JPS6133813B2 - - Google Patents
Info
- Publication number
- JPS6133813B2 JPS6133813B2 JP19042682A JP19042682A JPS6133813B2 JP S6133813 B2 JPS6133813 B2 JP S6133813B2 JP 19042682 A JP19042682 A JP 19042682A JP 19042682 A JP19042682 A JP 19042682A JP S6133813 B2 JPS6133813 B2 JP S6133813B2
- Authority
- JP
- Japan
- Prior art keywords
- product
- column
- man
- methacrolein
- methacrylonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000047 product Substances 0.000 claims description 45
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 claims description 28
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 16
- 238000000746 purification Methods 0.000 claims description 10
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 8
- 238000004821 distillation Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
この発明はメタクリロニトリル(以下MANと
略称する)の精製方法に関する。その目的はメタ
クロレイン、青酸の混入量が少ない純度が高い製
品MANを取得できる精製方法を提案するにあ
る。
MANはイソブチレンあるいはターシヤリーブ
チルアルコール等とアンモニアおよび酸素との気
相接触反応、すなわちアンモキシデーシヨン反応
により生成する。この反応物はMANを主体と
し、メタクロレイン、青酸、アセトニトリル、ア
クリロニトリル、イソブチロニトリル等を含有す
る。これらのうち、メタクロレインと青酸とは結
合して不安定なメタクロレインシアンヒドリン
(沸点95℃、13mmHg)となる。従つて、反応物を
蒸留によつて分離し製品MANを得ようとする
と、蒸留精製工程においてメタクロレインシアン
ヒドリンを生成し、これが後段の蒸留に際し再び
メタクロレインと青酸とに分解し製品MAN中に
混入し、製品の純度を低下せしめた。MANの製
造時に生成するメタクロレインシアンヒドリン
は、アクリロニトリル製造時に生成するアクロレ
インに比べ、副生量が多大である上に、水和反応
や重合反応が起りにくいためにメタクロレインが
消減せずプロセス内に高濃度のまま存在し、特に
問題となつていた。
この問題に関し本願出願人はさきにイソブチロ
ニトリルの存在がメタクロレインシアンヒドリン
の分解を促進することを見出し、製品MANを蒸
留分離する製品塔の前工程に高沸分離塔を設け、
製品塔に実質的にイソブチロニトリルを持込ませ
ない精製方法を特願昭57−107098号で提案した。
この方法は、例えば第1図に示すプロセスであ
り、アンモキシデーシヨン反応ガスを水で吸収し
た吸収液を回収塔1で水を用いた抽出蒸留によ
り、アセトニトリル等を除去し、反応物を回収す
る。この回収液を脱青酸・脱水塔2において、青
酸および水を除去し、さらに高沸分離塔3におい
て蒸留し塔底からイソブチロニトリル等の高沸物
を除き、塔頂留出物を製品塔4にフイードして蒸
留し、塔頂からアクリロニトリル、メタクロレイ
ン等の低沸物を抜取り、塔底部の導管5から製品
MANを取得するものである。
この方法によると製品塔には実質的にイソブチ
ロニトリルが存在しないので、メタクロレインシ
アンヒドリンの分解が抑制されて、その分解物で
あるメタクロレインあるいは青酸が製品MAN中
に混入する量が低減する。しかしこの方法のみに
よつて完全にメタクロレインシアンヒドリンの分
解を抑制することはむずかしく、例えばメタクロ
レイン混入量が50ppm以下の製品MANを得るこ
とは必ずしも容易ではない。
この発明は上記事情に鑑みなされたものであ
る。その要旨は、MANを主成分としメタクロレ
イン、青酸、イソブチロニトリル等を含有するア
ンモキシデーシヨン反応物から蒸留により製品
MANを取得する精製方法において、製品塔の前
段に高沸分離塔を設けてイソブチロニトリル等の
高沸物を実質的に除去し、製品塔の蒸留において
フイード段と塔底との間位置から蒸留蒸気を一部
サイドカツトし抜出し、第2製品塔に導きその塔
底から製品MANを抜出しその塔頂留出物を製品
塔に戻すことを特徴とするMANの精製方法であ
る。
第2図はこの精製方法を適用したMANの精製
プロセスの一例である。回収塔1、脱青酸・脱水
塔2、高沸分離塔3において蒸留した粗MANを
製品塔4にフイードし塔頂からアクリロニトリ
ル、メタクロレイン等の低沸物を除去しつつ蒸留
する。この際、粗MANのフイード段6と塔底と
の間の位置から蒸気の一部を導管7を経由して抜
出し、第2製品塔8に導き、塔底の凝縮液を製品
MANとして導管9から抜出し、塔頂からの留出
物を導管10を経由して製品塔4のフイード段6
と蒸気抜出し導管7との間の位置に戻す方法であ
る。
この方法によると、製品塔4に微量のメタクロ
レインシアンヒドリンが存在しこれが分解して、
メタクロレイン、青酸が塔底液中に混入しても、
その蒸気は第2製品塔において、MANより低沸
であるメタクロレインと青酸とは塔頂部に濃縮さ
れ、塔底液中への混入量が減少し製品MANの純
度が向上する。
以下実施例を挙げて説明する。
回収塔、脱青酸・脱水塔、高沸分離塔で蒸留し
た粗MANを、棚段数60段の製品塔の中央部位置
にフイードし、塔底から一段の棚段位置から蒸留
蒸気をサイドカツトして抜出し棚段数25段の第2
製品塔に導き、塔頂に濃縮された低沸物を製品塔
のフイード段より下方の塔底から25段の位置にリ
