WO1987002075A1 - Process for producing gallium - Google Patents

Process for producing gallium Download PDF

Info

Publication number
WO1987002075A1
WO1987002075A1 PCT/JP1985/000554 JP8500554W WO8702075A1 WO 1987002075 A1 WO1987002075 A1 WO 1987002075A1 JP 8500554 W JP8500554 W JP 8500554W WO 8702075 A1 WO8702075 A1 WO 8702075A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
aqueous solution
electrolysis
solution
alkaline
Prior art date
Application number
PCT/JP1985/000554
Other languages
French (fr)
Japanese (ja)
Inventor
Kotaro Hirayanagi
Akira Sakamoto
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to PCT/JP1985/000554 priority Critical patent/WO1987002075A1/en
Publication of WO1987002075A1 publication Critical patent/WO1987002075A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20

Definitions

  • the present invention relates to a method for producing a gallium by electrolyzing a gallium-containing aqueous solution. More specifically, the present invention relates to a method for producing a gallium in which iron in an aqueous solution of a gallium is separated and removed using a solid adsorbent and then electrolysis is performed.
  • Gallium is an extremely important metal as a raw material for electronic materials, but there is no gallium-rich ore, and industrial production methods such as bauxite with a small amount of gallium Known methods include the method of separating and recovering alumina from a vial (sodium aluminate solution) obtained by extracting aluminum ore from ore, and the method of recovering black ore in the zinc smelting process. .
  • the general method is to use a starting material containing a trace amount of gallium by pretreatment such as solvent extraction and sedimentation separation.
  • pretreatment such as solvent extraction and sedimentation separation.
  • the components are concentrated and impurities are removed, and the aqueous solution containing the obtained gallium component is electrolyzed in an alkaline aqueous solution to obtain gallium.
  • a method for recovering gallium from a sodium aluminate solution there is, for example, a method described in JP-A-51-32411. This method uses sodium aluminate from the noise process. This is a liquid-liquid extraction of the gallium contained in the aluminum solution with a water-insoluble substituted hydroxyquinoline to remove impurities, and then back-extracting the gallium-containing mineral acid aqueous solution. Is obtained. The electrolysis of this gallium-containing aqueous solution is mostly performed under alkaline conditions.
  • GaP, GaAs, GaAs have X P X, Ga x In have X P, Ga x Al -! X As Gd 3 Ga 5 0 I 2 such intermetallic compounds, polycrystalline and single crystal of the metal oxide Manufacturing waste
  • waste containing gallium that is, a composition containing gallium, such as an intermetallic compound composed of gallium and an element of the Periodic Table Group Vb, is converted to acidic or acidic materials in the presence of an oxidizing agent. After dissolving in a basic solution, the pH was adjusted, and the gallium content was extracted.The effluent was separated, and then these separated materials were dissolved in an alkaline solution.
  • JP-A-59-213622 discloses that a metal composition containing gallium and a Group Vb element of the Periodic Table of Elements is oxidatively decomposed, and the resulting oxidative decomposition solution is filtered, and the pH of the filtrate is adjusted to 0. After adjusting the concentration to 1 to 5.0, the filtrate is brought into contact with the chelating resin to adsorb the gallium component in the filtrate onto the chelating resin, and then passed through an aqueous alkali solution to remove the desorbed solution containing the gallium component.
  • a method for recovering gallium from waste which comprises adjusting the pH of the desorbed solution to a range in which gallium can be isolated by electrolysis and electrolyzing the solution, is described.
  • gallium is usually finally recovered by electrolysis after making the solution alkaline.However, if iron is contained in the electrolyte, gallium is generated. Iron and the like are contained in the gallium, which not only lowers the purity of gallium, but also lowers the current efficiency of electrolysis, and depending on the concentrations of gallium and iron in the electrolyte, particularly the concentration of gallium. In the case where the water content is reduced, there is a serious drawback that the gallium cannot be electrolyzed. In addition, there was a problem that the operation rate of the electrolysis was reduced, each unit of production of the gallium was deteriorated, and a great deal of labor was required for replacement and regeneration of the electrodes.
  • Gallium is a very base metal (oxidation-reduction potential-0.56 V). ), It is a metal that is difficult to electrolyze, and its electrolytic deposition reaction is a competitive reaction with the generation of hydrogen, and it is necessary to select and use an electrode with a large hydrogen overvoltage as the electrode. Absent.
  • the hydrogen in gallium itself Electrolysis is possible because the overvoltage is higher than other elements, but when a metal with a small hydrogen overvoltage such as iron is mixed in as an impurity, hydrogen generation is promoted, resulting in low current efficiency. It is considered that the electrolysis becomes impossible.
  • the electrode is poisoned and degraded by iron, current efficiency is reduced, and electrolysis becomes impossible, there is no other way to recover the electrode except to replace and regenerate it. If the electrolyte continues to flow without noticing that the electrolysis has become impossible, the concentration of gallium in the tank and the electrolysis termination liquid will increase, which will lead to deterioration of each basic unit.
  • the electrolysis is stopped, the electrolytic cell and the electrode are disassembled, and gallium and iron adhering to the cathode surface are completely removed using nitric acid. If the removal is incomplete, the life of the electrode will be reduced to about one tenth. Disclosure of the invention
  • the present inventors have repeated research on a method of extending the electrode life and recovering high-purity gallium with high efficiency from a gallium-containing solution, and completed the present invention. That is, the present invention provides a method for producing gallium by electrolyzing a gallium-containing aqueous solution, comprising a step of contacting the gallium-containing aqueous solution with a solid adsorbent under alkaline conditions to separate and remove iron before the electrolysis step. It is in the manufacturing method of the garden.
  • the present inventors have found that when an aqueous solution containing gallium is brought into contact with a solid adsorbent under alkaline conditions, iron is selectively separated and removed. Contains gallium by contact with solid adsorbent The iron content in the aqueous solution was completely removed, and at the same time, a decrease in gallium was considered, but the gallium concentration in the aqueous solution changed before and after contact with the solid adsorbent. No gallium was detected even when the solid adsorbent deposit was analyzed.
  • the gallium when the gallium is produced by electrolyzing the gallium-containing aqueous solution after the iron component is separated and removed according to the present invention, impurities such as iron disappear from the gallium that is deposited or the content of the gallium is remarkably reduced. Not only does this lower the purity of the gallium, but also the gallium is produced efficiently. In other words, the current efficiency of electrolysis is improved, and the situation where electrolysis is impossible due to the presence of iron is eliminated. As a result, the operation rate and the basic unit are improved, and the labor for replacing and regenerating electrodes is reduced.
  • the aqueous solution containing an alkaline gallium is prepared by solidifying the aqueous solution containing the alkaline gallium.
  • the iron is separated and removed by contact with the adsorbent, and then the alkaline aqueous solution is electrolyzed and recovered.
  • FIG. 1 is a flowchart showing a typical production process of gallium according to the present invention.
  • the aqueous solution of the gallium is contacted with a solid adsorbent under alkaline conditions to separate and remove iron.
  • the step of removing can basically achieve the object of the present invention anywhere before electrolysis. If iron is not contained in the electrolytic solution at the time of electrolysis, there are no inconveniences such as a decrease in purity of the recovered gallium and a decrease in electrolysis current efficiency.
  • the aqueous solution containing gallium In order to selectively separate and remove iron by bringing the aqueous solution containing gallium into contact with the solid adsorbent, the aqueous solution containing gallium must be alkaline. Galli ⁇ beam is while in the aqueous alkaline solution is fully dissolved as gully Umusan Ion Ga0 2 _, iron many have become iron hydroxide F e 2 0 3 ⁇ xH 2 0. Therefore, when the gallium-containing aqueous solution is brought into contact with a solid adsorbent under an alkaline condition, it is considered that only iron is selectively adsorbed, and gallium is not adsorbed.
  • the adsorption of iron should be larger as the adsorption speed becomes higher, the adsorption speed should not be directly proportional to the area of the solid adsorbent, and the iron once adsorbed would not be easily desorbed by heating. Therefore, it is considered to be chemisorption.
  • the alkali concentration of the liquid is preferably in the range of 0.1 N to 5 N. If the aluminum concentration is less than 0.1 N, the gallium may be bent out in the form of gallium hydroxide or the like, and may be adsorbed by the solid adsorbent, and the loss of gallium may increase. Because there is.
  • the alkali concentration is higher than 5 N, it is possible to selectively remove the iron itself, but the alkali concentration is too high, and the handling properties such as the viscosity of the liquid increase, and the handling becomes worse. Requires expensive equipment In addition, the solubility of gallium tends to decrease, which is disadvantageous.
  • the alkaline gallium is prepared.
  • the aqueous solution is brought into contact with a solid adsorbent to separate and remove iron, and then the aqueous solution containing alkaline gallium is electrolyzed to recover gallium.
  • the separation and removal of iron from the gallium-containing aqueous solution may be performed at any place before the electrolysis, but the gallium-containing aqueous solution is always finally made alkaline for the electrolysis.
  • the gallium-containing aqueous solution contains many impurities.
  • the iron content is high, so there is the disadvantage that the adsorption efficiency of iron by the solid adsorbent decreases.
  • gallium raw material 1 is a gallium-containing waste from the electronics industry, even if it is separated from the refining process of other metals in ores containing gallium. Is also good. In most cases, these gallium raw materials 1 pass through the state of the gallium-containing mineral acid aqueous solution 2 once as a scouring solution or a gallium extract from gallium-containing waste. In general, this gallium-containing mineral acid aqueous solution 2 is converted into an alkali 3 to isolate the gallium by electrolysis. I
  • a gallium-containing alkali solution generated in the gallium extraction process, etc. is used as a starting material, neutralized or further alkalized 5 as necessary, and adjusted to a concentration of aluminum that can separate gallium by electrolysis. It may be adjusted to obtain an aqueous solution containing an alkaline grit.
  • Typical examples of the gallium-containing mineral acid aqueous solution obtained from the gallium raw material 1 include gallium in a sodium aluminate solution obtained by a via method described in JP-A-51-32411. Was extracted with a water-insoluble substituted hydroxyquinoline to remove impurities and then back-extracted with a strong mineral acid. Dissolve the gallium-containing waste described in Japanese Patent Publication No. 56-38661, a solution or solution back-extracted with a mineral acid after extraction with a solution, in concentrated hydrochloric acid and concentrated nitric acid in the presence of an oxidizing agent. The resulting solution, a solution obtained by dissolving a gallium-owned waste described in JP-A-54-117315, JP-A-56-9223 and JP-A-9-213622 with a mineral acid, etc. is there.
  • the alkali is added to neutralize the solution (pH 5 to 5). 8) to form a gel containing gallium, filtered 8, washed, dehydrated, and then alkalized 3 to make the gallium in the alkaline gallium-based aqueous solution (electrolyte) 4
  • electrolyte concentration By increasing the electrolyte concentration, the current efficiency of electrolysis can be improved, the unit electrolyte volume can be reduced, and each basic unit can be improved. Even when the starting material is a gallium-containing alkaline solution, when the gallium concentration is low, the gallium concentration can be increased by the same procedure as described above.
  • the appropriate concentration of gallium in the electrolyte is 0.01 to: L.5 mol Z. If the concentration of gallium in the aqueous solution of gallium is less than 5 / /, the above neutralization 7 It is desirable to increase the gallium concentration by filtration, filtration, washing and dehydration steps.
