding alkali to the dialysate to adjust the alkali concentration and performing electrolysis, metallic gallium can be recovered, so the neutralizing gel can be removed. generation, filtration,
This has the great effect of eliminating complicated processes such as cleaning. This will be explained in more detail below using Examples and Comparative Examples. Example 1 Gallium/Phosphorus Wafer cuttings (oil-based paste) were fired in an open electric furnace to burn off adhering organic substances such as lubricating oil to obtain 10.0 g of gallium/phosphorous powder. Add 1.0 parts by weight of this powder to oxidizing mixed acid (1.2 parts by weight of conc.HC + 1.0 parts by weight of conc.HNO 3 )22
Part by weight was added and the liquid was stirred to oxidize and decompose GaP. Next, filter the oxidized decomposition liquid, leaving 0.1g of unresolved residue.
was filtered to obtain a clear filtrate. This filtrate was passed through a diffusion dialysis tank using Selemion DMV manufactured by Asahi Glass Co., Ltd. as a diffusion dialysis membrane at a rate of 1/m 2 ·hr, and at the same time, water was placed oppositely through the diffusion dialysis membrane. The acid was diffused to the side and recovered. Table 1 shows the liquid compositions of the filtrate, recovered acid, and dialysate.

【衚】 この透析液に15Nカセむ゜ヌダ溶液を加えお
Na2O濃床110gガリりム濃床0.15molのガ
リりム酞゜ヌダ溶液を埗た。この液䞭の沈柱物を
濟過分離埌、ろ液400mlを電解液ずし、癜金板を
陜極ずし、ニツケル板を陰極ずしお陰極電流密床
10Am2で時間通電したずころ陰極に玔床
99.99の金属ガリりム4.1gを埗た。 実斜䟋  ガリりムヒ玠単結晶補造の際の副生廃棄物であ
る塊状のガリりムヒ玠を粉砕し、タむラヌ暙準篩
170メツシナ党通の粉末ずした。この粉末1.0重量
郚に比重1.38のconc硝酞20重量郚を加え、液を撹
拌しおGaAsを酞化分解した。぀ぎに酞化分解液
をろ過し、未溶解残枣を分離埌ろ液を拡散透析槜
拡散透析膜ずしお埳山曹達(æ ª)補レオセプタAFN
䜿甚に1.5m2・hrの速さで通液するず同時
に拡散透析膜を介しお氎を同様察眮させ該氎偎に
酞を回収した。 ろ液、回収酞、透析液の液組成を衚に瀺す
[Table] Add 15N caustic soda solution to this dialysate.
A sodium gallate solution with a Na 2 O concentration of 110 g/gallium concentration of 0.15 mol/was obtained. After separating the precipitate in this solution by filtration, 400 ml of the filtrate was used as an electrolyte, and the platinum plate was used as an anode and the nickel plate was used as a cathode.
When the current was applied at 10A/ dm2 for 3 hours, the purity of the cathode was confirmed.
Obtained 4.1 g of 99.99% metallic gallium. Example 2 A lump of gallium arsenide, which is a by-product waste during the production of gallium arsenide single crystals, was crushed and passed through a Tyler standard sieve.
It was made into a powder with a total volume of 170 mesh. 20 parts by weight of conc nitric acid having a specific gravity of 1.38 was added to 1.0 parts by weight of this powder, and the liquid was stirred to oxidize and decompose GaAs. Next, the oxidized decomposition liquid was filtered, and the undissolved residue was separated.
At the same time, water was placed oppositely through a diffusion dialysis membrane, and the acid was recovered on the water side. The liquid compositions of the filtrate, recovered acid, and dialysate are shown in Table 2.

