JPS6134289B2 - - Google Patents

Info

Publication number
JPS6134289B2
JPS6134289B2 JP14328677A JP14328677A JPS6134289B2 JP S6134289 B2 JPS6134289 B2 JP S6134289B2 JP 14328677 A JP14328677 A JP 14328677A JP 14328677 A JP14328677 A JP 14328677A JP S6134289 B2 JPS6134289 B2 JP S6134289B2
Authority
JP
Japan
Prior art keywords
delay
frequency
filter
line filter
delay line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14328677A
Other languages
Japanese (ja)
Other versions
JPS5477049A (en
Inventor
Makoto Iwahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP14328677A priority Critical patent/JPS5477049A/en
Priority to US05/940,644 priority patent/US4238744A/en
Priority to DE2839229A priority patent/DE2839229C2/en
Publication of JPS5477049A publication Critical patent/JPS5477049A/en
Publication of JPS6134289B2 publication Critical patent/JPS6134289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Networks Using Active Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

【発明の詳細な説明】 本発明は周波数帯域分割フイルタに係り、クロ
ツク信号により駆動される遅延手段を組合わせて
接続して該クロツク信号の周波数を可変せしめる
構成とすることにより、合成後に平坦な周波数振
幅特性及び周波数遅延特性、即ち波形伝送可能で
鋭い遮断特性をもつ複数周波数帯域の信号を得る
ことができると共に、所定周波数帯域の信号のク
ロスオーバ周波数を容易に可変せしめ得る周波数
帯域分割フイルタを提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency band division filter, and has a configuration in which delay means driven by a clock signal are connected in combination to vary the frequency of the clock signal. A frequency band division filter that can obtain signals in multiple frequency bands that have frequency amplitude characteristics and frequency delay characteristics, that is, waveform transmission and sharp cutoff characteristics, and that can easily vary the crossover frequency of signals in a predetermined frequency band. The purpose is to provide.

本出願人は先に特願昭52―107196号「周波数帯
域分割フイルタ」において、分割フイルタとして
の遮断特性及び合成後の振幅特性及び遅延特性共
に良好な周波数帯域分割フイルタを提案した。こ
の分割フイルタは、所定周波数波帯域を有する
遅延線フイルタと遅延回路とを入力端子に並列に
接続し、更に、該遅延線フイルタの出力と該遅延
回路の出力とを演算してとり出す手段を接続して
なり、該手段より高域周波数信号をとり出し、該
遅延線フイルタより低域周波数信号をとり出し、
該遅延線フイルタの周波数振幅特性及び周波数位
相特性のうち少なくとも周波数位相特性を該遅延
線フイルタの所定周波数通過帯域及びそのカツト
オフ周波数のうち少なくとも周波数通過帯域にお
ける上記遅延回路の上記特性と略等しく構成して
ある。
The present applicant previously proposed in Japanese Patent Application No. 52-107196 ``Frequency Band Dividing Filter'' a frequency band dividing filter that has good cutoff characteristics as a dividing filter, and good amplitude and delay characteristics after synthesis. This dividing filter has a delay line filter having a predetermined frequency band and a delay circuit connected in parallel to an input terminal, and further includes means for calculating and extracting the output of the delay line filter and the output of the delay circuit. and extracting a high frequency signal from the means and extracting a low frequency signal from the delay line filter,
At least the frequency phase characteristic of the frequency amplitude characteristic and the frequency phase characteristic of the delay line filter is configured to be substantially equal to the characteristic of the delay circuit in at least the frequency pass band of the predetermined frequency pass band of the delay line filter and its cutoff frequency. There is.

この分割フイルタは周波数全帯域にわたつて遅
延特性の平坦な遅延線フイルタと遅延回路との演
算となるので低域フイルタと遅延回路とを用いた
演算に比してより確実に演算を行ない得、しかも
遅延線フイルタはIC技術で容易に構成し得るの
で回路を小形化し易い等の特長を有する。然る
に、マルチウエイのスピーカシステムを構成する
場合、使用するスピーカユニツトに好都合なクロ
スオーバ周波数が必要であるが、この分割フイル
タにおいては簡単にクロスオーバ周波数を可変せ
しめ得ない等の問題点があつた。
This division filter performs calculations using a delay line filter and a delay circuit that have flat delay characteristics over the entire frequency band, so it can perform calculations more reliably than calculations using a low-pass filter and delay circuit. Moreover, since the delay line filter can be easily constructed using IC technology, it has the advantage that the circuit can be easily miniaturized. However, when configuring a multi-way speaker system, it is necessary to have a crossover frequency that is convenient for the speaker unit being used, but this division filter has problems such as the inability to easily vary the crossover frequency. .

本発明は上記問題点は解決したものであり、以
下図面と共にその各実施例について説明する。
The present invention solves the above problems, and each embodiment thereof will be described below with reference to the drawings.