  • the gali- lic concentration for effectively isolating the gallium from the gallium-containing aqueous solution by electrolysis is 0.5% or more. If the alkali concentration is less than 0.5%, hydrogen generation is promoted during electrolysis. However, the alkaline concentration of the electrolyte is preferably 0.5 to 5 mm. If the alkali concentration exceeds 5 5, the current efficiency will decrease due to insufficient degassing of generated gas and insufficient diffusion in the electrolyte due to the increase in the viscosity of the electrolyte.
  • the aqueous solution containing alkaline gallium is brought into contact with a solid adsorbent to selectively and hardly remove iron (iron removal 9).
  • Galli um is Gari um San'i on Ga0 2 in alkaline solution - whereas completely dissolved as a trace Iron contained in the many cases have become iron hydroxide Fe 2 0 3 ⁇ xH 2 0 .
  • iron hydroxide Fe 2 0 3 ⁇ xH 2 0 As a result, when the alkaline aqueous solution containing gallium is brought into contact with the solid adsorbent, only iron is selectively adsorbed.
  • the solid adsorbent used for deironing 9 is not particularly limited as long as it is stable in alkalinity due to the above-described adsorption mechanism. However, in consideration of the adsorption rate, alumina-activated carbon or a mixture thereof is preferable.
  • the specific surface area of r-alumina is preferably 120 to 160 nf / g (average pore diameter 100 to 120 A). When the specific surface area is less than 120 «f / g (average pore size of more than 120 people), the adsorption speed decreases, and when the specific surface area exceeds 160 ⁇ ? 160g (average pore size of less than 100 A), the adsorption area becomes smaller and the adsorption speed decreases. Become.
  • the particle size of r-alumina is not restricted by the speed and efficiency of de-ironing, but it is desirable that the particle size is coarser in view of the separation from the Al-Li solution after de-ironing. Considering the cost of raw materials (hydroxide aluminum) that can be used in ⁇ , a particle size of ⁇ ⁇ m is preferable.
  • Such r-alumina is obtained by calcining aluminum hydroxide (preferably the static calcining method).
  • Aluminum hydroxide can be obtained, for example, from Showa Light Metal Co., Ltd. using H-10 (trade name), H-10C (trade name). Is commercially available.
  • the activated carbon is desirably carbon black, wood, or coal.
  • the activated carbon is preferably in the form of powder because the contact area with the liquid is increased.
  • the specific surface area of activated carbon is generally 300 to 1500 nf / g, but is preferably 400 to 900 nf / g for deironing. When the specific surface area is less than 400 «f / g, the adsorption rate is low because the specific surface area is small. Become.
  • the average pore size of the activated carbon is important, and an average pore size of 30-50 A is desirable. At less than 30 A, the effective adsorption area is small, so that the adsorption speed is high. At more than 50 A, the specific surface area is small, so that the adsorption speed is low.
  • r-alumina For r-alumina and activated carbon, r-alumina has a higher adsorption rate. This is considered to be due not to the total specific surface area of the solid adsorbent but to the ratio of pores having a size larger than that capable of adsorbing iron hydroxide.
  • the method of contacting the alkaline gallium-containing aqueous solution with the solid adsorbent is not particularly limited, but the solid adsorbent particles are charged into the alkaline gallium-containing aqueous solution in the container so that both are sufficiently contacted.
  • Stirring is preferred. There is no particular limitation on the stirring method, and general mechanical stirring is sufficient. However, it is preferable that the number of surface turns is equal to or higher than the solid adsorbent is uniformly dispersed in the liquid.
  • the aqueous solution containing the alkaline gallium may be circulated and passed through a column filled with the solid adsorbent.
  • the material of the contact device is not particularly strongly specified, it is preferable to use polyethylene, teflon, etc.
  • the stirrer, heater, etc. are coated with Teflon.
  • the aqueous solution containing alkaline gallium it is preferable to heat to 50 or more, and more preferably to 70 or more. Unless the aqueous solution containing alkaline gallium is heated, it takes a long time to separate and remove iron.
  • the heating method may be any method such as heater heating and steam suction.
  • the amount of solid adsorbent used depends on the type of solid adsorbent, For example, if ⁇ -alumina ( ⁇ 150 ⁇ surface area: about 150 nfZg), 5 to 50 g / & is appropriate, and more preferably 20 to 30 g / H. In the case of 5 g / pound : it takes a long time for adsorption. Also, 5 0 In the case of adding iron, since the amount of iron adsorbed is the same, the subsequent separation and removal step becomes complicated and the solid adsorbent is wasted.
  • the adsorption time depends on the heating temperature, the type of adsorbent, and the amount used, but at 70, when 20 g of r-alumina is added, the iron content is reduced by approximately one hour of contact. It can be completely removed.
  • the image adsorbent that has adsorbed iron is filtered 10 to separate it from the aqueous solution containing the alkaline gallium.
  • Electrolysis is performed using the alkaline gallium-containing aqueous solution from which iron has been removed as described above.
  • the electrolysis is a normal aqueous electrolysis, and is preferably performed under the following conditions. That is, nickel plate, liquid metal gallium, etc. are used as the cathode, platinum plate, nickel plate, etc. are used as the anode, and the cathode current density is 0.01 to 0.5 A / cnf. Gallium Metal concentration 0.01 ⁇ : L.5m 0 l / ⁇ is appropriate. These conditions are necessary to obtain high current efficiency.
  • the gallium in the solution exists as gallium ion GaO 2 , The solution turns out to the cathode.
  • high-purity gallium 12 is efficiently produced by electrolyzing the electrolytic solution from which iron has been removed.
  • the electrolysis termination solution Since a small amount of gallium remains in the electrolysis termination solution, it can be recycled and used effectively in the process of the present invention. That is, the aqueous solution of gallium-containing mineral acid and / or mineral acid is added to the electrolyte to neutralize (about pH 5 to 8) 7 to precipitate the gel containing gallium, In the same manner as in the concentration step of the gallium concentration, filtration 8, washing, dehydration and alkalization 3 are performed to obtain a gallium-containing alkaline aqueous solution 4. Further, the electrolysis 11 can be performed again after the removal of iron 9 and the filtration 10.
  • JP 51-32411 Patent forth, Ga 0. 2 g Z to including aluminate one preparative liquid ( ⁇ aOH 150 g / 6.. A1 2 0 3 8 0 g) and extract CKelexlOO (main Sazua off 8%, 4% of n-decanol, 4% of nosatic acid, 84% of kerosene), and after extracting Ga, 0.6 N- After removing impurities such as Al and Na with HC1, Ga was back-extracted with 2N-HC1.
  • the gallium-containing aqueous solution of a mineral acid is passed through a diffusion-permeation tank (using Asahi Glass Co., Ltd.'s Ceremion DMV- as a diffusion-permeation membrane) at a rate of Zirfhr. Water was similarly placed through the membrane, and the acid was diffused to the water side and collected.
  • a diffusion-permeation tank using Asahi Glass Co., Ltd.'s Ceremion DMV- as a diffusion-permeation membrane
  • Table 1 shows the composition of the back extract, the recovered acid, and the permeate.
  • Table Unit 3 ⁇ 4i shows the composition of the back extract, the recovered acid, and the permeate.
  • concentration of the slurry was 10 g / S.
  • the solution was passed through a filter press (filter cloth air permeability about 20 cc / cm 2 ⁇ min, filtration pressure 4.0 kg / ⁇ ). Further, the same amount of pure water heated to 50 ° C. was passed, washed and dehydrated to obtain 0.2 kg / nf ⁇ hr of a cake having a water content of 80%.
  • the Ga concentration in the cake was 7% by weight.
  • the Ga concentration of the electrolysis termination solution was measured to be 0.01 mol /.
  • the surface of the cathode was completely covered with Ga metal.
  • the Ga metal obtained during this period was 10.6 kg and the purity was 99.99%.
  • the calculated current efficiency was 15%.
  • Gallium Lin (GaP) Lumped gallium lin which is a by-product waste generated during the production of crystals, was pulverized to obtain a Tyler Standard Sieve 60 Mesh powder.
  • An oxidizing mixed acid (3.6 parts by weight of concentrated hydrochloric acid, 8.4 parts by weight of concentrated nitric acid) was added to 1.0 part by weight of this powder, and the solution was stirred.
  • GaP was oxidatively decomposed.
  • the oxidative decomposition solution was filtered, and 1 g of the undissolved residue was separated by filtration to obtain a transparent gallium-containing mineral acid aqueous solution.
  • the aqueous solution of mineral acid is passed through a diffusion / permeation tank using Neocebuta AFN manufactured by Tokuyama Soda Co., Ltd. as a diffusion / permeable membrane at a speed of 1 / ⁇ ⁇ hr, and simultaneously through the diffusion / permeation membrane.
  • the water was placed in the same manner as above and the acid was diffused to the water side and collected.
  • Table 2 shows the composition of the mineral acid solution, the permeate, and the recovered acid.
  • Example 6 The recovered acid obtained in Example 2 and the electrolysis termination solution were mixed and neutralized (pH 6) to generate a Ga (0H) 3 gel. After deca Ntesho down, filtered through a Filter Press, washing, was subjected to dehydration, water content 80% cake 0. 2 kg_ m l. Hr was obtained. The Ga concentration in the cake was 7% by weight. The cake 300 parts by weight were dissolved in caustic soda 120 parts by weight of 1 0 N. Na 2 0 concentration
  • An aqueous sodium gallium salt solution having a gallium concentration of 100 g and a gallium concentration of 0.39 mol Zjg was obtained, and the Fe concentration was measured to be 6 ppm.
  • the platinum plate was used as the anode
  • the nickel plate was used as the cathode
  • the cathode current density was 10 A /
  • the Ga concentration of the electrolysis termination solution was measured to be O. Olmol / i. Was.
  • the surface of the cathode was completely covered with Ga metal.
  • the Ga metal obtained during this period was 1.0 kg and the purity was 99.99%.
  • the current efficiency during this period was 15%.
  • Example 1 The gallium-containing mineral acid aqueous solution of Example 1 was folded, neutralized, washed, and dehydrated in the same manner as in Example 1, and then adjusted for alkalinity. Na 20 concentration 100 g / g An aqueous solution of 0.39 mol g of sodium gallate was obtained, and the Fe concentration was measured to be 5 ppm. With a platinum plate as the anode and a nickel plate as the cathode, current density is 10 A / dm ', tank volume is 40 S, average residence time is 24 hours. Table 3 shows the results of measurement of the Ga concentration in the electrolysis termination solution afterwards. Table 3
  • Electrolysis was interrupted 24 hours after the start of electrolysis, and the cathode surface was observed to be black.
  • the surface was qualitatively analyzed by EPMA (Electron Probe Micro Analysis), Ga, Fe, and Ni were detected.
  • the current efficiency during this period was 3%.
  • the Fe concentration in the electrolysis solution (after 2 hours) was 0.4 ppm. Comparative Example 2
  • Example 2 The gully ⁇ beam ⁇ aqueous mineral acid in Example 2 was dialyzed in Example 2 in the same way, Na 2 0 ⁇ 100 g Roh added caustic soda solution of 1 5 N to the dialyzed solution, Galli A sodium gallate solution having a 0.7tnol / pium concentration was obtained, and the Fe concentration was measured to be 1 O ppm.
  • a platinum plate as an anode, a nickel plate as a cathode, and continuous electrolysis while passing at a cathode current density of 10 A / dirf, a tank volume of 40 &, and an average residence time of 36 hours.
  • Table 4 shows the results of the measurement of the Ga concentration in the electrolysis solution after the start of electrolysis. Table 4
  • the electrolysis was interrupted 36 hours after the start of electrolysis, and the cathode surface was observed.
  • the cathode was blackened, and when EPMA qualitative analysis was performed on the surface, Ga, Fe, and Ni were detected.
  • the current efficiency calculated during this time was 4%.
  • the Fe concentration in the electrolysis solution (24 hours) was 0.4 ppm.
  • Example 2 Neutralized from the recovered acid obtained in Example 2 and the electrolyzed solution in the same manner as in Example 3. Filtration ⁇ After washing and dehydration steps, add alkali to add 100 g of Na 20 and 0.39 g of gallium. A molZ aqueous sodium gallate solution was obtained and the Fe concentration was measured to be 6 ppm. Using a platinum plate as the anode and a nickel plate as the cathode, continuous electrolysis is performed while passing the above solution at a cathode current density of 10 A / d trf. A tank volume of 4 ⁇ and an average residence time of 24 hours. Table 5 shows the results of measuring the Ga concentration in the electrolysis solution after the start. Table 5
  • Electrolysis was interrupted 24 hours after the start of electrolysis, and the cathode surface was observed to be black. When the surface was analyzed, Ga, Fe, and Ni were detected. During this period, the current efficiency was calculated to be 3%. The concentration of Fe in the electrolysis termination solution (24 hours) was 0.4 ppm.
  • the method of the present invention can be applied to the production of high-purity gallium by electrolysis from a gallium-containing raw material, whether natural ore or industrial waste.