【衚】 この透析液に10Nカセむ゜ヌダ溶液を加えお、
Na2O濃床55g、ガリりム濃床は0.15mol
のガリりム酞゜ヌダ溶液を埗た。この液400mlを
電解液ずし、ニツケル板を陜極ずし、液䜓ガリり
ムを陰極ずしお陰極電流密床5Am2で時間
通電したずころ、陰極に玔床99.99金属ガリり
ム4.1gを埗た。 実斜䟋  ガリりム・リン り゚ハヌの鏡面仕䞊げに甚い
た酞溶液王氎をろ過し、このろ液を拡散透析
槜拡散透析膜ずしお旭硝子(æ ª)補セレミオン
DSVを䜿甚に0.5ml・hrの速さで通液する
ず同時に拡散透析膜を介しお氎を同様に察眮せし
め、該氎偎に酞を拡散させお回収した。ろ液、回
収酞、透析液の液組成を衚に瀺す。
[Table] Add 10N caustic soda solution to this dialysate,
Na 2 O concentration 55g/, gallium concentration 0.15mol/
A sodium gallate solution was obtained. When 400 ml of this solution was used as an electrolytic solution, a nickel plate was used as an anode, and liquid gallium was used as a cathode and current was applied at a cathode current density of 5 A/dm 2 for 6 hours, 4.1 g of metallic gallium with a purity of 99.99% was obtained at the cathode. Example 3 The acid solution (regia) used for mirror finishing the gallium phosphorous wafer was filtered, and the filtrate was transferred to a diffusion dialysis tank (as a diffusion dialysis membrane, Selemion manufactured by Asahi Glass Co., Ltd.
DSV was used) at a rate of 0.5/ml/hr, and at the same time, water was placed oppositely through a diffusion dialysis membrane, and the acid was diffused and recovered on the water side. Table 3 shows the liquid compositions of the filtrate, recovered acid, and dialysate.

【衚】 この透析液に15Nカセむ゜ヌダ溶液を加えお
Na2O濃床80gガリりム濃床0.03molのガ
リりム酞゜ヌダ溶液を埗た。この溶液1000mlを電
解液ずし、癜金板を陜極ずしニツケル板を陰極ず
しお陰極電流密床3Am2で10時間通電したず
ころ陰極に玔床99.99金属ガリりムが2g析出し
た。 比范䟋  実斜䟋ず同様にしお埗たガリりム・リン粉末
1.0重量郚に酞化性混酞conc.HC1.2重量郚
conc.HNO31.0重量郚22重量郚を加え、液を撹
拌しおGaPを酞化分解し、぀ぎに酞化分解液をろ
過し、未溶解残枣をろ別しお透明ろ液を埗た。こ
のろ液に10Nカセむ゜ヌダ溶液を加えおNa2O濃
床110g、ガリりム濃床、0.15molのガリ
りム酞゜ヌダ溶液を埗た。沈柱物を濟過分離埌、
ろ液400mlを電解液ずし、実斜䟋ず同様の条件
で電解したずころガリりムはた぀たく析出しなか
぀た。 比范䟋  実斜䟋ず同様にしお埗たガリりム・リン粉末
1.0重量郚に酞化性混酞conc.HC 1.2重量郹
concHNO3 1.0重量郚22重量郚を加え、液を
撹拌しおGaPを酞化分解し、぀ぎに酞化分解液を
ろ過し、未溶解残枣をろ別しお透明ろ液を埗た。
このろ液に氎冷し぀぀INカセむ゜ヌダ氎溶液を
埐々に加えおPHをに調敎したずころ倚量のゲル
状沈柱を生じた。デカンテヌシペンによりスラリ
ヌ濃床を10gたで濃瞮埌フむルタヌプレス
ろ垃通気床玄20c.c.cm2・min、ろ過圧力4.0Kg
cm2に䟛したずころ氎分80のケヌキ0.2Kg
m2・hrが埗られた。ケヌキ䞭のガリりム濃床は
2.7重量であ぀た。次にこのケヌキ1.0重量郚に
察しお4.0重量郚の氎を甚いおデカンテヌシペン
により回氎掗し、䞊蚘フむルタヌプレスにより
脱氎した。埗られたケヌキ300重量郚を10Nのカ
セむ゜ヌダ氎溶液120重量郚に溶解しおNa2O濃床
100g、ガリりム濃床0.15molのガリりム
酞゜ヌダ氎溶液を埗た。この氎溶液400mlを電解
液ずしお実斜䟋ず同様の条件で電解しお玔床
99.99のガリりム3.7gを埗た。 実斜䟋  バむダヌ法からのアルミン酞ナトリりムからの
回収法に぀いお実斜䟋により説明する。 特開昭51−32411号蚘茉の方法により、
Ga0.2gを含むアルミネヌト液NaOH150g
2O380gず抜出液Kelex100 
、―デカノヌル、バヌサチツク酞、
セロシン80ずを接觊させ、Gaを抜出埌
6.4NHCによりNa等の䞍玔物を陀去した
埌、2NHCによりGaを逆抜出した。該液を拡散
透析槜拡散透析膜ずしお旭硝子(æ ª)補セレミオン
DMVを䜿甚にm2hrの速さで通液するず
同時に、拡散透析膜を介しお氎を同様察眮せし
め、該氎偎に酞を拡散させお回収した。 逆抜出液、回収酞、透析液の組成を衚に瀺
す。
[Table] Add 15N caustic soda solution to this dialysate.
A sodium gallate solution with a Na 2 O concentration of 80 g/gallium concentration of 0.03 mol/was obtained. 1000 ml of this solution was used as an electrolyte, and when electricity was applied for 10 hours at a cathode current density of 3 A/dm 2 using a platinum plate as an anode and a nickel plate as a cathode, 2 g of metallic gallium with a purity of 99.99% was deposited on the cathode. Comparative Example 1 Gallium phosphorus powder obtained in the same manner as Example 1
1.0 parts by weight of oxidizing mixed acid (conc.HC1.2 parts by weight +
22 parts by weight of conc.HNO 3 (1.0 parts by weight) were added, the liquid was stirred to oxidize and decompose GaP, and the oxidatively decomposed liquid was then filtered to remove the undissolved residue by filtration to obtain a clear filtrate. A 10N caustic soda solution was added to this filtrate to obtain a sodium gallate solution with a Na 2 O concentration of 110 g/ and a gallium concentration of 0.15 mol/. After separating the precipitate by filtration,
When 400 ml of the filtrate was used as an electrolytic solution and electrolyzed under the same conditions as in Example 1, gallium did not precipitate at all. Comparative Example 2 Gallium phosphorous powder obtained in the same manner as Example 1
Add 22 parts by weight of oxidizing mixed acid (1.2 parts by weight conc.HC + 1.0 parts by weight concHNO 3 ) to 1.0 parts by weight, stir the liquid to oxidize and decompose GaP, and then filter the oxidized decomposition liquid to remove undissolved residue. A clear filtrate was obtained by filtration.
When the filtrate was cooled with water and an aqueous solution of IN caustic soda was gradually added to adjust the pH to 6, a large amount of gel-like precipitate was produced. After concentrating the slurry concentration to 10 g/min by decantation, filter press (filter cloth air permeability approx. 20 c.c./cm 2 min, filtration pressure 4.0 kg/min)
cm2 ), the cake with 80% moisture content was 0.2Kg/
m 2 ·hr was obtained. The concentration of gallium in the cake is
It was 2.7% by weight. Next, the cake was washed three times by decantation using 4.0 parts by weight of water per 1.0 parts by weight, and dehydrated by the filter press described above. 300 parts by weight of the obtained cake was dissolved in 120 parts by weight of 10N caustic soda aqueous solution to reduce the Na 2 O concentration.
An aqueous solution of sodium gallate with a gallium concentration of 0.15 mol/100 g was obtained. Purity was obtained by electrolyzing 400ml of this aqueous solution as an electrolyte under the same conditions as in Example 1.
Obtained 3.7g of 99.99% gallium. Example 4 A method for recovering sodium aluminate from the Bayer process will be explained using an example. By the method described in JP-A No. 51-32411,
Aluminate solution containing Ga0.2g/ (NaOH150g/
, A 2 O 3 80g/) and extract liquid (Kelex 100 8
%, n-decanol 8%, versatic acid 4%,
After contacting with serocin (80%) and extracting Ga
After removing impurities such as A and Na using 6.4NHC, Ga was back-extracted using 2NHC. The solution was transferred to a diffusion dialysis tank (Celemion manufactured by Asahi Glass Co., Ltd.) as a diffusion dialysis membrane.
DMV was used) at a rate of 1/m 2 hr, and at the same time, water was placed oppositely through a diffusion dialysis membrane, and the acid was diffused and recovered on the water side. Table 4 shows the compositions of the back extract, recovered acid, and dialysate.