第1図は本発明になる周波数帯域分割フイルタ
の第1実施例(2チヤンネル)のブロツク系統図
を示す。同図において、入力端子1より入来した
音声信号は後述の遅延線フイルタ(トランスバー
サルフイルタ)2及び遅延回路3に供給され、遅
延線フイルタ2において所定周波数帯域を波さ
れ所定時間遅延された信号は出力端子4より低域
側出力信号Lとしてそのままとり出されると共
に、係数K1,K2をもつ係数付演算回路5に供給
されて係数K2をかけられ、一方、遅延回路3に
て所定時間遅延された信号は係数付演算回路5に
供給されて係数K1をかけられ、遅延線フイルタ
2よりの係数K2をかけられた信号に加算された
後、出力端子6より高域側出力信号Hとしてとり
出される。この際、演算回路5では、遅延回路3
よりの出力及び遅延線フイルタ2よりの出力に
夫々係数K1,K2をかけることにより遅延線フイ
ルタ2の通過帯域において出力が略零になるよう
に動作する。
FIG. 1 shows a block system diagram of a first embodiment (two channels) of a frequency band division filter according to the present invention. In the figure, an audio signal input from an input terminal 1 is supplied to a delay line filter (transversal filter) 2 and a delay circuit 3, which will be described later.The delay line filter 2 waves a predetermined frequency band and delays the signal by a predetermined time. is taken out as it is from the output terminal 4 as the low-frequency side output signal L, and is also supplied to the coefficient arithmetic circuit 5 having coefficients K 1 and K 2 and multiplied by the coefficient K 2 . The time-delayed signal is supplied to the coefficient arithmetic circuit 5, multiplied by a coefficient K1 , and added to the signal multiplied by a coefficient K2 from the delay line filter 2, and then output from the output terminal 6 on the high frequency side. It is taken out as signal H. At this time, in the arithmetic circuit 5, the delay circuit 3
The output from the delay line filter 2 and the output from the delay line filter 2 are multiplied by coefficients K 1 and K 2, respectively, so that the output becomes approximately zero in the passband of the delay line filter 2.

ここで、遅延線フイルタ2は縦続接続された遅
延器7〜7、遅延器7〜7の各端子に分
岐接続された係数器8〜8及び加算器9より
構成されている。遅延器7〜7はCCD(チ
ヤージ・カツプルド・デバイス)やBBD(バケ
ツト・ブリゲード・デバイス)等のIC化し易い
回路より構成されており、各タツプ間の遅延時間
は同一に設定されており、係数器8〜8は抵
抗値によりその係数を決定される減衰器て構成さ
れている。各係数器8〜8の係数は第2図に
示す如く、中央の係数器8の係数が一番大で、
両端の係数器8,8程順次係数が小になるよ
う設定されており、各係数を合計した値は1にな
るよう設定されている。一方、遅延回路3は遅延
線フイルタの遅延器7〜7と同様の遅延器7
〜7より構成されている。これら遅延線フイ
ルタ2及び遅延回路3の各遅延器7〜7には
クロツク信号発振器15よりクロツクパルスが供
給されており、遅延器7〜7はこのクロツク
信号の周波数に応じた遅延時間を以て入力信号を
遅延せしめてとり出すよう構成されている。
Here, the delay line filter 2 is composed of cascade-connected delay units 7 1 to 7 6 , coefficient units 8 1 to 8 7 branch-connected to each terminal of the delay units 7 1 to 7 6 , and an adder 9 . There is. Delay devices 71 to 76 are composed of circuits that can be easily integrated into ICs such as CCD (charge coupled device) and BBD (bucket brigade device), and the delay time between each tap is set to be the same. , coefficient units 8 1 to 8 7 are constructed as attenuators whose coefficients are determined by resistance values. As shown in FIG. 2, the coefficients of each coefficient unit 81 to 87 are the largest, with the coefficient of the central coefficient unit 84 being the largest.
The coefficient units 8 1 and 8 7 at both ends are set so that the coefficients become smaller sequentially, and the sum of the coefficients is set to be 1. On the other hand, the delay circuit 3 is a delay device 7 similar to the delay devices 7 1 to 7 6 of the delay line filter.
It is composed of 7 to 79 . A clock pulse is supplied from a clock signal oscillator 15 to each of the delay devices 7 1 to 7 9 of the delay line filter 2 and the delay circuit 3, and each of the delay devices 7 1 to 7 9 generates a delay time according to the frequency of this clock signal. The input signal is delayed and extracted by using the input signal.

このように構成された遅延線フイルタ2の入力
端子にインパルスのような信号が加わると遅延器
〜7でクロツク信号発振器15よりのクロ
ツク信号の周波数に応じた遅延速度を以て順次遅
延され、各々の遅延器よりとり出された信号は係
数器8〜8にて夫々の係数をかけられた後加
算器9にて加算され、出力端子4より第3図に示
す如き波形の信号即ち第2図の横軸を時間とした
波形の信号としてとり出される。つまり、第2図
の各係数によつて示されている波形はこの遅延線
フイルタのインパルス応答の時間波形そのものを
表わしている。
When a signal such as an impulse is applied to the input terminal of the delay line filter 2 configured in this manner, it is sequentially delayed by the delay devices 71 to 76 at a delay speed corresponding to the frequency of the clock signal from the clock signal oscillator 15. The signals taken out from each delay device are multiplied by respective coefficients in coefficient multipliers 81 to 87 , and then added in an adder 9, and a signal with a waveform as shown in FIG. 3 is output from an output terminal 4. The signal is extracted as a waveform signal with the horizontal axis of FIG. 2 as time. In other words, the waveform indicated by each coefficient in FIG. 2 represents the time waveform itself of the impulse response of this delay line filter.