Abstract

A process for producing gallium by electrolysis of a gallium-containing solution such as Bayer solution, a gallium extract from gallium-containing waste from semiconductor industry, etc., which comprises bringing the aqueous gallium-containing solution into contact with a solid adsorbent such as gamma-alumina, activated carbon, etc. under an alkaline condition before hydrolysis to thereby selectively remove an iron component from the solution. This removal of the iron component serves to reduce the content of impurities in the deposited gallium and to improve current efficiency of the electrolysis.

Description

明 細 書  Specification
ガリ ウムの製造方法 技術分野  Gallium manufacturing method
本発明はガリ ゥム舍有水溶液を電解してガリ ゥムを製造す る方法に係る。 より詳し く述べると、 ガリ ゥム舍有水溶液中 の鉄分-を固体吸着剤を用いて分離除去した後電解を行なうガ リ ゥムの製造方法に係る。 背景技術  The present invention relates to a method for producing a gallium by electrolyzing a gallium-containing aqueous solution. More specifically, the present invention relates to a method for producing a gallium in which iron in an aqueous solution of a gallium is separated and removed using a solid adsorbent and then electrolysis is performed. Background art
ガリ ウムは、 電子材料の原料として、 極めて重要な金属で あるが、 ガリ ウムを豊富に含有する鉱石はな く 、 工業的な製 造法としては、 例えば微量のガリ ゥムを舍有するボーキサイ ト鉱石より、 アルミ ナをアル力 リ抽出して得られるバイ ヤー 液 (アルミ ン酸ナ ト リ ウム溶液) より分離回収する方法、 黒 鉱の亜鉛製練工程で回収する方法などが知られている。  Gallium is an extremely important metal as a raw material for electronic materials, but there is no gallium-rich ore, and industrial production methods such as bauxite with a small amount of gallium Known methods include the method of separating and recovering alumina from a vial (sodium aluminate solution) obtained by extracting aluminum ore from ore, and the method of recovering black ore in the zinc smelting process. .
これらの方法は多岐にわたるが、 バイヤー液での直接電解 法を除き、 一般的方法としては、 微量なガリ ウムを含む出発 原料について、 溶媒抽出、 沈殺分離等の前処理操作によりガ リ ゥム成分の濃縮と不純物の除去を行ない、 得られたガリ ウ ム成分を舍む水溶液を多く はアルカ リ性水溶液において電解 して、 ガリ ウムを得る方法がある。  These methods vary widely. Except for the direct electrolysis method using the Bayer solution, the general method is to use a starting material containing a trace amount of gallium by pretreatment such as solvent extraction and sedimentation separation. There is a method in which the components are concentrated and impurities are removed, and the aqueous solution containing the obtained gallium component is electrolyzed in an alkaline aqueous solution to obtain gallium.
アルミ ン酸ナ ト リ ゥム溶液よりガリ ゥムを回収する方法と しては、 例えば特開昭 51 - 32411号公報に記載されている方法 がある。 この方法は、 ノ イヤー工程からのアルミ ン酸ナ ト リ — 一 — ゥム溶液に含まれるガリ ゥムを、 水不溶性の置換ヒ ドロキシ キノ リ ンにより液—液抽出し不純物を除去した後、 これを逆 抽出するもので、 ガリ ウム舍有鉱酸水溶液が得られる。 この ガリ ウム含有水溶液の電解は、 多く はアルカリ性において行 なわれる。 As a method for recovering gallium from a sodium aluminate solution, there is, for example, a method described in JP-A-51-32411. This method uses sodium aluminate from the noise process. This is a liquid-liquid extraction of the gallium contained in the aluminum solution with a water-insoluble substituted hydroxyquinoline to remove impurities, and then back-extracting the gallium-containing mineral acid aqueous solution. Is obtained. The electrolysis of this gallium-containing aqueous solution is mostly performed under alkaline conditions.
一方、 すでに述べたように、 ガリ ウムを豊富に含有する鉱 石が存在しないこ とから、 GaP、 GaAs、 GaAs,-xPx. GaxInい XP GaxAlx-xAs. Gd3Ga50iz 等の結晶素材を電子材料素子に加工 する際に発生する廃棄物も極めて貴重な資源である。 これら ガリ ゥム廃棄物は、 電子工業の発展に伴ない年々增加してお り、 廃棄物からのガリ ゥム回収技術も多数提案されている。 ガリ ゥムを含有している'廃棄物を例示すると、 On the other hand, as already mentioned, and a this there is no ore to rich in Galli um, GaP, GaAs, GaAs, - .. X P x Ga x In have X P GaxAlx-xAs Gd 3 Ga 5 0iz Waste generated when processing such crystal materials into electronic material elements is also an extremely valuable resource. These gully wastes are increasing year by year with the development of the electronics industry, and many gallium recovery technologies from wastes have been proposed. Examples of 'garbage-containing' waste include:
(1) GaP 、 GaAs、 GaAsい XPX、 GaxInい XP、 GaxAl !-xAs Gd3Ga50I 2 等の金属間化合物、 金属酸化物の多結晶質及び単 結晶製造時の廃棄物 (1) GaP, GaAs, GaAs have X P X, Ga x In have X P, Ga x Al -! X As Gd 3 Ga 5 0 I 2 such intermetallic compounds, polycrystalline and single crystal of the metal oxide Manufacturing waste
(2) 多結晶及び単結晶からウェハーを切り出す際の切削屑 (2) Cutting chips when cutting wafers from polycrystals and single crystals
(3) ウェハー鏡面仕上用酸溶液 (3) Acid solution for wafer mirror finishing
等がある。 Etc.
廃棄物からの金属ガリ ゥムの面収法としては、 たとえば特 公昭 56-38661号公報に記載されている方法がある。 この方法 は、.ガリ ゥムを含む廃棄物、 すなわちガリ ウムと元素周期律 表 V b族元素とからなる金属間化合物等のガリ ゥムを含む組 成物を酸化剤の存在下、 酸性または塩基性溶液に溶解後 p H を調整して、 ガリ ウム分を折出させた後、 圻出物を分離し、 ついでこれら分離物をアル力リ溶液に溶解し、 ついで溶解液 -As a method of collecting metal gallium from waste, there is, for example, a method described in Japanese Patent Publication No. 56-38661. In this method, waste containing gallium, that is, a composition containing gallium, such as an intermetallic compound composed of gallium and an element of the Periodic Table Group Vb, is converted to acidic or acidic materials in the presence of an oxidizing agent. After dissolving in a basic solution, the pH was adjusted, and the gallium content was extracted.The effluent was separated, and then these separated materials were dissolved in an alkaline solution. -
- - 3 - --3-
を電解してガリ ゥムを回収するものである。 また、 特開昭 59 - 213622号公報には、 ガリ ウムと元素周期律表 V b族元素とを 含む金属組成物を酸化分解し、 得られる酸化分解液を濾過し、 濾液の P Hを 0. 1 〜 5. 0 に調整后、 濾液とキレー ト樹脂とを 接触させて濾液中のガリ ウム成分をキレー ト樹脂に吸着させ、 ついでアルカ リ水溶液を通過させてガリ ウム成分を含む脱離 液を得、 それからこの脱離液の p Hを電解によりガリ ウムが 単離されう る範囲に調整し、 電解することからなる、 廃棄物 からのガリ ゥムの回収方法が記載されている。 Is electrolyzed to recover gallium. Also, JP-A-59-213622 discloses that a metal composition containing gallium and a Group Vb element of the Periodic Table of Elements is oxidatively decomposed, and the resulting oxidative decomposition solution is filtered, and the pH of the filtrate is adjusted to 0. After adjusting the concentration to 1 to 5.0, the filtrate is brought into contact with the chelating resin to adsorb the gallium component in the filtrate onto the chelating resin, and then passed through an aqueous alkali solution to remove the desorbed solution containing the gallium component. A method for recovering gallium from waste, which comprises adjusting the pH of the desorbed solution to a range in which gallium can be isolated by electrolysis and electrolyzing the solution, is described.
以上のいずれのガリ ウムの回収方法による場合でも、 通常、 ガリ ウムは最終的に液をアルカ リ性にして電解により回収さ れるが、 この電解液中に鉄分が含まれると、 圻出する.ガリ ウ ム中に鉄等が舍まれガリ ウムの純度が低下するのみならず、 電解の電流効率が低下し、 電解液中のガリ ゥムおよび鉄の濃 度によっては、 特に、 ガリ ウムの濃度が低下した場合に、 ガ リ ゥムの電解が不可能になるという重大な欠点があった。 ま た、 電解の稼動率が低下し、 ガリ ゥム製造の各原単位が悪化 し、 さらには電極の交換、 再生に多大の労力が費やされると いう問題があった。  In any of the above gallium recovery methods, gallium is usually finally recovered by electrolysis after making the solution alkaline.However, if iron is contained in the electrolyte, gallium is generated. Iron and the like are contained in the gallium, which not only lowers the purity of gallium, but also lowers the current efficiency of electrolysis, and depending on the concentrations of gallium and iron in the electrolyte, particularly the concentration of gallium. In the case where the water content is reduced, there is a serious drawback that the gallium cannot be electrolyzed. In addition, there was a problem that the operation rate of the electrolysis was reduced, each unit of production of the gallium was deteriorated, and a great deal of labor was required for replacement and regeneration of the electrodes.
鉄分を除去せずにガリ ゥム含有アル力 リ性水溶液を電解し た場合に電流効率の低下や電解不能となる原因は、 ガリ ウム は非常に卑な金属 (酸化還元電位— 0 . 56 V ) であるために電 解しに く い金属であり、 その電解折出反応は水素発生との競 争反応になっており、 電極としては水素過電圧の大きなもの を選択して使用せざるを得ない。 ただ、 ガリ ウム自体の水素 過電圧は他の元素に比べ大きいために電解が可能となつてい るが、 鉄等の水素過電圧の小さな金属が不純物として混入す る場合には、 水素発生が促進され、 その結果、 電流効率が低 下し、 更には電解不能となってしまうのであると考えられる。 電極が鉄で被毒して劣化し、 電流効率が低下し、 そして電解 不能になった場合、 電極は、 交換、 再生する以外に復活する 方法はない。 電解不能になったことに気付かずに電解液を流 しつづけると、 槽内ゃ電解終了液中のガリ ゥム濃度が增加し、 そのため各原単位の悪化をまねく 。 電極の交換、 再生では、 電解を停止し、 電解槽、 電極を分解し、 陰極表面に付着して いるガリ ウム、 鉄を硝酸を用いて完全に除去する。 この除去 が不完全であると、 電極の寿命を 1 0分の 1程度まで縮めて しまう。 発明の開示 When electrolysis of a gallium-containing alkaline aqueous solution without removing the iron component, the current efficiency is reduced or the electrolysis becomes impossible. Gallium is a very base metal (oxidation-reduction potential-0.56 V). ), It is a metal that is difficult to electrolyze, and its electrolytic deposition reaction is a competitive reaction with the generation of hydrogen, and it is necessary to select and use an electrode with a large hydrogen overvoltage as the electrode. Absent. However, the hydrogen in gallium itself Electrolysis is possible because the overvoltage is higher than other elements, but when a metal with a small hydrogen overvoltage such as iron is mixed in as an impurity, hydrogen generation is promoted, resulting in low current efficiency. It is considered that the electrolysis becomes impossible. If the electrode is poisoned and degraded by iron, current efficiency is reduced, and electrolysis becomes impossible, there is no other way to recover the electrode except to replace and regenerate it. If the electrolyte continues to flow without noticing that the electrolysis has become impossible, the concentration of gallium in the tank and the electrolysis termination liquid will increase, which will lead to deterioration of each basic unit. When replacing or regenerating the electrode, the electrolysis is stopped, the electrolytic cell and the electrode are disassembled, and gallium and iron adhering to the cathode surface are completely removed using nitric acid. If the removal is incomplete, the life of the electrode will be reduced to about one tenth. Disclosure of the invention