【衚】 この透析液に15Nカセむ゜ヌダ溶液を加えお、
Na2O110g、ガリりム濃床0.02molのガリ
りム酞゜ヌダ溶液を埗た。この溶液1500mlを電解
液ずし、ニツケル板を陜極ずし、液䜓ガリりムを
陰極ずしお陰極電流密床3Am2で、10時間通
電したずころ陰極に、玔床99.99の金属ガリり
ムが2g析出した。 䞊蚘の実斜䟋および比范䟋から明らかなように
本発明の方法によれば酞の回収がなされ、さらに
䞭和埌のガリりム酞アルカリを盎接電解するこず
により金属ガリりムを埗るこずができ、さらに回
収凊理工皋においおゲルの取り扱いを党く芁しな
いために、沈柱の熟成、沈降分離、傟斜氎掗、フ
むルタヌプレス等の繁雑な工皋、装眮、操䜜を必
芁ずせず凊理が迅速に行なわれ、氎䜿甚量、酞ア
ルカリの䜿甚量の少ない等工業的実斜においお極
めお有益な結果をもたらすものである。
[Table] Add 15N caustic soda solution to this dialysate,
A sodium gallate solution with a concentration of 110 g of Na 2 O and 0.02 mol of gallium was obtained. When 1500 ml of this solution was used as an electrolyte, a nickel plate was used as an anode, and liquid gallium was used as a cathode at a cathode current density of 3 A/dm 2 for 10 hours, 2 g of metallic gallium with a purity of 99.99% was deposited on the cathode. As is clear from the above Examples and Comparative Examples, according to the method of the present invention, acid can be recovered, and metallic gallium can be obtained by directly electrolyzing the alkali gallium acid after neutralization. Since gel handling is not required at all in the process, the treatment is carried out quickly without the need for complicated processes, equipment, or operations such as aging of sediment, sedimentation separation, inclined water washing, filter press, etc., and the amount of water used is reduced. This brings about extremely beneficial results in industrial practice, such as the use of a small amount of .