このようなインパルス応答を示すフイルタの周
波数対利得特性は第4図の曲線に示す如くとな
り、低い同波数帯域(300Hz程度迄)では夫々の
遅延器7〜7の両端子間の位相差は殆どな
く、利得は略各係数を合計した値即ち1(0dB)
であり、300Hz以上では各タツプの出力の位相差
は大きくなり利得は次第に減衰する。又、この遅
延線フイルタ2の周波数対遅延特性は第4図の曲
線に示す如く周波数帯域に無関係に入力から最
大の係数をつけた係数器の入力までの遅延時間と
なり、この場合、1.8msである。即ち、第1図に
示す遅延線フイルタ2は実質上周波数全帯域にお
いて一定の遅延時間をもつ低域フイルタとして動
作し、低域フイルタのみ或いは低域フイルタと移
相回路との縦続接続によるものよりも全帯域にお
いて遅延時間を一定とし得、遅延回路3の遅延特
性(一般に全帯域にわたつて一定)と同一とし得
る。なお、第1図に示す実施例ではタツプの数を
7個として説明したが、第4図に示す如き特性を
得るにはおよそタツプの数150以上、各タツプ間
の遅延時間25μs以下に設定する必要がある。こ
の場合、各タツプ間の遅延時間は扱う最高周波数
の周期より十分短かいものとし、カツトオフ周波
数の低いフイルタを作ろうとする程タツプ数を多
くしなければならない。
The frequency vs. gain characteristic of a filter that exhibits such an impulse response is as shown in the curve in Figure 4, and in the low frequency band (up to about 300Hz), the phase difference between both terminals of each delay device 7 1 to 7 6 There is almost no gain, and the gain is approximately the sum of each coefficient, i.e. 1 (0 dB)
Above 300Hz, the phase difference between the outputs of each tap increases and the gain gradually attenuates. Also, the frequency vs. delay characteristic of this delay line filter 2 is the delay time from the input to the input of the coefficient unit with the maximum coefficient, regardless of the frequency band, as shown in the curve in Figure 4. In this case, the delay time is 1.8 ms. be. That is, the delay line filter 2 shown in FIG. 1 operates as a low-pass filter with a constant delay time over substantially the entire frequency band, and is more effective than a low-pass filter alone or a cascade connection of a low-pass filter and a phase shift circuit. The delay time can be constant over the entire band, and can be the same as the delay characteristic (generally constant over the entire band) of the delay circuit 3. In the embodiment shown in FIG. 1, the number of taps is 7, but in order to obtain the characteristics shown in FIG. There is a need. In this case, the delay time between each tap must be sufficiently shorter than the period of the highest frequency handled, and the number of taps must be increased to create a filter with a lower cutoff frequency.

一方、遅延回路3の入力端子に信号が加わる
と、遅延器7〜7でクロツク信号発振器15
よりのクロツク信号の周波数に応じた遅延速度を
以て順次遅延され、遅延線フイルタ2の出力と共
に演算回路5に供給されている。この場合、遅延
線フイルタ2の係数器8の係数を一番大に設定
されているので、遅延線フイルタ2の遅延器の段
数を6、遅延回路3の段数を3に設定すれば両者
の遅延量を等しくし得、遅延量の等しい信号どう
しの演算となる。
On the other hand, when a signal is applied to the input terminal of the delay circuit 3, the delay circuits 77 to 79 output the clock signal oscillator 15.
The signals are sequentially delayed at a delay speed corresponding to the frequency of the clock signal, and are supplied to the arithmetic circuit 5 together with the output of the delay line filter 2. In this case, the coefficients of the coefficient units 8 to 4 of the delay line filter 2 are set to the largest value, so by setting the number of stages of the delay unit of the delay line filter 2 to 6 and the number of stages of the delay circuit 3 to 3, both The amount of delay can be made equal, and calculations can be made between signals having the same amount of delay.

ここで、遅延線フイルタ2の位相特性及び振幅
特性のうち少なくとも位相特性をその周波数通過
帯域及びカツトオフ周波数のうち少なくとも通過
帯域における遅延回路3の上記特性と略等しく設
定すれば、遅延回路3よりの出力信号と遅延線フ
イルタ2よりの出力信号とは演算回路5において
確実に演算される。このため、第5図に示すよう
に低域側遮断特性(曲線)及び高域側遮断特性
(曲線)の良好な分割フイルタを得ることがで
きる。
Here, if at least the phase characteristic of the phase characteristic and the amplitude characteristic of the delay line filter 2 is set to be approximately equal to the above-mentioned characteristic of the delay circuit 3 in at least the pass band of its frequency pass band and cut-off frequency, the The output signal and the output signal from the delay line filter 2 are reliably calculated in the calculation circuit 5. Therefore, as shown in FIG. 5, it is possible to obtain a split filter with good low-frequency side cutoff characteristics (curve) and high-frequency side cutoff characteristics (curve).

ここで、第5図におけるクロスオーバ周波数を
可変せしめるべく第1図中クロツク信号発振器1
5を例えばマルチバイブレータとして可変抵抗器
等を可変せしめその出力発振周波数を可変させる
と、遅延線フイルタ2の遅延器7〜7及び遅
延器3の遅延回路7〜7の遅延時間は一様に
変化する。この際、遅延線フイルタ2の周波数遅
延特性はクロツク信号周波数に反比例して変化
し、かつ、その周波数振幅特性はその曲線の傾斜
は同じでカツトオフ周波数がクロツク信号周波数
に比例して変化し、一方、遅延回路3の周波数遅
延特性はクロツク信号周波数に反比例して変化す
る。このため、遅延回路3及び遅延線フイルタ2
の遅延時間を同じ比率で可変せしめれば、演算回
路5では遅延特性(位相特性)を等しく可変せし
められた信号どうしの引算となるので、その周波
数振幅特性はその曲線のパターンは同じでカツト
オフ周波数がクロツク信号周波数に比例して変化
する。従つて、遅延回路3及び遅延線フイルタ2
を駆動するクロツク信号周波数を同じよに可変さ
せると、第6図に示すように、第5図に示す周波
数特性のパターンを保つたままクロスオーバ周波
数のみを可変せしめ得る。なお、第6図に示す特
性は、第5図の場合のクロツク信号周波数の倍の
周波数によつて得られる特性である。
Here, in order to vary the crossover frequency in FIG. 5, the clock signal oscillator 1 in FIG.
5 is used as a multivibrator, for example, and a variable resistor or the like is varied to vary its output oscillation frequency, the delay times of the delay devices 7 1 to 7 6 of the delay line filter 2 and the delay circuits 7 7 to 7 9 of the delay device 3 are as follows. Change uniformly. At this time, the frequency delay characteristic of the delay line filter 2 changes in inverse proportion to the clock signal frequency, and its frequency amplitude characteristic changes in proportion to the clock signal frequency, while the slope of the curve is the same, and the cutoff frequency changes in proportion to the clock signal frequency. , the frequency delay characteristic of the delay circuit 3 changes in inverse proportion to the clock signal frequency. Therefore, the delay circuit 3 and the delay line filter 2
If the delay time of is varied at the same ratio, the arithmetic circuit 5 subtracts the signals whose delay characteristics (phase characteristics) are changed equally, so the frequency amplitude characteristics have the same curve pattern and are cut off. The frequency changes proportionally to the clock signal frequency. Therefore, the delay circuit 3 and the delay line filter 2
If the frequency of the clock signal that drives the clock signal is similarly varied, as shown in FIG. 6, only the crossover frequency can be varied while maintaining the frequency characteristic pattern shown in FIG. 5. The characteristics shown in FIG. 6 are those obtained by using a frequency twice the clock signal frequency in the case of FIG.