サイクルし、塔底から製品MANを取得した。こ
の時、製品塔および第2製品塔の各部位の流量、
液組成は第1表の通りであつた。
The present invention relates to a method for purifying methacrylonitrile (hereinafter abbreviated as MAN). The purpose is to propose a purification method that can obtain a highly pure product MAN with less contamination of methacrolein and hydrocyanic acid. MAN is produced by a gas phase contact reaction between isobutylene or tert-butyl alcohol, etc., ammonia and oxygen, that is, an ammoxidation reaction. This reactant is mainly MAN and contains methacrolein, hydrocyanic acid, acetonitrile, acrylonitrile, isobutyronitrile, etc. Among these, methacrolein and hydrocyanic acid combine to form unstable methacrolein cyanohydrin (boiling point 95°C, 13mmHg). Therefore, when attempting to separate the reactants by distillation to obtain the product MAN, methacrolein cyanohydrin is produced in the distillation purification process, which is decomposed into methacrolein and hydrocyanic acid again in the subsequent distillation, and is then dissolved in the product MAN. was contaminated, reducing the purity of the product. Methacrolein cyanohydrin produced during the production of MAN has a larger amount of by-product than acrolein produced during the production of acrylonitrile, and because hydration and polymerization reactions are difficult to occur, methacrolein is not consumed and the process is delayed. It remained at high concentrations within the body, posing a particular problem. Regarding this problem, the applicant has previously discovered that the presence of isobutyronitrile promotes the decomposition of methacrolein cyanohydrin, and has installed a high-boiling separation column in the pre-process of the product column that distills and separates the product MAN.
In Japanese Patent Application No. 107098/1987, we proposed a purification method that substantially prevents isobutyronitrile from being brought into the product column.
This method is, for example, the process shown in Figure 1, in which the absorption liquid obtained by absorbing the ammoxidation reaction gas with water is subjected to extractive distillation using water in the recovery column 1 to remove acetonitrile, etc., and the reactant is recovered. do. Hydrocyanic acid and water are removed from this recovered liquid in the prussic acid removal/dehydration tower 2, and further distilled in the high boiling separation tower 3 to remove high boiling substances such as isobutyronitrile from the bottom of the tower, and the top distillate is converted into a product. The feed is fed to column 4 and distilled, and low-boiling substances such as acrylonitrile and methacrolein are extracted from the top of the column, and the product is passed through conduit 5 at the bottom of the column.