本発明者らは、 このような現状に鑑み、 電極寿命を延長し、 ガリ ゥム舍有溶液から高効率に高純度のガリ ウムを回収する 方法について研究を重ね、 本発明を完成した。 即ち本発明は、 ガリ ゥム含有水溶液の電解によるガリ ウムの製造方法におい て、 電解工程前に、 ガリ ウム含有水溶液をアルカリ性下で固 体吸着剤と接触せしめて鉄分を分離除去する工程を含むガリ ゥムの製造方法にある。  In view of such a situation, the present inventors have repeated research on a method of extending the electrode life and recovering high-purity gallium with high efficiency from a gallium-containing solution, and completed the present invention. That is, the present invention provides a method for producing gallium by electrolyzing a gallium-containing aqueous solution, comprising a step of contacting the gallium-containing aqueous solution with a solid adsorbent under alkaline conditions to separate and remove iron before the electrolysis step. It is in the manufacturing method of the garden.
本発明者らは、 アルカ リ性下においてガリ ゥム含有水溶液 を固体吸着剤と接触させると、 鉄分が選択的に分離除去され ることを見い出した。 固体吸着剤との接触によりガリ ウム含 有水溶液中の鉄分は完全に除去され、 このとき同時にガリ ウ ム分の減少が憨念されたが、 ガリ ゥム龠有水溶液中のガリ ゥ ム濃度は固体吸着剤との接触の前後で変化はなく、 また固体 吸着剤の付着物を分折してもガリ ゥムは検出されなかった。 The present inventors have found that when an aqueous solution containing gallium is brought into contact with a solid adsorbent under alkaline conditions, iron is selectively separated and removed. Contains gallium by contact with solid adsorbent The iron content in the aqueous solution was completely removed, and at the same time, a decrease in gallium was considered, but the gallium concentration in the aqueous solution changed before and after contact with the solid adsorbent. No gallium was detected even when the solid adsorbent deposit was analyzed.
こう して、 本発明により鉄分を分離除去した後、 ガリ ウム 含有水溶液を電解してガリ ウムを製造すると、 折出するガリ ゥムから鉄等の不純物が消失しまたはその含有量が著し く低 下してガリ ゥムの純度が向上するのみならず、 ガリ ゥムが効 率的に製造される。 すなわち、 電解の電流効率が向上し、 鉄 分の存在による電解不能という事態も解消され、 その結果、 稼動率、 各原単位も改良され、 電極の交換、 再生の労力が軽 減される。  Thus, when the gallium is produced by electrolyzing the gallium-containing aqueous solution after the iron component is separated and removed according to the present invention, impurities such as iron disappear from the gallium that is deposited or the content of the gallium is remarkably reduced. Not only does this lower the purity of the gallium, but also the gallium is produced efficiently. In other words, the current efficiency of electrolysis is improved, and the situation where electrolysis is impossible due to the presence of iron is eliminated. As a result, the operation rate and the basic unit are improved, and the labor for replacing and regenerating electrodes is reduced.
本発明の好ましい態様に従えば、 電解によりガリ ゥムを単 離しう るアルカ リ濃度を有するアル力 リ性ガリ ゥム含有水溶 液を用意した後、 アル力リ性ガリ ゥム含有水溶液を固体吸着 剤と接触せしめて鉄分を分離除去し、 それからアルカ リ性ガ リ ゥム舍有水溶液を電解してガリ ゥムを回収する。 図面の簡単な説明  According to a preferred embodiment of the present invention, after preparing an aqueous solution containing an alkaline gallium having an alkali concentration capable of isolating the gallium by electrolysis, the aqueous solution containing an alkaline gallium is prepared by solidifying the aqueous solution containing the alkaline gallium. The iron is separated and removed by contact with the adsorbent, and then the alkaline aqueous solution is electrolyzed and recovered. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明によるガリ ウムの典型的な製造工程を示す 流れ図である。 発明を実施するための最良の形態  FIG. 1 is a flowchart showing a typical production process of gallium according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のガリ ゥムの製造方法において、 ガリ ゥム舍有水溶 液をアルカ リ性下で固体吸着剤と接触せしめて鉄分を分離除 去する工程は、 電解前であればどこにあっても基本的に本発 明の目的を達成することができる。 電解の際に電解液中に鉄 分が含まれていなければ、 回収されるガリ ゥムの純度の低下、 電解電流効率の低下、 等の不都合は発生しないからである。 In the method for producing a gallium of the present invention, the aqueous solution of the gallium is contacted with a solid adsorbent under alkaline conditions to separate and remove iron. The step of removing can basically achieve the object of the present invention anywhere before electrolysis. If iron is not contained in the electrolytic solution at the time of electrolysis, there are no inconveniences such as a decrease in purity of the recovered gallium and a decrease in electrolysis current efficiency.
ガリ ゥム含有水溶液を固体吸着剤と接触させて鉄分を選択 的に分離除去するためには、 ガリ ゥム含有水溶液はアル力 リ 性でなければならない。 ガリ ゥムはアルカリ性水溶液中では ガリ ゥム酸ィォン Ga0 2 _ として完全に溶解しているのに対し て、 鉄は多く は水酸化鉄 F e 20 3 · xH 20になっている。 そこで、 ガリ ゥム舍有水溶液をアル力リ性下で固体吸着剤と接触させ ると、 鉄分だけが選択的に吸着され、 ガリ ゥム分は吸着され ない 考えられる。 なお、 このとき、 鉄分の吸着は、 吸着速 度が温度が高いほど大きいこと、 吸着速度が固体吸着剤の面 積に正比例しないこと、 そして一旦吸着した鉄分は加熱等に より脱離しにく いことなどから、 化学吸着であると考えられ る。 In order to selectively separate and remove iron by bringing the aqueous solution containing gallium into contact with the solid adsorbent, the aqueous solution containing gallium must be alkaline. Galli © beam is while in the aqueous alkaline solution is fully dissolved as gully Umusan Ion Ga0 2 _, iron many have become iron hydroxide F e 2 0 3 · xH 2 0. Therefore, when the gallium-containing aqueous solution is brought into contact with a solid adsorbent under an alkaline condition, it is considered that only iron is selectively adsorbed, and gallium is not adsorbed. At this time, the adsorption of iron should be larger as the adsorption speed becomes higher, the adsorption speed should not be directly proportional to the area of the solid adsorbent, and the iron once adsorbed would not be easily desorbed by heating. Therefore, it is considered to be chemisorption.
ガリ ゥム含有水溶液から鉄分を選択的に吸着分離するため のアルカリ性の条件としては、 液のアルカ リ濃度が 0. 1 N〜 5 Nの範囲内であることが好ましい。 アル力リ濃度が 0. 1 N より小さいと、 ガリ ゥムが水酸化ガリ ゥムなどの形で折出し、 固体吸着剤によって吸着される可能性があり、 ガリ ウム分の 損失が増大するおそれがあるからである。 また、 アルカ リ濃 度が 5 Nより高い場合には、 鉄分の選択的除去自体は可能で あるが、 アルカ リ濃度が高すぎるので液の粘性が大き く なる などの取扱い性が悪化し、 また装置としても高価なものを要 し、 さらに、 ガリ ウムの溶解度が低下傾向にあり不利である、 などの不都合があるからである。 As an alkaline condition for selectively adsorbing and separating iron from a gallium-containing aqueous solution, the alkali concentration of the liquid is preferably in the range of 0.1 N to 5 N. If the aluminum concentration is less than 0.1 N, the gallium may be bent out in the form of gallium hydroxide or the like, and may be adsorbed by the solid adsorbent, and the loss of gallium may increase. Because there is. When the alkali concentration is higher than 5 N, it is possible to selectively remove the iron itself, but the alkali concentration is too high, and the handling properties such as the viscosity of the liquid increase, and the handling becomes worse. Requires expensive equipment In addition, the solubility of gallium tends to decrease, which is disadvantageous.
本発明の好ましい態様に従えば、 とりわけ工業的には、 電 解によりガリ ゥムを单離しう るアル力 リ濃度を有するアル力 リ性ガリ ウム含有水溶液を用意した後、 アルカ リ性ガリ ウム 舍有水溶液を固体吸着剤と接触せしめて鉄分を分離除去し、 それからアルカ リ性ガリ ウム含有水溶液を電解してガリ ウム を回収する。 本発明では、 前述の如く 、 ガリ ゥム含有水溶液 からの鉄分の分離除去は電解以前に行なえばどこでもよいが、 ガリ ゥム舍有水溶液は必ず電解のために最終的にアルカ リ性 にされるのでこのアル力 リ性の段階を利用することが合理的 であるのみならず、 電解を行なうために必要なアルカ リ漶度 に調整するより前の段階では、 ガリ ウム含有水溶液は不純物 を多く舍み、 また鉄分も多いので、 固体吸着剤による鉄分の 吸着効率が低下するという不利があるからである。  According to a preferred embodiment of the present invention, particularly industrially, after preparing an aqueous gallium-containing aqueous solution having an alkaline concentration capable of separating gallium by electrolysis, the alkaline gallium is prepared. The aqueous solution is brought into contact with a solid adsorbent to separate and remove iron, and then the aqueous solution containing alkaline gallium is electrolyzed to recover gallium. In the present invention, as described above, the separation and removal of iron from the gallium-containing aqueous solution may be performed at any place before the electrolysis, but the gallium-containing aqueous solution is always finally made alkaline for the electrolysis. Therefore, it is not only reasonable to use this alkaline property stage, but also before the adjustment to the alkalinity required for electrolysis, the gallium-containing aqueous solution contains many impurities. In addition, the iron content is high, so there is the disadvantage that the adsorption efficiency of iron by the solid adsorbent decreases.
第 1図を参照して以下本発明の典型的な製造工程について 説明する。  A typical manufacturing process of the present invention will be described below with reference to FIG.
ガリ ゥム原料 1 は、 前述のように、 ガリ ウムを舍有する鉱 石の他の金属の精練工程から分離されるものであっても、 電 子工業等から出るガリ ウム含有廃棄物であってもよい。 これ らのガリ ゥム原料 1 は、 殆んどの場合、 精練終了液あるいは ガリ ウム含有廃棄物からのガリ ウム抽出液として、 一旦、 ガ リ ゥム舍有鉱酸水溶液 2 の状態を通過するので、 一般的には、 このガリ ゥム含有鉱酸水溶液 2をアルカ リ化 3 して電解によ りガリ ゥムを単離しう るアル力 リ漶度のアル力 リ性ガリ ゥム I As described above, gallium raw material 1 is a gallium-containing waste from the electronics industry, even if it is separated from the refining process of other metals in ores containing gallium. Is also good. In most cases, these gallium raw materials 1 pass through the state of the gallium-containing mineral acid aqueous solution 2 once as a scouring solution or a gallium extract from gallium-containing waste. In general, this gallium-containing mineral acid aqueous solution 2 is converted into an alkali 3 to isolate the gallium by electrolysis. I