次に、この分割フイルタの合成後の振幅特性及
び遅延特性を考えてみるに、遅延線フイルタ2の
伝達特性をLP、遅延回路3の伝達特性をDとす
ると、出力端子4及び6よりとり出される信号を
合成すれば(LP+D−LP)=Dとなり、遅延線
フイルタ2の特性LPと無関係の信号(振幅特性
及び遅延特性共に平坦な遅延回路3の特性)がと
り出され、波形伝送可能の目的は達成される。
Next, considering the amplitude and delay characteristics of this divided filter after synthesis, if the transfer characteristic of delay line filter 2 is LP and the transfer characteristic of delay circuit 3 is D, then If the signals that are The purpose is achieved.

第7図は本発明になる周波数帯域分割フイルタ
の第2実施例のブロツク系統図を示す。同図中、
第1図と同一部分には同一符号を付し、その説明
を省略する。本実施例はいかなる段数のBBD或
いはCCDを用いても確実に駆動し得る回路を提
供するものである。遅延回路3及び遅延線フイル
タ2は上述のようにBBD或いはCCDによつて構
成されているが、市販さているICを用いると遅
延回路3の段数と遅延線フイルタ2の遅延回路の
段数とは必ずしも所定の比率であるとは限らな
い。そこで、例えば第7図に示すように、3段で
所定の遅延量を得ることのできる遅延回路3′に
4段のものを用いざるを得ない場合、第1図にお
ける発振器15の出力発振周波数の4倍の出力発
振周波数の発振器15′よりの出力発振周波数を
1/3に分周せしめる分周器10を介して遅延回
路3′に供給して駆動せしめ、一方、発振器1
5′よりの出力発振周波数を1/4に分周せしめる分
周器10を介して遅延線フイルタ2に供給して
駆動せしめればよい。この際、遅延回路3′を駆
動しているクロツク周波数は第1図の場合の4/3
倍であり、その段数は第1図の場合の3/4倍であ
るため、結局得られる遅延時間は第1図の場合と
同様となり、第5図に示す如き特性を得ることが
できる。この実施例においてクロスオーバ周波数
を可変せしめる場合、第1図において説明したの
と同様に発振器15′の出力発振周波数を適宜可
変せしめればよい。その動作及び効果は第1図の
場合と同様であるので、その説明を省略する。な
お、本実施例では遅延回路3′のクロツク周波数
と遅延線フイルタ2のクロツク周波数との比が
4:3であればよく、例えば2台のクロツク信号
発振器を用いて夫々に供給するようにしても同様
の目的を達し得る。
FIG. 7 shows a block system diagram of a second embodiment of the frequency band division filter according to the present invention. In the same figure,
Components that are the same as those in FIG. 1 are given the same reference numerals, and their explanations will be omitted. This embodiment provides a circuit that can reliably drive any number of BBDs or CCDs. The delay circuit 3 and the delay line filter 2 are constructed of BBDs or CCDs as described above, but if commercially available ICs are used, the number of stages of the delay circuit 3 and the number of stages of the delay circuit of the delay line filter 2 are not necessarily the same. It is not necessarily a predetermined ratio. Therefore, for example, as shown in FIG. 7, if a four-stage delay circuit 3' that can obtain a predetermined amount of delay with three stages must be used, the output oscillation frequency of the oscillator 15 in FIG. The output oscillation frequency from the oscillator 15' whose output oscillation frequency is four times that of
The signal is supplied to the delay circuit 3' through the frequency divider 101 which divides the frequency by 1/3 to drive the delay circuit 3', while the oscillator 1
It is sufficient to drive the delay line filter 2 by supplying it to the delay line filter 2 via a frequency divider 102 that divides the output oscillation frequency from the output oscillation frequency 5' into 1/4. At this time, the clock frequency driving the delay circuit 3' is 4/3 of that in the case of Figure 1.
Since the number of stages is 3/4 times that in the case of FIG. 1, the resulting delay time is the same as in the case of FIG. 1, and the characteristics shown in FIG. 5 can be obtained. In this embodiment, when the crossover frequency is to be varied, the output oscillation frequency of the oscillator 15' may be appropriately varied in the same manner as explained in FIG. Since its operation and effects are the same as those shown in FIG. 1, the explanation thereof will be omitted. In this embodiment, the ratio of the clock frequency of the delay circuit 3' to the clock frequency of the delay line filter 2 only needs to be 4:3; for example, two clock signal oscillators may be used to supply each clock signal. can also achieve a similar purpose.