This is what gets the MAN. According to this method, there is virtually no isobutyronitrile in the product column, so the decomposition of methacrolein cyanohydrin is suppressed, and the amount of methacrolein or hydrocyanic acid, which is a decomposition product, mixed into the product MAN is reduced. reduce However, it is difficult to completely suppress the decomposition of methacrolein cyanohydrin using only this method, and it is not necessarily easy to obtain a product MAN containing 50 ppm or less of methacrolein, for example. This invention was made in view of the above circumstances. The gist is that the product is produced by distillation from an ammoxide reaction product containing MAN as the main component and methacrolein, hydrocyanic acid, isobutyronitrile, etc.
In the purification method to obtain MAN, a high-boiling separation column is installed upstream of the product column to substantially remove high-boiling substances such as isobutyronitrile. This is a MAN purification method characterized by side-cutting and extracting part of the distilled vapor from the MAN, guiding it to a second product column, extracting the product MAN from the bottom of the column, and returning the top distillate to the product column. Figure 2 is an example of a MAN purification process using this purification method. The crude MAN distilled in the recovery column 1, hydrocyanic acid removal/dehydration column 2, and high-boiling separation column 3 is fed to the product column 4 and distilled while removing low-boiling substances such as acrylonitrile and methacrolein from the top of the column. At this time, a part of the steam is extracted from a position between the feed stage 6 of the crude MAN and the bottom of the column via a conduit 7 and guided to the second product column 8, and the condensate at the bottom of the column is collected as a product.
As a MAN, the distillate from the top of the column is extracted from the conduit 9 and sent to the feed stage 6 of the product column 4 via the conduit 10.
This is a method of returning it to a position between the steam extraction conduit 7 and the steam extraction conduit 7. According to this method, a trace amount of methacrolein cyanohydrin is present in the product column 4, and this decomposes.
Even if methacrolein and hydrocyanic acid are mixed into the bottom liquid,
The vapor is transferred to the second product column, where methacrolein and hydrocyanic acid, which have a lower boiling point than MAN, are concentrated at the top of the column, reducing the amount mixed into the bottom liquid and improving the purity of the product MAN. This will be explained below with reference to examples. The crude MAN distilled in the recovery tower, prussic acid removal/dehydration tower, and high-boiling separation tower is fed into the center of a product tower with 60 trays, and distilled steam is side-cut from the one tray position from the bottom of the column. 2nd shelf with 25 pull-out shelves
The low-boiling substances that were led to the product column and concentrated at the top of the column were recycled to the 25th stage from the bottom of the product column below the feed stage, and the product MAN was obtained from the bottom of the column. At this time, the flow rate of each part of the product tower and the second product tower,
The liquid composition was as shown in Table 1.
【表】
従来の製品MANは、製品塔塔底サイドカツト
蒸気からなり、そのメタクロレイン量が150〜
250ppmであるのに比べ、この方法による第2製
品塔の塔底から抜出した製品MAN中のメタクロ
レインは50ppm以下まで減少せしめ得た。[Table] The conventional product MAN consists of side cut steam at the bottom of the product column, and the amount of methacrolein is 150~
250 ppm, methacrolein in the product MAN extracted from the bottom of the second product column using this method could be reduced to 50 ppm or less.
第1図は製品塔の前段に高沸分離塔を設けた従
来のMAN精製プロセスを示すフローシート、第
2図は第2製品塔を設けたこの発明によるMAN
精製プロセスのフローシートである。
1……回収塔、2……脱青酸・脱水塔、3……
高沸分離塔、4……製品塔、5……導管、6……
フイード段、7……導管、8……第2製品塔、9
……導管、10……導管。
Figure 1 is a flow sheet showing a conventional MAN purification process in which a high-boiling separation column is installed before the product column, and Figure 2 is a MAN according to the present invention in which a second product column is installed.