' - 8 - 舍有水溶液 4 とする。 しかし、 ガリ ウム抽出過程等において 発生するガリ ウム含有アルカ リ溶液を出発原料として、 必要 に応じて中和あるいはさらにアルカリ化 5 して電解によりガ リ ゥムを单離しう るアル力 リ濃度に調整して、 アル力リ性ガ リ ゥム含有水溶液 4 としてもよい。  --8 However, a gallium-containing alkali solution generated in the gallium extraction process, etc. is used as a starting material, neutralized or further alkalized 5 as necessary, and adjusted to a concentration of aluminum that can separate gallium by electrolysis. It may be adjusted to obtain an aqueous solution containing an alkaline grit.
ガリ ウム原料 1から得られる代表的なガリ ウム含有鉱酸水 溶液 としては、 例えば、 特開昭 51 - 32411号公報記載のバイ ヤー法からのアルミ ン酸ナ ト リ ウム溶液中のガリ ゥムを水不 溶性の置換ヒ ドロキシキノ リ ンで抽出し、 不純物を除去した 後、 これを強鉱酸で逆抽出した溶液、 黒鉱の亜鉛精練工程で ガリ ゥム含有泥から鉱酸で抽出された溶液またはアル力リで 抽出された後鉱酸で逆抽出された溶液、 特公昭 56- 38661号公 報記載のガリ ウム含有廃棄物を酸化剤存在下で、 濃塩酸、 濃 硝酸に溶解して得られた溶液、 特開昭 54 - 117315号、 特開昭 56— 9223号および特開昭 9 - 213622号公報記載のガリ ウム舍 有廃棄物を鉱酸により溶解して得られた溶液などがある。  Typical examples of the gallium-containing mineral acid aqueous solution obtained from the gallium raw material 1 include gallium in a sodium aluminate solution obtained by a via method described in JP-A-51-32411. Was extracted with a water-insoluble substituted hydroxyquinoline to remove impurities and then back-extracted with a strong mineral acid. Dissolve the gallium-containing waste described in Japanese Patent Publication No. 56-38661, a solution or solution back-extracted with a mineral acid after extraction with a solution, in concentrated hydrochloric acid and concentrated nitric acid in the presence of an oxidizing agent. The resulting solution, a solution obtained by dissolving a gallium-owned waste described in JP-A-54-117315, JP-A-56-9223 and JP-A-9-213622 with a mineral acid, etc. is there.
ガリ ゥム舍有鉱酸水溶液 2中に過剰の酸が存在する場合に はアル力 リ濃度を調整する際に多量のアル力 リが必要となり、 さらに溶液中に多量の塩類を含有してしまう という欠点を有 するので、 特開昭 60 - 2636号公報記載のように、 拡散透折法 (ィォン交換膜を通しての酸と塩類の拡散速度差を利.用し、 酸と塩類を効率的に分離する方法) により、 原液中の過剰な 酸を分離回収した後、 アルカ リ化 3するこ とが好ましい。 こ れにより余分のアルカ リが不要になり、 また溶液中の塩類濃 度を低下させることができる。 また、 ガリ ウム舍有鉱酸水溶液 2 あるいはそれを拡散透圻 6 して鉱酸濃度を低下させた溶液のガリ ゥム濃度が低い場合 には、 アルカ リを加えて中和 ( p H 5 〜 8程度) 7 してガリ ゥムを含むゲルを発生させ、 濾過 8 し、 洗浄、 脱水した後、 アルカ リ化 3することにより、 アルカリ性ガリ ゥム舍有水溶 液 (電解液) 4中のガリ ウム濃度を增大させ、 電解の電流効 率の向上、 単位電解液量の減少、 さらには各原単位の改善を もたらすこ とができる。 また、 出発原料がガリ ウム含有アル 力リ溶液である場合でも、 ガリ ウム濃度が低いときには、 上 記同様の手順によりガリ ウム濃度を増大させることができる。 電解液中のガリ ウム濃度は 0. 01〜: L . 5 モル Z が適当である ので、 ガリ ウム舍有水溶液中のガリ ウム濃度が 5 も / ί 以下 の場合には、 上記の中和 7、 濾過 8、 洗浄、 脱水工程により ガリ ゥム濃度を增加させることが望ましい。 If excess acid is present in the aqueous solution of mineral acid in galleria, a large amount of alcohol is required to adjust the concentration of the alkali, and the solution contains a large amount of salts. As described in Japanese Patent Application Laid-Open No. Sho 60-2636, the method of diffusing and diffusing (using the difference in the diffusion rate of acids and salts through an ion-exchange membrane to efficiently remove acids and salts) It is preferable to separate and recover the excess acid in the stock solution and then to carry out alkalization 3 by the method of separation. This eliminates the need for extra alkali and can reduce the salt concentration in the solution. If the gallium-containing mineral acid aqueous solution 2 or a solution in which the concentration of the mineral acid is reduced by diffusion and diffusion through the solution 6 is low, the alkali is added to neutralize the solution (pH 5 to 5). 8) to form a gel containing gallium, filtered 8, washed, dehydrated, and then alkalized 3 to make the gallium in the alkaline gallium-based aqueous solution (electrolyte) 4 By increasing the electrolyte concentration, the current efficiency of electrolysis can be improved, the unit electrolyte volume can be reduced, and each basic unit can be improved. Even when the starting material is a gallium-containing alkaline solution, when the gallium concentration is low, the gallium concentration can be increased by the same procedure as described above. The appropriate concentration of gallium in the electrolyte is 0.01 to: L.5 mol Z. If the concentration of gallium in the aqueous solution of gallium is less than 5 / /, the above neutralization 7 It is desirable to increase the gallium concentration by filtration, filtration, washing and dehydration steps.
ガリ ゥム含有水溶液から電解によりガリ ゥムを有効に単離 しう るためのァリ カ リ濃度は 0. 5 Ν以上である。 アルカ リ濃 度が 0. 5 Ν未満では電解中に水素の発生が促されるからであ る。 しかし、 電解液のァルカ リ濃度としては 0. 5 〜 5 Νが好 ましい。 アルカ リ濃度が 5 Νを超えると、 電解液の粘度の上 舁等のため、 発生するガスの脱泡不良や電解液中の拡散不足 が生じて電流効率が低下するからである。  The gali- lic concentration for effectively isolating the gallium from the gallium-containing aqueous solution by electrolysis is 0.5% or more. If the alkali concentration is less than 0.5%, hydrogen generation is promoted during electrolysis. However, the alkaline concentration of the electrolyte is preferably 0.5 to 5 mm. If the alkali concentration exceeds 5 5, the current efficiency will decrease due to insufficient degassing of generated gas and insufficient diffusion in the electrolyte due to the increase in the viscosity of the electrolyte.
次いで、 本発明の方法に従えば、 アルカ リ性ガリ ウム含有 水溶液を固体吸着剤と接触させて鉄分を選択的に分難除去す る (脱鉄 9 ) 。 アルカ リ性溶液においてガリ ウムはガリ ウム 酸イ オン Ga02— として完全に溶解しているのに対して、 微量 に含まれている鉄は水酸化鉄 Fe203 · xH20になっている場合 が多い。 その結果、 ガリ ウム含有アルカリ性水溶液を固体吸 着剤と接触させると、 鉄分だけが選択的に吸着される。 Next, according to the method of the present invention, the aqueous solution containing alkaline gallium is brought into contact with a solid adsorbent to selectively and hardly remove iron (iron removal 9). Galli um is Gari um San'i on Ga0 2 in alkaline solution - whereas completely dissolved as a trace Iron contained in the many cases have become iron hydroxide Fe 2 0 3 · xH 2 0 . As a result, when the alkaline aqueous solution containing gallium is brought into contact with the solid adsorbent, only iron is selectively adsorbed.
脱鉄 9 のために用いる固体吸着剤は、 上記のような吸着の メカニズムから、 アルカリ性において安定であればよ く、 特 別に限定されるものではない。 ただし、 吸着速度を考慮する と、 —アルミナゃ活性炭あるいはその混合物が好ましい。 r—アルミナの比表面積は 120〜160 nf/g (平均孔径 100〜 120A) であることが好ましい。 比表面積が 120«f/g未満 (平均孔径 120人超) では吸着速度が小さ く なり、 160π?Ζ g超 (平均孔径 100 A未満) では有効—吸着面積が小さ く なり 吸着速度が小さ く なる。 r -アルミナの粒度は、 脱鉄の速度 や効率による制約はないが、 脱鉄後のアル力リ液からの分離 を考えると粗い方が望ましい。 λ手可能な原料 (水酸化アル ミニゥム) のコス ト等を考慮すると δθ δθ mの粒度が好ま しい。 このような r —アルミナは、 水酸化アルミニゥムを焼 成して得られ (静置焼成法が好ましい) 、 水酸化アルミユウ ムは例えば昭和軽金属㈱から H-10 (商品名) 、 H- 10C (商品名) として市販されている。  The solid adsorbent used for deironing 9 is not particularly limited as long as it is stable in alkalinity due to the above-described adsorption mechanism. However, in consideration of the adsorption rate, alumina-activated carbon or a mixture thereof is preferable. The specific surface area of r-alumina is preferably 120 to 160 nf / g (average pore diameter 100 to 120 A). When the specific surface area is less than 120 «f / g (average pore size of more than 120 people), the adsorption speed decreases, and when the specific surface area exceeds 160π? 160g (average pore size of less than 100 A), the adsorption area becomes smaller and the adsorption speed decreases. Become. The particle size of r-alumina is not restricted by the speed and efficiency of de-ironing, but it is desirable that the particle size is coarser in view of the separation from the Al-Li solution after de-ironing. Considering the cost of raw materials (hydroxide aluminum) that can be used in λ, a particle size of δθ δθ m is preferable. Such r-alumina is obtained by calcining aluminum hydroxide (preferably the static calcining method). Aluminum hydroxide can be obtained, for example, from Showa Light Metal Co., Ltd. using H-10 (trade name), H-10C (trade name). Is commercially available.
活性炭は、 カーボンブラ ック系、 木材系、 石炭系のものが 望ましく 、 形状は液との接触面積が大き く なるので粉末状が 望ましい。 活性炭の比表面積は一般に 300〜 1500 nf/gである が、 脱鉄用には 400〜900 nf/gが好ましい。 比表面積が 400 «f/g未満では比表面積が小さいので吸着速度が小さ く なり、 900 m'/g超では平均孔径が小さ く なり有効吸着面積が小さ く なる。 活性炭の平均孔径は重要であり、 30〜50 Aの平均孔径 が望ましい。 3 0 A未満では有効吸着面積が小さいので吸着 速度が運く なり、 5 0 A超では比表面積が小さいので吸着速 度が小さ く なる。 The activated carbon is desirably carbon black, wood, or coal. The activated carbon is preferably in the form of powder because the contact area with the liquid is increased. The specific surface area of activated carbon is generally 300 to 1500 nf / g, but is preferably 400 to 900 nf / g for deironing. When the specific surface area is less than 400 «f / g, the adsorption rate is low because the specific surface area is small. Become. The average pore size of the activated carbon is important, and an average pore size of 30-50 A is desirable. At less than 30 A, the effective adsorption area is small, so that the adsorption speed is high. At more than 50 A, the specific surface area is small, so that the adsorption speed is low.
r—アルミナと活性炭では r -アルミナの方が吸着速度が 大きい。 これは固体吸着剤の総比表面積ではなく 、 水酸化鉄 を吸着できる以上の大きさの細孔の占める割合に帰因するも のと考えられる。  For r-alumina and activated carbon, r-alumina has a higher adsorption rate. This is considered to be due not to the total specific surface area of the solid adsorbent but to the ratio of pores having a size larger than that capable of adsorbing iron hydroxide.