第8図A,Bは本発明になる周波数帯域分割フ
イルタの第3実施例のブロツク系統図を示す。本
実施例はFM放送等のキヤリア信号によるノイズ
を抑圧してとり出すものである。クロツク信号に
よつて遅延を行なう場合、クロツク信号周波数の
半分より高い周波数の信号が入力に含まれている
と歪を生じる。即ち、一般にはオーデイオ信号と
して20Hz〜20KHzの周波数を扱う場合、クロツク
周波数を40KHz以上に設定すれば問題を生じない
が、FMステレオ放送等を受信した場合、ステレ
オ放送の38KHzのキヤリア信号が含まれているこ
とがあり、この場合歪を生じる。そこで、第8図
Aに示すように遅延回路3の入力側及び遅延線フ
イルタ2の入力側に上記38KHzのキヤリア信号を
除去する低域フイルタ11,11を夫々接続
したり、同図Bに示すように遅延回路3と遅延線
フイルタ2との接続点に低域フイルタ11を接続
すれば、キヤリア信号による歪のない信号をとり
出し得る。ここに、低域フイルタ11と11
とが略同じ特性であれば、演算回路5の演算には
影響を及ぼさない。
FIGS. 8A and 8B show block diagrams of a third embodiment of the frequency band division filter according to the present invention. This embodiment suppresses and extracts noise caused by carrier signals such as FM broadcasting. When delaying by a clock signal, distortion occurs if the input contains a signal with a frequency higher than half the clock signal frequency. In other words, in general, when handling frequencies of 20Hz to 20KHz as audio signals, no problem will occur if the clock frequency is set to 40KHz or higher, but when receiving FM stereo broadcasts, etc., the 38KHz carrier signal of the stereo broadcast will be included. In this case, distortion may occur. Therefore, as shown in FIG. 8A, low-pass filters 11 1 and 11 2 for removing the 38KHz carrier signal are connected to the input side of the delay circuit 3 and the input side of the delay line filter 2, respectively, and If a low-pass filter 11 is connected to the connection point between the delay circuit 3 and the delay line filter 2 as shown in FIG. 2, a signal without distortion caused by the carrier signal can be extracted. Here, low-pass filters 11 1 and 11 2
If they have substantially the same characteristics, the calculation of the calculation circuit 5 will not be affected.

第9図A,Bは本発明になる周波数帯域分割フ
イルタの第4実施例のブロツク系統図を示す。ク
ロツク信号によつて遅延を行なう場合には遅延器
の出力には一般にクロツク信号が含まれる。ここ
にクロツク信号の周波数を可聴音域以上としてあ
れば聞こえる心配はないが、このようにするとス
ピーカやアンプに不必要な信号を与えることにな
り、クロツク信号を除去しておく方が望ましい場
合が多い。しがつて、第9図Aに示すように、遅
延回路3及び遅延線フイルタ2の出力側にクロツ
ク信号周波数帯域以下の信号を波する低域フイ
ルタ12,12を夫々接続したり、同図Bに
示すように演算回路5の出力側及び遅延線フイル
タ2の出力側に低域フイルタ12,12
夫々接続すれば、クロツク信号を含まない信号を
とり出し得る。ここに、低域フイルタ12と1
とが略同じ特性であれば、演算回路5の演算
やフイルタの合成後の特性には影響を及ぼさな
い。
9A and 9B show block diagrams of a fourth embodiment of the frequency band division filter according to the present invention. When the delay is performed by a clock signal, the output of the delay device generally includes the clock signal. If the frequency of the clock signal is set above the audible range, there is no need to worry about hearing it, but doing so will give unnecessary signals to the speaker or amplifier, so it is often better to remove the clock signal. . Therefore, as shown in FIG. 9A, low-pass filters 12 1 and 12 2 that wave signals below the clock signal frequency band may be connected to the output sides of the delay circuit 3 and the delay line filter 2, respectively. As shown in FIG. B, by connecting low-pass filters 12 1 and 12 2 to the output side of the arithmetic circuit 5 and the output side of the delay line filter 2, respectively, it is possible to extract a signal that does not include a clock signal. Here, low-pass filter 12 1 and 1
2 and 2 have substantially the same characteristics, the calculation of the arithmetic circuit 5 and the characteristics of the filter after synthesis are not affected.

第10図は本本発になる周波数帯域分割フイル
タの第5実施例(3チヤンネル)ブロツク系統図
を示す。同図中、遅延回路3・2及び遅延線
フイルタ2・2の組の夫々の諸特性は第1図
に示したフイルタの特性と同様に設定されてお
り、遅延回路3′の位相特性は同一の添字の2
分割フイルタの合成後の位相特性と同一に設定さ
れている。又、遅延線フイルタ2・2の振幅
特性及び位相特性のうち少なくとも位相特性はそ
の周波数通過帯域及びカツトオフ周波数のうち少
なくとも通過帯域における遅延回路3・3
上記特性と略等しく設定されており、いかなる2
分割フイルタの出力にも夫々同一の位相特性を有
する回路が接続されるように構成されている。一
方、遅延回路3,3′及び遅延線フイルタ2
にはクロツク信号発振器15よりクロツクパル
スが供給されている13,13は加算器、1
4は中音域信号出力端子である。
FIG. 10 shows a block system diagram of a fifth embodiment (three channels) of the frequency band division filter according to the present invention. In the figure, the characteristics of each set of delay circuits 3 1 and 2 2 and delay line filters 2 1 and 2 2 are set similarly to the characteristics of the filters shown in FIG. The phase characteristics of 2 with the same subscript
It is set to be the same as the phase characteristic after the division filter is synthesized. Also, at least the phase characteristics of the amplitude characteristics and phase characteristics of the delay line filters 2 1 and 2 2 are set to be approximately equal to the above-mentioned characteristics of the delay circuits 3 1 and 3 2 in at least the pass band of the frequency pass band and cutoff frequency. and any 2
The circuits having the same phase characteristics are also connected to the outputs of the dividing filters. On the other hand, the delay circuits 3 1 , 3' 1 and the delay line filter 2
1 is supplied with a clock pulse from a clock signal oscillator 15. 13 1 , 13 2 is an adder;
4 is a midrange signal output terminal.