Claims (1)

【特蚱請求の範囲】[Claims]  含ガリりム鉱酞氎溶液よりガリりムを回収す
るに際し、むオン亀換膜を介しお、䞀方に鉱酞氎
溶液を、他方に氎を向流通液せしめる拡散透析槜
に、該含ガリりム鉱酞氎溶液及び氎を通液しお過
剰の酞を分離し、埗られた透析液のPHを、電解に
よりカリりムが単離されうる範囲に調敎埌、電解
するこずを特城ずする含ガリりム鉱酞氎溶液より
のガリりムの回収法。
1. When recovering gallium from a gallium-containing mineral acid aqueous solution, the gallium-containing mineral acid aqueous solution and water are passed through a diffusion dialysis tank through an ion exchange membrane, in which the mineral acid aqueous solution flows in one direction and water flows in the other direction. A method for recovering gallium from a gallium-containing mineral acid aqueous solution, which comprises: separating excess acid, adjusting the pH of the obtained dialysate to a range in which potassium can be isolated by electrolysis, and then electrolyzing the solution. .
JP58110052A 1983-06-21 1983-06-21 Recovering method of gallium Granted JPS602636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110052A JPS602636A (en) 1983-06-21 1983-06-21 Recovering method of gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110052A JPS602636A (en) 1983-06-21 1983-06-21 Recovering method of gallium

Publications (2)

Publication Number Publication Date
JPS602636A JPS602636A (en) 1985-01-08
JPS6134493B2 true JPS6134493B2 (en) 1986-08-08

Family

ID=14525872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110052A Granted JPS602636A (en) 1983-06-21 1983-06-21 Recovering method of gallium

Country Status (1)

Country Link
JP (1) JPS602636A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210451A1 (en) 2016-06-13 2017-12-14 Freiberger Compound Materials Gmbh Method and apparatus for Ga recovery
CN108149014A (en) * 2017-12-29 2018-06-12 深圳垂䞭金岭南有色金属股仜有限公叞䞹霞冶炌厂 A kind of method for extracting production gallium concentrate

Also Published As

Publication number Publication date
JPS602636A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
WO2017031595A1 (en) Methods for treating lithium-containing materials
JP3602329B2 (en) Method for recovering indium from indium-containing material
CA1129211A (en) Recovery and separation of gadolinium and gallium
EP4335823A1 (en) Manganese sulfate purification and crystallization method
CA2295468C (en) Separation and concentration method
US4094753A (en) Recovery of gallium from gallium compounds
JP3151182B2 (en) Copper electrolyte cleaning method
CN112673119A (en) Improved lithium processing method
JPS6134493B2 (en)
EP0076163B1 (en) Process for producing metallic gallium
JP3799488B2 (en) Method for purifying Ga-containing solution
JP6373772B2 (en) Method for recovering indium and gallium
CN111099652B (en) Method for separating silver and copper in silver electrolysis waste liquid
EP0192426A2 (en) Removal of sodium ions from alkaline aqueous solutions by means of an electrolytic membrane process
JPS63496A (en) Method for purifying gallium electrolytic solution
JPS59213622A (en) Process for recovering gallium
JP2011195935A (en) Method for separating and recovering platinum group element
JPS6035415B2 (en) Separation method for copper and arsenic
JPH0375224A (en) Method for purifying aqueous solution of indium
JP2001097716A (en) METHOD FOR SEPARATING AND CONCENTRATING Ga
JPS61246332A (en) Extracting method for metallic gallium
JP5772628B2 (en) Method for recovering rhodium from waste rhodium waste
JPS6345334A (en) Method for recovering gallium
JPH0463016B2 (en)
WO1987002075A1 (en) Process for producing gallium