This is a flow sheet of the purification process. 1... Recovery tower, 2... Hydrocyanic acid removal/dehydration tower, 3...
High-boiling separation column, 4... Product column, 5... Conduit, 6...
Feed stage, 7... Conduit, 8... Second product column, 9
... conduit, 10 ... conduit.
Claims (1)
イン、青酸、イソブチロニトリル等を含有するア
ンモキシデーシヨン反応物から蒸留により製品メ
タクリロニトリルを取得する精製方法において、
製品塔の前段に高沸分離塔を設けてイソブチロニ
トリル等の高沸物を実質的に除去し、製品塔の蒸
留においてフイード段と塔底との間位置から蒸気
を一部サイドカツトして取出し第2製品塔に導
き、その塔底から製品メタクリロニトリルを抜出
し、その塔頂留出物を製品塔に戻すことを特徴と
するメタクリロニトリルの精製方法。1. In a purification method for obtaining methacrylonitrile product by distillation from an ammoxide reaction product containing methacrolein, hydrocyanic acid, isobutyronitrile, etc. as the main component,
A high-boiling separation column is provided upstream of the product column to substantially remove high-boiling substances such as isobutyronitrile, and a portion of the steam is side-cut from a position between the feed stage and the bottom of the column during distillation of the product column. A method for purifying methacrylonitrile, which comprises taking out the methacrylonitrile and guiding it to a second product column, extracting the product methacrylonitrile from the bottom of the column, and returning the top distillate to the product column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19042682A JPS5980649A (en) | 1982-10-29 | 1982-10-29 | Method for purifying methacrylonitrile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19042682A JPS5980649A (en) | 1982-10-29 | 1982-10-29 | Method for purifying methacrylonitrile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5980649A JPS5980649A (en) | 1984-05-10 |
JPS6133813B2 true JPS6133813B2 (en) | 1986-08-04 |
Family
ID=16257926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19042682A Granted JPS5980649A (en) | 1982-10-29 | 1982-10-29 | Method for purifying methacrylonitrile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5980649A (en) |
-
1982
- 1982-10-29 JP JP19042682A patent/JPS5980649A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5980649A (en) | 1984-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ZA200504274B (en) | Process for the purification of crude propene oxide | |
US4308108A (en) | Process for purification of crude acetonitrile | |
EP0031097B1 (en) | Method for distilling ethyl alcohol | |
JP6038157B2 (en) | Acetonitrile purification method | |
US3896007A (en) | PH Control of recycle water in the plural stage distillation of a crude acrylonitrile feed | |
KR20190103376A (en) | Process for producing acetic acid | |
JPH0244296B2 (en) | ||
US11814337B2 (en) | Process for recovering acetonitrile | |
JPS6133813B2 (en) | ||
US4599145A (en) | Recovery process for producing purified methacrylonitrile | |
US3442771A (en) | Extractive distillation process for separating nitrites,peroxides and precursors thereof from crude unsaturated nitriles saturated with water by alkaline addition | |
JP2924563B2 (en) | Purification method of ethyl acetate | |
JP4942878B2 (en) | (Meth) acrylic acid ester purification method | |
US3155601A (en) | Stabilizing of cyanhydrins in acrylonitrile solutions | |
JPS6133811B2 (en) | ||
JPH0725814A (en) | Production of highly pure acetic acid | |
JPS5955863A (en) | Purification and recovery of methacrylonitrile | |
EP0098710B1 (en) | Process for producing methacrylonitrile | |
US20230192600A1 (en) | Acetonitrile separation process | |
JPH034057B2 (en) | ||
JP2011201784A (en) | Manufacturing method of acrylonitrile | |
JPS6158465B2 (en) | ||
JPS6158466B2 (en) | ||
JPH033655B2 (en) | ||
JPS6133814B2 (en) |