ここで、第1実施例において説明したのと同様
に、発振器15の出力発振周波数を可変させる
と、遅延回路3及び遅延線フイルタ2の組の
2分割フイルタは周波数特性のパターンを保つた
ままクロスオーバ周波数のみを可変せしめ得、一
方、遅延回路3′の周波数特性も可変せしめ得
る。この場合、遅延回路3及び遅延線フイルタ
の2分割フイルタの合成後の振幅特性及び遅
延特性は第1実施例において説明したように遅延
回路3の特性Dとなるので、遅延回路3′
周波数特性を同一の添字の2分割フイルタの特性
と同様に変化せしめれば出力端子6,14,4よ
り夫々とり出される高域周波数信号、中域周波数
信号、低域周波数信号のうち高域周波数信号と中
域周波数信号とのクロスオーバ周波数を変化せし
め得る。
Here, as explained in the first embodiment, when the output oscillation frequency of the oscillator 15 is varied, the two-part filter of the delay circuit 3 1 and the delay line filter 2 1 maintains the frequency characteristic pattern. Only the crossover frequency can be made variable as it is, and on the other hand, the frequency characteristics of the delay circuit 3'1 can also be made variable. In this case, the amplitude characteristics and delay characteristics after combining the two-divided filters of the delay circuit 3 1 and the delay line filter 2 1 become the characteristic D of the delay circuit 3 1 as explained in the first embodiment, so the delay circuit 3 ' If the frequency characteristics of 1 are changed in the same way as the characteristics of the two-division filter with the same subscript, among the high frequency signal, middle frequency signal, and low frequency signal output from output terminals 6, 14, and 4, respectively. The crossover frequency between the high frequency signal and the mid frequency signal can be changed.

なお、第10図に示す実施例において、遅延回
路3に用いるBBDの段数と遅延回路3′に用
いるBBDの段数とが異なる場合、第7図に示す
第2実施例と同様にその段数の比と同じクロツク
周波数比で夫々を駆動せしめればよい。又、本施
例において、遅延線フイルタ2を一般の低域フ
イルタとしてもよく、又、逆に遅延回路3及び
遅延線フイルタ2を発振器15にて駆動せし
め、遅延回路3,3′及び遅延線フイルタ2
を発振器にて駆動させる必要のない方式のもの
としてもよく、又、両者共に夫々発振器にて駆動
せしめるようにしてもよい。
In the embodiment shown in FIG. 10, if the number of BBD stages used in the delay circuit 31 and the number of BBD stages used in the delay circuit 3'1 are different, the number of stages is different as in the second embodiment shown in FIG. It is sufficient to drive each of them with the same clock frequency ratio as the ratio of . Further, in this embodiment, the delay line filter 22 may be a general low-pass filter, or conversely, the delay circuit 32 and the delay line filter 22 may be driven by the oscillator 15, and the delay circuits 31 , 3 may be driven by the oscillator 15. ' 1 and delay line filter 2
1 may be driven by an oscillator, or both may be driven by respective oscillators.

又、上記実施例における遅延回路及び遅延線フ
イルタはアナログ値をクロツク信号によつてシフ
トする構成のBBDを用いて説明したが、A―D
変換した後デジタル量としてシフトレジスタ等で
遅延して再びD―A変換する構成の遅延器や、ア
ナログ信号を△m(デルタエム)変調してデジタ
ル量としてシフトレジスタ等で遅延させその後復
調する遅延回路等を用いてもよく、クロツク信号
の周波数で遅延時間を可変し得る遅延器を用いる
限り本発明の目的を達し得る。
Further, although the delay circuit and delay line filter in the above embodiment have been explained using a BBD configured to shift an analog value by a clock signal, A-D
A delay circuit that converts an analog signal into a digital quantity, delays it with a shift register, etc., and converts it back into D-A, or a delay circuit that modulates an analog signal with Δm (delta-em), delays it as a digital quantity with a shift register, etc., and then demodulates it. etc., and the object of the present invention can be achieved as long as a delay device whose delay time can be varied with the frequency of the clock signal is used.

更に、ノイズを軽減せしめる目的で、第8図
A,Bに示すフイルタと第1図及び第7図に示す
フイルタとを組合わせたり、第9図A,Bに示す
フイルタと第1図及び第7図に示すフイルタとを
組合わせたり、第8図A,B及び第9図A,Bに
示すフイルタと第1図及び第7図に示すフイルタ
とを組合わせて用いてもよい。
Furthermore, for the purpose of reducing noise, the filters shown in FIGS. 8A and B may be combined with the filters shown in FIGS. 1 and 7, or the filters shown in FIGS. 9A and B may be combined with the filters shown in FIGS. The filter shown in FIG. 7 may be used in combination, or the filter shown in FIGS. 8A, B and 9 A, B may be used in combination with the filter shown in FIGS. 1 and 7.