アルカリ性ガリ ゥム舍有水溶液と固体吸着剤の接触方法は、 特に制限されないが、 容器中のアルカ リ性ガリ ウム舍有水溶 液に固体吸着剤粒子を投入し、 両者が十分に接触するように 攙拌する方法が好ましい。 攪拌方法に特別の限定はなく、 一 般的な機械攪拌で十分であるが、 固体吸着材が液中に均一に 分散する程度の面転数以上であることが望ましい。 しかし、 固体吸着剤を充填した塔中にアル力 リ性ガリ ゥム含有水溶液 を循環して通過させる等によってもよい。 接触装置等の材質 としては、 特に強く指定するものではないが、 鐧板、 ステン レス等の鉄製品には避け、 ボリ エチレン、 テフロ ン等を用い ることが好ましい。 特に攪拌機、 ヒータ等はテフ ロ ン被覆し たものが望ましい。 また、 この接触の際、 アルカ リ性ガリ ウ ム含有水溶液は 5 0 で以上、 さ らには 7 0 で以上に加熱する ことが好ましい。 アルカ リ性ガリ ゥム含有水溶液が加温され ていないと鉄分の分離除去に長時間を要する。 加熱方法はヒ ータ加熱、 蒸気吸込等のいかなる方法によってもよい。  The method of contacting the alkaline gallium-containing aqueous solution with the solid adsorbent is not particularly limited, but the solid adsorbent particles are charged into the alkaline gallium-containing aqueous solution in the container so that both are sufficiently contacted. Stirring is preferred. There is no particular limitation on the stirring method, and general mechanical stirring is sufficient. However, it is preferable that the number of surface turns is equal to or higher than the solid adsorbent is uniformly dispersed in the liquid. However, the aqueous solution containing the alkaline gallium may be circulated and passed through a column filled with the solid adsorbent. Although the material of the contact device is not particularly strongly specified, it is preferable to use polyethylene, teflon, etc. instead of steel products such as steel plates and stainless steel. In particular, it is desirable that the stirrer, heater, etc. are coated with Teflon. At the time of this contact, it is preferable to heat the aqueous solution containing alkaline gallium to 50 or more, and more preferably to 70 or more. Unless the aqueous solution containing alkaline gallium is heated, it takes a long time to separate and remove iron. The heating method may be any method such as heater heating and steam suction.
固体吸着材の使用量は、 固体吸着材の種類に依存するが、 例えば、 τ —アルミ ナ ( Β Ε Τ表面積 150nfZ g程度) であ れば、 5 〜 5 0 g / & が適当であり、 さ らに好まし く は 20〜 30 g / H である。 5 g /£ 来 : の場合には吸着に長時間を要 する。 また、 5 0
Figure imgf000014_0001
を加える場合には、 鉄分の吸着 量は同じであるので後の分離除去工程が煩雑になると共に固 体吸着剤が無駄になる。
The amount of solid adsorbent used depends on the type of solid adsorbent, For example, if τ-alumina (Β 150 Τ surface area: about 150 nfZg), 5 to 50 g / & is appropriate, and more preferably 20 to 30 g / H. In the case of 5 g / pound : it takes a long time for adsorption. Also, 5 0
Figure imgf000014_0001
In the case of adding iron, since the amount of iron adsorbed is the same, the subsequent separation and removal step becomes complicated and the solid adsorbent is wasted.
また、 吸着時間は、 加熱温度、 吸着材の種類と、 使用量に 左右されるが、 7 0 で、 r —アルミ ナを 2 0 g Zjg 添加した 場合には、 約一時間の接触で鉄分を完全に除去することがで きる。  The adsorption time depends on the heating temperature, the type of adsorbent, and the amount used, but at 70, when 20 g of r-alumina is added, the iron content is reduced by approximately one hour of contact. It can be completely removed.
このような吸着除去によりガリ ゥム分のロスも懸念される が、 吸着前後でのアル力 リ性ガリ ゥム含有水溶液中のガ "ゥ ム濃度に変化はなく 、 さらに固体吸着材の付着物を分折した ところガリ ゥムは検出されなかった。  Although there is concern about the loss of gallium due to such adsorption and removal, there is no change in the concentration of gallium in the aqueous solution containing the alkaline gallium before and after the adsorption. When no was analyzed, no gallium was detected.
鉄分を吸着した画体吸着剤は濾過 1 0 してアル力リ性ガリ ゥム含有水溶液から分離する。  The image adsorbent that has adsorbed iron is filtered 10 to separate it from the aqueous solution containing the alkaline gallium.
以上のようにして鉄分を除去したアルカ リ 性ガリ ウム含有 水溶液を電解液として電解を行なう。  Electrolysis is performed using the alkaline gallium-containing aqueous solution from which iron has been removed as described above.
電解は通常の水溶液電解であって、 次のような条件で行な う ことが好ましい。 即ち、 陰極としてニ ッケル板、 液状金属 ガリ ウム等、 陽極は白金板、 二 ' ケル板等を用い、 陰極電流 密度 0.01〜0. 5 A /cnf. 浴温 40〜80で、 電解液中のガリ ゥム 金属の濃度 0.01〜: L.5m0l/^ が適当である。 これらの条件範 囲は高い電流効率を得るために必要である。 The electrolysis is a normal aqueous electrolysis, and is preferably performed under the following conditions. That is, nickel plate, liquid metal gallium, etc. are used as the cathode, platinum plate, nickel plate, etc. are used as the anode, and the cathode current density is 0.01 to 0.5 A / cnf. Gallium Metal concentration 0.01 ~: L.5m 0 l / ^ is appropriate. These conditions are necessary to obtain high current efficiency.
液中のガリ ゥムはガリ ゥム酸イオン Ga02として存在し、 電 解により陰極に折出する。 The gallium in the solution exists as gallium ion GaO 2 , The solution turns out to the cathode.
こう して、 本発明の方法により、 鉄分を除去した電解液を 電解することにより高純度のガリ ウム 1 2が効率的に製遣さ れる。  Thus, by the method of the present invention, high-purity gallium 12 is efficiently produced by electrolyzing the electrolytic solution from which iron has been removed.
電解終了液にはガリ ゥムが僅かに残存しているので、 本発 明の工程に再循環 1 3 して有効利用することができる。 すな わち、—電解液にガリ ウム舍有鉱酸水溶液および (または) 鉱 酸を加えて中和 ( P H 5〜 8程度) 7 し、 ガリ ウムを含むゲ ルを沈殺させ、 以降、 ガリ ゥム濃度の濃縮工程と同様にして、 濾過 8、 洗浄、 脱水およびアルカ リ化 3 して、 ガリ ウム舍有 アルカ リ性水溶液 4 とする。 さらに、 脱鉄 9、 濾過 1 0を柽 て再び電解 1 1.を行なう ことができる。  Since a small amount of gallium remains in the electrolysis termination solution, it can be recycled and used effectively in the process of the present invention. That is, the aqueous solution of gallium-containing mineral acid and / or mineral acid is added to the electrolyte to neutralize (about pH 5 to 8) 7 to precipitate the gel containing gallium, In the same manner as in the concentration step of the gallium concentration, filtration 8, washing, dehydration and alkalization 3 are performed to obtain a gallium-containing alkaline aqueous solution 4. Further, the electrolysis 11 can be performed again after the removal of iron 9 and the filtration 10.
以下、 実施例および比較例により説明する。  Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
実施例 1  Example 1
バイヤー法からのアルミ ン酸ナ ト リ ゥムからの回収法につ いて実施例により説明する。  The method for recovering sodium aluminate from the buyer method will be described with reference to examples.
特開昭 51-32411号記載の方法により、 Ga 0. 2 g Z を含 むアルミネ一 ト液 ( ^aOH 150 g / 6. . A1203 8 0 g ) と 抽出液 CKelexlOO (メ サズァ フ シラ ン ドケミカル社の置換ヒ ドロキシキノ リ ンの商品名) 8 %、 n -デカノ ール 4 % 、 ノ ーサチック酸 4 %、 ケロシン 8 4 %〕 とを接触させ、 Ga を 抽出後 0. 6 N-HC1 により Al , Na 等の不純物を除去した後、 2N-HC1により Ga を逆抽出した。 該ガリ ウム含有鉱酸水溶液 を拡散透折槽 (拡散透折膜として旭硝子㈱製セレ ミオン DMV ― を使用) に Z irfhrの速さで通液すると同時に、 拡散透折 膜を介して水を同様対置せしめ、 該水側に酸を拡散させて回 収した。 The method of JP 51-32411 Patent forth, Ga 0. 2 g Z to including aluminate one preparative liquid (^ aOH 150 g / 6.. A1 2 0 3 8 0 g) and extract CKelexlOO (main Sazua off 8%, 4% of n-decanol, 4% of nosatic acid, 84% of kerosene), and after extracting Ga, 0.6 N- After removing impurities such as Al and Na with HC1, Ga was back-extracted with 2N-HC1. The gallium-containing aqueous solution of a mineral acid is passed through a diffusion-permeation tank (using Asahi Glass Co., Ltd.'s Ceremion DMV- as a diffusion-permeation membrane) at a rate of Zirfhr. Water was similarly placed through the membrane, and the acid was diffused to the water side and collected.
逆抽出液、 回収酸、 透折液の組成を表 1 に示す。 表 単 ¾i  Table 1 shows the composition of the back extract, the recovered acid, and the permeate. Table Unit ¾i
C 1 G a  C 1 G a
逆抽出液 2. 0 0.03 透折液 0. 4 0.03 回収酸 1. 6 0.00 この透折液に 4 Nのカセィ ソーダ溶液を o加えて p H 6 に調 整したところ多量のゲル状沈殺を生じた。 デカンテーショ ン によりスラ リ一濃度を 1 0 g / S. まで濃縮後、 フィ ルタープ レス (濾布通気度約 2 0 cc/cm2 · min 、 濾過圧力 4. 0 kgノ αί ) に通液し、 さらに同量の 5 0 'Cに加熱した純水を通液し、 洗 浄、 脱水したところ、 水分 8 0 %のケーキ 0. 2 kg / nf · hrが 得られた。 ケーキ中の Ga 濃度は 7重量バ一セ ン トであった。 このケーキ 300重量部を 1 0 Nのカセイ ソーダ 120重量-部に 溶解して Na20濃度 100 g 、 ガリ ウム濃度 0.39molノ の ガリ ゥム酸ソーダ水溶液を得、 F e 濃度を測定したところ 5 PPm であった。 該溶液に活性炭 (和光純薬工業脚製試薬特 級粉末) を 4 0 g 添加し 7 0 でに加熱攪拌裡に 4時間保 持した後、 濾過にて固液分離し、 液中の F e 濃度を測定した ところ検出されなかった。 白金板を陽極とし、 ニッケル板を 陰極として陰極電流密度 1 0 A/dnf 、 槽容積 4 0 £ 、 平均滞 留時間 2 4時間にて該電解液を通液しつつ 240時間連続電解 を行なった後、 電解終了液の Ga 濃度を測定したところ 0.01 mol/ であった。 また陰極の表面は Ga メ タルにより完全に 覆われていた。 この間に得られた Ga メ タルは 10.6 kgで純度 は 99.99%であった。 また電流効率を算出すると 1 5 %であ つた。 Reverse extraction liquid 2.0 0.03 Permeable liquid 0.4 0.4 0.03 Recovered acid 1.6 0.00 Add 4N sodium hydroxide solution to this permeate and adjust it to pH6. occured. After concentration of the slurry to 10 g / S. By decantation, the solution was passed through a filter press (filter cloth air permeability about 20 cc / cm 2 · min, filtration pressure 4.0 kg / αί). Further, the same amount of pure water heated to 50 ° C. was passed, washed and dehydrated to obtain 0.2 kg / nf · hr of a cake having a water content of 80%. The Ga concentration in the cake was 7% by weight. 300 parts by weight of this cake was dissolved in 120 parts by weight of 10N sodium hydroxide solution to obtain 100 g of Na 20 concentration and an aqueous solution of sodium gallium salt having a gallium concentration of 0.39 mol. The Fe concentration was measured. It was 5 PPm. To the solution was added 40 g of activated carbon (reagent grade powder manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was kept at 70 with heating and stirring for 4 hours. Then, solid-liquid separation was performed by filtration. When the concentration was measured, it was not detected. Cathode current density of 10 A / dnf, tank volume of 40 £, average residence time of 24 hours using a platinum plate as an anode and a nickel plate as a cathode. After performing, the Ga concentration of the electrolysis termination solution was measured to be 0.01 mol /. The surface of the cathode was completely covered with Ga metal. The Ga metal obtained during this period was 10.6 kg and the purity was 99.99%. The calculated current efficiency was 15%.
実施例 2  Example 2
ガリ—ゥム . リ ン(GaP) 单結晶製造の際の副生廃棄物である 塊状のガリ ウムリ ンを粉碎し、 タイ ラー標準篩 6 0 メ ッ シュ 全通の粉末とした。 この粉末 1. 0重量部に酸化性混酸 (濃塩 酸 3. 6重量部、 濃硝酸 8. 4重量部) を加え、 液を攪拌して Gallium Lin (GaP) Lumped gallium lin, which is a by-product waste generated during the production of crystals, was pulverized to obtain a Tyler Standard Sieve 60 Mesh powder. An oxidizing mixed acid (3.6 parts by weight of concentrated hydrochloric acid, 8.4 parts by weight of concentrated nitric acid) was added to 1.0 part by weight of this powder, and the solution was stirred.