又、遅延線フイルタのインパルス応答は上記実
施例の如き三角波パルス(第3図)の外、目的の
フイルタ特性に応じてレイズドコサインパルス、
矩形波パルス等遅延線フイルタを構成する係数器
の係数を適宜設定することにより任意に選定して
よい。
In addition, the impulse response of the delay line filter is not only the triangular wave pulse (Fig. 3) as in the above embodiment, but also a raised cosine pulse, a raised cosine pulse, etc. depending on the desired filter characteristics.
It may be arbitrarily selected by appropriately setting the coefficients of the coefficient unit constituting the rectangular wave pulse delay line filter.

また、今までの説明では遅延線フイルタの形と
してはフイードバックを含まない非巡回形(ノン
リカーシブあるいはトランスバーサル形とも呼ば
れる)のもので示したが、フイードバツクを含む
巡回形(リカーシブ形とも呼ばれる)の方が目的
のフイルタ特性を得ることができるのであれば、
フイルタ2をそのような遅延線フイルタとすれば
よい。
In addition, in the explanation so far, the delay line filter has been shown as a non-recursive type (also called a non-recursive or transversal type) that does not include feedback, but a cyclic type (also called a recursive type) that includes feedback. If it is possible to obtain the desired filter characteristics,
The filter 2 may be such a delay line filter.

上述の如く、本発明になる周波数帯域分割フイ
ルタは、上記入力端子に対して縦続接続された複
数の遅延器の各接続点からの出力に遅延器の中心
タツプに対して対称な値となる係数を掛けると共
に、これら出力を加算してとり出す遅延線フイル
タと、上記入力端子に対して縦続接続された複数
の遅延器から成る遅延回路と、上記各遅延器に所
定周波数のクロツク信号を供給するクロツク信号
発振器と、上記遅延線フイルタと遅延回路の出力
を演算してとり出す演算回路とを備え、上記クロ
ツク信号の周波数を可変することにより、上記遅
延線フイルタ及び演算回路よりとり出される所定
帯域周波数信号のクロスオーバ周波数を可変せし
めて構成としているため、周波数全帯域にわたつ
て遅延特性の平坦な遅延手段の演算であるので低
域フイルタ等を用いた演算に比してより確実に演
算を行ない得、広い周波数帯域にわたつて遮断特
性の良好なフイルタを得ることができ、しかも上
記先に提案したフイルタに比してフイルタの遮断
特性はそのままの状態でクロスオーバ周波数のみ
を容易に可変せしめ得、これにより、マルチウエ
イスピーカシステムを構成する場合、スピーカユ
ニツトに好都合なクロスオーバ周波数を任意に設
定し得、又、遅延線フイルタはBBDやCCD等の
IC技術で容易に構成し得るため、回路を小形化
し易く、更に、フイルタ全体の合成後の特性は、
振幅特性及び遅延特性共に平坦な遅延回路のみの
特性と等しくなるため遅延線フイルタにいかなる
特性の遅延線フイルタを用いても振幅特性及び遅
延特性及び遅延特性共に平坦な複数の周波数帯域
の信号を得ることができ、遅延回路の出力と遅延
線フイルタの出力との差は実質上互いに同位相の
信号どうしの引算より得られるので、従来例の如
き位相の異なつた信号どうしの引算に比してより
確実であり、従つて、高域周波数信号成分は従来
例に比して鋭い遮断特性を示す等の特長を有す
る。
As described above, the frequency band division filter of the present invention has coefficients that are symmetrical with respect to the center tap of the delay devices at the output from each connection point of the plurality of delay devices connected in cascade to the input terminal. a delay line filter that multiplies these outputs and adds these outputs to take out the output, a delay circuit consisting of a plurality of delay devices connected in cascade to the above input terminal, and a clock signal of a predetermined frequency is supplied to each of the above delay devices. A clock signal oscillator and an arithmetic circuit that calculates and extracts the outputs of the delay line filter and delay circuit are provided, and by varying the frequency of the clock signal, a predetermined band that is extracted from the delay line filter and the arithmetic circuit is provided. Since the crossover frequency of the frequency signal is configured to be variable, the calculation is performed using a delay means with flat delay characteristics over the entire frequency band, so the calculation is more reliable than calculations using a low-pass filter, etc. As a result, it is possible to obtain a filter with good cutoff characteristics over a wide frequency band, and moreover, compared to the previously proposed filter, only the crossover frequency can be easily varied while keeping the cutoff characteristics of the filter unchanged. As a result, when configuring a multi-way speaker system, it is possible to arbitrarily set a convenient crossover frequency for the speaker unit, and the delay line filter can be used with BBD, CCD, etc.
Since it can be easily configured using IC technology, it is easy to downsize the circuit, and the characteristics of the entire filter after synthesis are
Since the amplitude characteristics and delay characteristics are equal to those of only a flat delay circuit, it is possible to obtain signals in multiple frequency bands with flat amplitude characteristics, delay characteristics, and delay characteristics even if a delay line filter with any characteristics is used as the delay line filter. Since the difference between the output of the delay circuit and the output of the delay line filter can be obtained by subtracting signals that are substantially in phase with each other, it is much easier than subtracting signals that are out of phase as in the conventional example. Therefore, the high frequency signal component exhibits a sharper cut-off characteristic than the conventional example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる周波数帯域分割フイルタ
の第1実施例のブロツク系統図、第2図は第1図
に示す遅延線フイルタの係数器とその係数との関
係を説明するための図、第3図は第1図に示す遅
延線フイルタのインパルス応答を説明するための
出力波形図、第4図は第1図に示す遅延線フイル
タの遮断特性及び遅延特性図、第5図は第1図に
示すフイルタの遮断特性図、第6図は第1図に示
すフイルタにおいてクロツク周波数を可変させた
場合の遮断特性図、第7図乃至第10図は本発明
になる周波数帯域分割フイルタの第2乃至第5実
施例のブロツク系統図である。 1……入力端子、2,2,2……遅延線フ
イルタ、3,3,3,3′,3′……遅延
器、7〜7……遅延器、4,6,14……出
力端子、5……係数付演算回路、8〜8……
係数器、9,13,13……加算器、10
,10……分周器、11,11,11
12,12……低域フイルタ、15,15′
……クロツク信号発振器。
FIG. 1 is a block system diagram of a first embodiment of the frequency band division filter according to the present invention, FIG. 2 is a diagram for explaining the relationship between the coefficient unit of the delay line filter shown in FIG. 1 and its coefficients, 3 is an output waveform diagram for explaining the impulse response of the delay line filter shown in FIG. 1, FIG. 4 is a cutoff characteristic and delay characteristic diagram of the delay line filter shown in FIG. 1, and FIG. FIG. 6 is a cut-off characteristic diagram of the filter shown in FIG. 1 when the clock frequency is varied, and FIGS. FIG. 7 is a block system diagram of second to fifth embodiments. 1... Input terminal, 2, 2 1 , 2 2 ... Delay line filter, 3 , 3 1 , 3 2 , 3' 1 , 3'... Delay device, 7 1 to 7 9 ... Delay device, 4, 6, 14...Output terminal, 5...Arithmetic circuit with coefficient, 81 to 87 ...
Coefficient unit, 9, 13 1 , 13 2 ... Adder, 10
1 , 10 2 ... frequency divider, 11, 11 1 , 11 2 ,
12 1 , 12 2 ...low-pass filter, 15, 15'
...Clock signal oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 入力端子から入来する信号を複数の周波数帯
域に分割してとり出す周波数帯域分割フイルタで
あつて、上記入力端子に対して縦続接続された複
数の遅延器の各接続点からの出力に上記遅延器の
中心タツプに対して対称な値となる係数を掛ける
と共に、これら出力を加算してとり出す遅延線フ
イルタと、上記入力端子に対して縦続接続された
複数の遅延器から成る遅延回路と、上記各遅延器
に所定周波数のクロツク信号を供給するクロツク
信号発振器と、上記遅延線フイルタの出力と遅延
回路の出力とを演算してとり出す演算回路とを備
え、上記クロツク信号の周波数を可変することに
より上記遅延線フイルタ及び演算回路から各々と
り出される所定帯域周波数信号のクロスオーバ周
波数を可変するようにしたことを特徴とする周波
数帯域分割フイルタ。
1 A frequency band dividing filter that divides a signal coming from an input terminal into a plurality of frequency bands and extracts the signal, which outputs the signal from each connection point of a plurality of delay devices connected in cascade to the input terminal. A delay line filter that multiplies a coefficient that is symmetrical to the center tap of the delay device and adds these outputs to take out the output, and a delay circuit that includes a plurality of delay devices connected in cascade to the input terminal. , a clock signal oscillator that supplies a clock signal of a predetermined frequency to each of the delay devices, and an arithmetic circuit that calculates and extracts the output of the delay line filter and the output of the delay circuit, and the frequency of the clock signal is variable. A frequency band dividing filter characterized in that the crossover frequency of the predetermined band frequency signals respectively output from the delay line filter and the arithmetic circuit is varied.
JP14328677A 1977-09-08 1977-12-01 Frequency band-pass split filter Granted JPS5477049A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14328677A JPS5477049A (en) 1977-12-01 1977-12-01 Frequency band-pass split filter
US05/940,644 US4238744A (en) 1977-09-08 1978-09-06 Frequency band dividing filter using delay-line filter
DE2839229A DE2839229C2 (en) 1977-09-08 1978-09-08 Crossover with a transversal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14328677A JPS5477049A (en) 1977-12-01 1977-12-01 Frequency band-pass split filter

Publications (2)

Publication Number Publication Date
JPS5477049A JPS5477049A (en) 1979-06-20
JPS6134289B2 true JPS6134289B2 (en) 1986-08-07

Family

ID=15335186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14328677A Granted JPS5477049A (en) 1977-09-08 1977-12-01 Frequency band-pass split filter

Country Status (1)

Country Link
JP (1) JPS5477049A (en)

Also Published As

Publication number Publication date
JPS5477049A (en) 1979-06-20

Similar Documents

Publication Publication Date Title
US4972489A (en) Sound reproducing apparatus
US5930374A (en) Phase coherent crossover
US5440638A (en) Stereo enhancement system
JPH09167944A (en) Equalizer of digitized signal
US4000676A (en) Electronic vibrato system
US4238744A (en) Frequency band dividing filter using delay-line filter
US5774556A (en) Stereo enhancement system including sound localization filters
JPS6134289B2 (en)
JPS6031157B2 (en) Multiway speaker system
JPH0557767B2 (en)
US5982907A (en) Audio signal waveform emphasis processing device and method
EP1079523A2 (en) Switched bandwidth digital filters with slewing
JP3120394B2 (en) Tone control circuit
JPS6134290B2 (en)
JPH0984173A (en) Acoustic reproducing device
JPH0771359B2 (en) Network for multi-way speaker device
JPH0770951B2 (en) Octave multiple filter
JPS6114689B2 (en)
JPH0728475B2 (en) Network for multi-way speaker system
JP3683978B2 (en) Saturation signal processor
JPH026673Y2 (en)
JPS63256009A (en) Tone control circuit
JPH09331223A (en) Signal processor
JPS5883415A (en) Amplitude limiter
JP2001326991A (en) Audio processor