GaPを酸化分解した。 つぎに酸化分解液を濾過し、 未溶解残 渣 1 gを濾別して透明なガリ ゥム含有鉱酸水溶液を得た。 そ のガリ ゥム舍有鉱酸水溶液を拡散透折膜として徳山曹達㈱製 ネオセブタ A F Nを使用した拡散透圻槽に 1 / πί · hrの速 さで通液し、 同時に拡散透折膜を介して水を同様対置せレめ その水側に酸を拡散させて回収した。 GaP was oxidatively decomposed. Next, the oxidative decomposition solution was filtered, and 1 g of the undissolved residue was separated by filtration to obtain a transparent gallium-containing mineral acid aqueous solution. The aqueous solution of mineral acid is passed through a diffusion / permeation tank using Neocebuta AFN manufactured by Tokuyama Soda Co., Ltd. as a diffusion / permeable membrane at a speed of 1 / πί · hr, and simultaneously through the diffusion / permeation membrane. The water was placed in the same manner as above and the acid was diffused to the water side and collected.
ガリ ゥム舍有鉱酸水溶液、 透折液、 回収酸の液組成を表 2 に示す。  Table 2 shows the composition of the mineral acid solution, the permeate, and the recovered acid.
表 2 表示単位 (mol/ )  Table 2 Display units (mol /)
Figure imgf000017_0001
Figure imgf000017_0001
の透圻液に 1 5 Nカセイ ソーダ溶液を加えて、 Na20濃度 100 g /ί 、 ガリ ウム濃度 0.7mol/£ のガリ ゥム酸ソーダ溶 液を得 Fe 濃度を測定したところ 1 O ppra であった。 この溶 液に、 平均粒径 5 O mの水酸化アルミニウムを 560でで 4 時間電気炉にて静置焼成して得た r - A1203 ( B E T表面積By adding 1 5 N caustic soda solution Toru圻液of, Na 2 0 concentration A sodium gallinate solution having a gallium concentration of 0.7 mol / pound was obtained at a concentration of 100 g / ί, and the Fe concentration was measured to be 1 O ppra. This solvent solution was obtained form electrostatic置焼at 4 hours electric furnace at an average particle diameter of 5 O m of aluminum hydroxide 560 r - A1 2 0 3 ( BET surface area
150 m'/ g ) を 2 0 g / H 添加し、 Ί 0 Όに加熱攪拌裡に 1 時間保持した後、 濾過により固液分離し、 液中の Fe 濃度を 測定レた所、 検出されなかった。 白金板を陽極とし、 ニッケ ル板を陰極として、 陰極電流密度 1 0 A/dml、 槽容積 4 0 、 平均滞留時間 3 6時間にて該電解液を通液しつつ 360時間連 続電解を行った後に電解終了液の Ga 濃度を測定したところ、 O.Olmol/^ であった。 また陰極の表面は Ga メ タルにより完 全に覆われていた。 この間に得られた Ga メタルは、 19.2te で、 純度 99.99%であった。 また電流効率を算出すると 2 0 %であった。 150 m '/ g) was added at 20 g / H, and the mixture was kept at <0> with heating and stirring for 1 hour.Then, solid-liquid separation was performed by filtration, and the Fe concentration in the liquid was measured. Was. Platinum plate as an anode and a cathode nickel plate, cathode current density 1 0 A / dm l, the bath volume 4 0, 360 hours continuous electrolysis while passing liquid electrolyte solution at an average residence time of 3 6 hours After this, the Ga concentration of the electrolysis solution was measured and found to be O. Olmol / ^. The surface of the cathode was completely covered with Ga metal. The Ga metal obtained during this period was 19.2 te and 99.99% pure. The current efficiency was calculated to be 20%.
実施例 3  Example 3
実施例 2 にて得た回収酸と電解終了液とを混合中和 ( p H 6 ) し、 Ga(0H)3 ゲルを発生させた。 デカ ンテーショ ンの後、 フィ ルタープレスを用いて濾過、 洗浄、 脱水を行ったところ、 水分 8 0 %のケーキ 0. 2 kg_ ml . hrが得られた。 ケーキ中の Ga 濃度は 7重量パ一セ ン トであった。 このケーキ 300重量 部を 1 0 N.のカセイ ソーダ 120重量部に溶解して Na20濃度 The recovered acid obtained in Example 2 and the electrolysis termination solution were mixed and neutralized (pH 6) to generate a Ga (0H) 3 gel. After deca Ntesho down, filtered through a Filter Press, washing, was subjected to dehydration, water content 80% cake 0. 2 kg_ m l. Hr was obtained. The Ga concentration in the cake was 7% by weight. The cake 300 parts by weight were dissolved in caustic soda 120 parts by weight of 1 0 N. Na 2 0 concentration
100 gノ 、 ガリ ウム濃度 0.39molZjg のガリ ゥム酸ソーダ 水溶液を得、 Fe 濃度を測定したところ 6 ppm であった。  An aqueous sodium gallium salt solution having a gallium concentration of 100 g and a gallium concentration of 0.39 mol Zjg was obtained, and the Fe concentration was measured to be 6 ppm.
実施例 2 と同一手法にて Fe 分を完全に除去した後に白金 板を陽極とし、 ニッケル板を陰極とし、 陰極電流密度 1 0 A/ d nf 槽容積 4 & 、 平均滞留時間 2 4時間にて電解液を通液 しつつ、 240時間連続電解を行った後に、 電解終了液の Ga 濃度を測定したところ、 O.Olmol/i であった。 また陰極の表 面は G a メ タルにより完全に覆われていた。 この間に得られ た G a メ タルは 1. 0 kgで純度は 99.99 %であった。 この間の 電流効率を箕出すると 1 5 %であった。 After the Fe component was completely removed by the same method as in Example 2, the platinum plate was used as the anode, the nickel plate was used as the cathode, and the cathode current density was 10 A / After performing continuous electrolysis for 240 hours while passing the electrolyte with a d nf tank volume of 4 & and an average residence time of 24 hours, the Ga concentration of the electrolysis termination solution was measured to be O. Olmol / i. Was. The surface of the cathode was completely covered with Ga metal. The Ga metal obtained during this period was 1.0 kg and the purity was 99.99%. The current efficiency during this period was 15%.
比較例 1  Comparative Example 1
実施例 1 のガリ ゥム含有鉱酸水溶液を実施例 1 と同一方法 にて透折、 中和、 洗浄、 脱水した後に、 アルカリ澹度調整を 行ない、 Na20濃度 100 gノ 、 ガリ ウム濃度 0.39molノ g の ガリ ウム酸ソーダ水溶液を得、 Fe 濃度を測定したところ 5 ppm であった。 白金板を陽極、 ニッケル板を陰極とし、 電流 密度 1 0 A/dm'、 槽容積 4 0 S, 、 平均滞留時間 2 4時間にて 電解液を通液しつつ連繞電解を行ない、 電解開始後の電解終 了液中の Ga 濃度を測定した結果を表 3に示す。 表 3
Figure imgf000019_0001
The gallium-containing mineral acid aqueous solution of Example 1 was folded, neutralized, washed, and dehydrated in the same manner as in Example 1, and then adjusted for alkalinity. Na 20 concentration 100 g / g An aqueous solution of 0.39 mol g of sodium gallate was obtained, and the Fe concentration was measured to be 5 ppm. With a platinum plate as the anode and a nickel plate as the cathode, current density is 10 A / dm ', tank volume is 40 S, average residence time is 24 hours. Table 3 shows the results of measurement of the Ga concentration in the electrolysis termination solution afterwards. Table 3
Figure imgf000019_0001
電解開始 2 4時間後に電解を中断し、 陰極表面を観察する と、 黒化しており、 表面を EPMA (Electron Probe Micro Analysis) により定性分折したところ、 Ga , Fe , Niが検出さ れた。 この間の電流効率を箕出すると 3 %であった。 また電 解終了液 ( 2 時間後) 中の Fe 濃度は 0. 4 ppm であった。 比較例 2 Electrolysis was interrupted 24 hours after the start of electrolysis, and the cathode surface was observed to be black. When the surface was qualitatively analyzed by EPMA (Electron Probe Micro Analysis), Ga, Fe, and Ni were detected. The current efficiency during this period was 3%. The Fe concentration in the electrolysis solution (after 2 hours) was 0.4 ppm. Comparative Example 2
実施例 2のガリ ゥム舍有鉱酸水溶液を実施例 2 と同一方法 にて透折し、 この透折液に 1 5 Nのカセイ ソーダ溶液を加え て Na20漶度 100 gノ 、 ガリ ウム濃度 0.7tnol/£ のガリ ゥム 酸ソーダ溶液を得、 Fe 濃度を測定したところ、 1 O ppm で あった。 該液を電解液として、 白金板を陽極とし、 ニッケル 板を陰極として、 陰極電流密度 1 0 A/dirf 、 槽容積 4 0 & 、 平均滞留時間 3 6時間にて通液しつつ連繞電解を行ない、 電 解開始後の電解終了液中の Ga 瀵度を測定した結果を表 4に 示す。 表 4
Figure imgf000020_0001
The gully © beam舍有aqueous mineral acid in Example 2 was dialyzed in Example 2 in the same way, Na 2 0漶度100 g Roh added caustic soda solution of 1 5 N to the dialyzed solution, Galli A sodium gallate solution having a 0.7tnol / pium concentration was obtained, and the Fe concentration was measured to be 1 O ppm. Using this solution as an electrolytic solution, a platinum plate as an anode, a nickel plate as a cathode, and continuous electrolysis while passing at a cathode current density of 10 A / dirf, a tank volume of 40 &, and an average residence time of 36 hours. Table 4 shows the results of the measurement of the Ga concentration in the electrolysis solution after the start of electrolysis. Table 4
Figure imgf000020_0001
電解開始 3 6時間後に電解を中断し、 陰極表面を観察する と、 黒化しており、 表面の EPMA定性分折を行ったところ、 Ga , Fe , Niが検出された。 この間の電流効率を算出すると 4 %であった。 また電解終了液 ( 2 4時間) 中の Fe 瀵度-は 0. 4 ppm でめった。  The electrolysis was interrupted 36 hours after the start of electrolysis, and the cathode surface was observed. The cathode was blackened, and when EPMA qualitative analysis was performed on the surface, Ga, Fe, and Ni were detected. The current efficiency calculated during this time was 4%. The Fe concentration in the electrolysis solution (24 hours) was 0.4 ppm.
比較例 3  Comparative Example 3
実施例 3 と同様に実施例 2にて得た回収酸と電解終了液よ り中和 · 濾過 ♦ 洗浄 · 脱水工程を経て、 アルカ リを加えて Na20濃度 100 gノ 、 ガリ ウム濃度 0.39molZ のガリ ゥム 酸ソーダ水溶液を得、 Fe 濃度を測定したところ、 6 ppm で あった。 白金板を陽極とし、 ニ ッケル板を陰極とし、 陰極電流密度 1 0 A /d trf . 槽容積 4 ί 、 平均滞留時間 2 4時間にて、 上記 液を通液しつつ連続電解を行い、 電解開始後の電解終了液中 の G a 濃度を測定した結果を表 5 に示す。 表 5
Figure imgf000021_0001
Neutralized from the recovered acid obtained in Example 2 and the electrolyzed solution in the same manner as in Example 3. Filtration ♦ After washing and dehydration steps, add alkali to add 100 g of Na 20 and 0.39 g of gallium. A molZ aqueous sodium gallate solution was obtained and the Fe concentration was measured to be 6 ppm. Using a platinum plate as the anode and a nickel plate as the cathode, continuous electrolysis is performed while passing the above solution at a cathode current density of 10 A / d trf. A tank volume of 4 、 and an average residence time of 24 hours. Table 5 shows the results of measuring the Ga concentration in the electrolysis solution after the start. Table 5
Figure imgf000021_0001
電解開始 2 4時間後に電解を中断し、 陰極表面を観察する と、 黒化しており、 表面分折を行ったところ、 Ga , Fe , N iが 検出された。 この間電流効率を算出すると 3 %であった。 ま た電解終了液 ( 2 4時間) 中の F e 濃度は 0· 4 ppm であった 産業上の利用分野  Electrolysis was interrupted 24 hours after the start of electrolysis, and the cathode surface was observed to be black. When the surface was analyzed, Ga, Fe, and Ni were detected. During this period, the current efficiency was calculated to be 3%. The concentration of Fe in the electrolysis termination solution (24 hours) was 0.4 ppm.
本発明の方法は天然鉱石であるかあるいは工業廃棄物であ るかを問わず、 ガリ ウムを含む原料から電解により高純度ガ リ ゥムを製造する場合に適用できる。  The method of the present invention can be applied to the production of high-purity gallium by electrolysis from a gallium-containing raw material, whether natural ore or industrial waste.

Claims

請 求 の 範 囲 The scope of the claims
1. ガリ ゥム含有水溶液の電解によるガリ ゥムの製造方法 において、 電解工程前に、 ガリ ウム含有水溶液をアルカリ性 下で固体吸着剤と接触せしめて鉄分を分離除去する工程を含 むことを特徴とするガリ ゥムの製造方法。 1. A method for producing a gallium by electrolysis of a gallium-containing aqueous solution, comprising a step of contacting the gallium-containing aqueous solution with a solid adsorbent under alkaline conditions to separate and remove iron before the electrolysis step. The manufacturing method of the garden.
2. 前記固体吸着剤と接触させる前記ガリ ゥム含有水溶液 のアルカ リ濃度が 0. 1 N〜5 Nの範囲内である請求の範囲第 1 項記載の方法。  2. The method according to claim 1, wherein an alkali concentration of the gallium-containing aqueous solution to be brought into contact with the solid adsorbent is in a range of 0.1 N to 5 N.
3. 電解によりガリ ゥムを単離しう るアル力リ濃度を有す るアルカリ性ガリ ゥム舍有水溶液を用意した後、 -該アル力リ 性ガリ ゥム舍有水溶液を固体吸着剤と接触せしめて鉄分を分 離除去し、 それから該ァルカリ性ガリ ゥム含有水溶液を電解 してガリ ゥムを回収する請求の範囲第 1項記載の方法。  3. After preparing an alkaline aqueous solution having an alkaline concentration capable of isolating the aqueous solution by electrolysis,-contact the aqueous solution with an alkaline concentration with the solid adsorbent. 2. The method according to claim 1, wherein the iron is separated and removed at least, and then the aqueous solution containing the alkaline gallium is electrolyzed to recover the gallium.
4. 電解によりガリ ゥムを単離するための前記アル力 リ濃 度が 0. 5 N〜5 Nの範囲内である請求の範囲第 3項記載の方法 4. The method according to claim 3, wherein the concentration of the alkali for isolating the gallium by electrolysis is in the range of 0.5 N to 5 N.
5. 前記固体吸着剤が Γ -アルミナもしく は活性炭または これらの混合物からなる請求の範囲第 1項から第 4項までの いずれか 1項に記載の方法。 5. The method according to any one of claims 1 to 4, wherein the solid adsorbent comprises Γ-alumina or activated carbon or a mixture thereof.
6. 前記アル力リ性ガリ ゥム舍有水溶液と前記固体吸着剤 の接触を加熱攬拌裡に行なう請求の範囲第 1項から第 5項ま でのいずれか 1項に記載の方法。  6. The method according to any one of claims 1 to 5, wherein the contact between the aqueous solution of the solvent and the solid adsorbent is carried out while heating the mixture.
7. 前記アル力リ性ガリ ゥム舍有水溶液を前記固体吸着剤 を充填した塔に通して該固体吸着剤と接触させる請求の範囲 第 1項から第 5項までのいずれか 1項に記載の方法。 7. The method according to any one of claims 1 to 5, wherein the aqueous solution is passed through a column filled with the solid adsorbent and brought into contact with the solid adsorbent. the method of.
8. 前記固体吸着剤と接触される前記アル力リ性ガリ ウム 含有水溶液を加熱する請求の範囲第 7項記載の方法。 8. The method of claim 7, wherein the aqueous gallium-containing aqueous solution contacted with the solid adsorbent is heated.
9. 前記加熱 '温度が 5 0 で以上である請求の範囲第 6項ま たは第 8項記載の方法。  9. The method according to claim 6, wherein the heating temperature is 50 or more.
10. 前記加熱温度が 7 0 で以上である請求の範囲第 9項記 載の方法。  10. The method according to claim 9, wherein the heating temperature is 70 or more.
11 -ガリ ゥム舍有鉱酸水溶液をアル力リ化して前記アル力 リ性ガリ ゥム含有水溶液を得る請求の範囲第 1項記載の方法。  2. The method according to claim 1, wherein said aqueous solution of mineral acid having 11 g of potassium is converted into an aqueous solution containing said alkaline gallium.
12. 前記ガリ ウム舍有鉱酸水溶液がバイ ヤー液由来のもの である請求の範囲第 1 1項記載の方法。  12. The method according to claim 11, wherein the gallium-containing mineral acid aqueous solution is derived from a viar solution.
13. 前記ガリ ウム舍有鉱酸水溶液が亜鉛精練工程由来のも のである請求の範囲第 1 1項記載の方法。  13. The method according to claim 11, wherein the gallium-containing mineral acid aqueous solution is derived from a zinc refining process.
14. 前記ガリ ウム含有鉱酸水溶液がガリ ウム含有廃棄物由 来のものである請求の範囲第 1 1項記載の方法。  14. The method according to claim 11, wherein said gallium-containing aqueous solution of mineral acid is derived from gallium-containing waste.
15. 前記ガリ ウム含有鉱酸水溶液を拡散透折法により鉱酸 濃度を低下させた後、 アルカ リ化する請求の範囲第 1 1項か ら第 1 4項までのいずれか 1項に記載の方法。  15. The method according to any one of claims 11 to 14, wherein the aqueous solution of the gallium-containing mineral acid is subjected to a diffusion-filtration method to reduce the concentration of the mineral acid, followed by alkalizing. Method.
16. ガリ ウム含有水溶液を中和してガリ ウムを舍有するゲ ル状沈殺を分離し、 洗浄後、 アルカ リ化して前記アルカ リ性 ガリ ゥム舍有水溶液を得る請求の範囲第 1 1項から第 1 5項 までのいずれか 1項に記載 φ方法。  16. The aqueous solution containing gallium is neutralized to separate gel-like sediment containing gallium, washed, and then alkalized to obtain the alkaline gallium-containing aqueous solution. Item 1 to Item 15 φ method.
17. 前記電解の電解終了液を中和してガリ ウムを含有する ゲル状沈殺を分離し、 洗浄した後、 アルカ リ化して前記アル カ リ性ガリ ゥム舍有水溶液を得る請求の範囲第 1項記載の方 法。  17. The electrolytic termination solution of the electrolysis is neutralized to separate the gel-containing precipitate containing gallium, washed, and then alkalized to obtain the alkaline gallium-containing aqueous solution. The method described in paragraph 1.
PCT/JP1985/000554 1985-10-04 1985-10-04 Process for producing gallium WO1987002075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1985/000554 WO1987002075A1 (en) 1985-10-04 1985-10-04 Process for producing gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1985/000554 WO1987002075A1 (en) 1985-10-04 1985-10-04 Process for producing gallium

Publications (1)

Publication Number Publication Date
WO1987002075A1 true WO1987002075A1 (en) 1987-04-09

Family

ID=13846588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000554 WO1987002075A1 (en) 1985-10-04 1985-10-04 Process for producing gallium

Country Status (1)

Country Link
WO (1) WO1987002075A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553318C1 (en) * 2014-02-26 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Gallium production method from alkali-aluminate solutions of alumina industry
RU2636337C2 (en) * 2016-04-29 2017-11-22 Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" Method of producing gallium from alkaline-aluminate solutions of aluminium production
CN114855222A (en) * 2022-04-25 2022-08-05 珠海经济特区方源有限公司 Method for recovering gallium from magnet powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58517B2 (en) * 1975-10-06 1983-01-06 住友化学工業株式会社 Golden gallium noseizohouhou

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58517B2 (en) * 1975-10-06 1983-01-06 住友化学工業株式会社 Golden gallium noseizohouhou

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553318C1 (en) * 2014-02-26 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Gallium production method from alkali-aluminate solutions of alumina industry
RU2636337C2 (en) * 2016-04-29 2017-11-22 Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" Method of producing gallium from alkaline-aluminate solutions of aluminium production
CN114855222A (en) * 2022-04-25 2022-08-05 珠海经济特区方源有限公司 Method for recovering gallium from magnet powder

Similar Documents

Publication Publication Date Title
US20230303401A1 (en) Preparation of lithium carbonate from lithium chloride containing brines
US9222149B2 (en) Preparation of lithium carbonate from lithium chloride containing brines
JP5730385B2 (en) Method for producing lithium carbonate from lithium chloride
CN100406588C (en) Aluminium production process
EP4108633A1 (en) Lithium hydroxide production method
JP2004501281A (en) Method for producing metal hydroxide or metal basic carbonate
CN107585789B (en) A method of high-purity molybdenum trioxide is prepared using hydrometallurgy molybdenum concentrate
CN113636672A (en) Method for recovering nickel-containing wastewater
WO1987002075A1 (en) Process for producing gallium
RU2154664C2 (en) Cobalt(ii) basic carbonates, method of preparation and application thereof
EP0192426A2 (en) Removal of sodium ions from alkaline aqueous solutions by means of an electrolytic membrane process
KR100367709B1 (en) Recovery method of platinum group metals from waste water
JP6122899B2 (en) Method for producing lithium carbonate from lithium chloride
AU2017420270A1 (en) Method for recovering scandium from red mud from alumina production
JP2001040436A (en) Method for recovering and refining indium
JP2011195935A (en) Method for separating and recovering platinum group element
JPH03223429A (en) Method for recovering silver from silver-containing nitric acid solution
JPWO2005106080A1 (en) Gallium recovery method
JP5102523B2 (en) Indium recovery method
JPS6256215B2 (en)
US3707448A (en) Method for extracting metal from a metal source in an electrolytic cell
JPS6147912B2 (en)
JPS59213622A (en) Process for recovering gallium
JPS6134493B2 (en)
JP3099335B2 (en) Method for dissolving and depositing indium metal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR