JPH0725814A - Production of highly pure acetic acid - Google Patents

Production of highly pure acetic acid

Info

Publication number
JPH0725814A
JPH0725814A JP5169205A JP16920593A JPH0725814A JP H0725814 A JPH0725814 A JP H0725814A JP 5169205 A JP5169205 A JP 5169205A JP 16920593 A JP16920593 A JP 16920593A JP H0725814 A JPH0725814 A JP H0725814A
Authority
JP
Japan
Prior art keywords
acetic acid
acetaldehyde
reaction
reactor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5169205A
Other languages
Japanese (ja)
Other versions
JP3244351B2 (en
Inventor
Takashi Ueno
貴史 上野
Yasuo Tsuji
康雄 辻
Yoshiaki Morimoto
好昭 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP16920593A priority Critical patent/JP3244351B2/en
Priority to TW083103131A priority patent/TW283702B/zh
Priority to MYPI94001594A priority patent/MY111225A/en
Priority to KR1019940015919A priority patent/KR0143802B1/en
Priority to CN94108223A priority patent/CN1067046C/en
Publication of JPH0725814A publication Critical patent/JPH0725814A/en
Priority to US08/591,947 priority patent/US5756836A/en
Application granted granted Critical
Publication of JP3244351B2 publication Critical patent/JP3244351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method for producing highly pure acetic acid having a sufficient quality, namely an excellent permanganate time, by a purification method comprising only a conventional purification process without requiring a purification treatment process such as an ozone treatment. CONSTITUTION:A method for producing acetic acid by continuously reacting methanol and/or a methyl acetate aqueous solution with carbon monoxide in the presence of a rhodium complex as a catalyst and methyl iodide as a cocatalyst is characterized in that acetaldehyde is separated from a process liquid circulated in a reactor to maintain the concentration of the acetaldehyde to <=1500ppm in the reaction solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高純度な酢酸の工業的な
製造方法に関する。特に、還元性不純物含有量の少ない
酢酸の連続的な製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial process for producing highly pure acetic acid. In particular, it relates to a continuous production method of acetic acid having a low content of reducing impurities.

【0002】[0002]

【従来の技術】酢酸は、石油化学工業、有機化学工業、
医薬農薬製造工業、高分子工業などにおいて多量に使用
される基礎化学品の一つである。
2. Description of the Related Art Acetic acid is used in petrochemical industry, organic chemical industry,
It is one of the basic chemicals used in large quantities in the pharmaceutical and agrochemical manufacturing industry, polymer industry, etc.

【0003】酢酸の工業的な製造方法は種々知られてい
るが、中でも、メタノールと一酸化炭素を連続的に反応
させて酢酸を製造する方法が工業的には最も優れた方法
である(特公昭47−3334号)。この方法は生産性が高い
ばかりでなく、不純物の副生量も少なく、他の方法に比
べて、純度の高い酢酸が製造できる。しかし、この方法
においても微少量の不純物が副生しており、長時間にわ
たる連続運転では、これら不純物が製品である酢酸に混
入し、製品の品質を悪化させる。そのため酢酸の精製に
多大な設備とエネルギーが使用されている。また、近
年、反応条件、触媒の改良方法が開示され、ヨウ化物塩
等の触媒安定化剤を添加し、従来の条件よりも低水分条
件下で反応させることにより酢酸製造触媒の生産性が高
い工業的な酢酸の製造方法が開示されている(特開昭60
−54334 号、特開昭60−239434号)。それによると、反
応液中の水分を低減することで、二酸化炭素やプロピオ
ン酸といった副生物は減少することが開示されている。
しかし、その他の微少な不純物の中には、酢酸の生産性
の増加と共に発生量が増加し、前記の触媒の改良や反応
条件の変更で生産性を上げようとした場合、酢酸の品質
が悪くなるということが起こる。特に、還元性物質試験
(過マンガン酸タイム) と呼ばれる、酢酸中の極く微少
な還元性不純物の存在量を調べる品質試験においては、
今日の高度な機器分析をもってしても定量が困難である
ような微少な濃度の不純物の微少な増加が検出でき、こ
れらの不純物が品質の悪化につながる。このような不純
物は、アルデヒド類、特に不飽和アルデヒド等である。
これらの化合物は多様であり、一つ一つを分離し除去す
ることは現実的ではない。特に、アセトアルデヒドの脱
水縮合物であるクロトンアルデヒド、2−エチルクロト
ンアルデヒドなどは酢酸と沸点が近く、微少量のこれら
不純物を蒸留で分離することは困難である。
Various industrial production methods of acetic acid are known. Among them, the method of producing acetic acid by continuously reacting methanol and carbon monoxide is the most industrially excellent method (special feature Kosho 47-3334). Not only is this method highly productive, but the amount of impurities by-produced is small, and acetic acid having a higher purity can be produced than other methods. However, even in this method, a small amount of impurities are by-produced, and in continuous operation over a long period of time, these impurities are mixed into acetic acid which is a product, which deteriorates the quality of the product. Therefore, a large amount of equipment and energy are used for the purification of acetic acid. Further, recently, a reaction condition and a method for improving a catalyst have been disclosed. By adding a catalyst stabilizer such as an iodide salt and reacting under a condition of lower water content than conventional conditions, the productivity of an acetic acid production catalyst is high. An industrial method for producing acetic acid has been disclosed (Japanese Patent Laid-Open No. Sho 60).
-54334, JP-A-60-239434). It is disclosed that by-products such as carbon dioxide and propionic acid are reduced by reducing the water content in the reaction solution.
However, among other minute impurities, the amount of acetic acid produced increases with the productivity of acetic acid, and when the productivity is increased by improving the catalyst or changing the reaction conditions, the quality of acetic acid is poor. It will happen. Especially, reducing substance test
In a quality test that examines the presence of extremely small reducing impurities in acetic acid, called (permanganate time),
Even with today's sophisticated instrumental analysis, it is possible to detect a minute increase in minute concentrations of impurities that are difficult to quantify, and these impurities lead to deterioration in quality. Such impurities are aldehydes, especially unsaturated aldehydes and the like.
These compounds are diverse and it is not practical to separate and remove each one. In particular, crotonaldehyde and 2-ethylcrotonaldehyde, which are dehydration condensates of acetaldehyde, have similar boiling points to acetic acid, and it is difficult to separate minute amounts of these impurities by distillation.

【0004】そのため、従来の技術では、これらの微少
な還元性不純物を含む粗酢酸をオゾン(特公昭61−2052
号)や酸化剤(特公昭56−10297 号) で処理するなどの
技術が開示されている。しかしながら、オゾンや酸化剤
での処理では、処理される不純物の濃度に限度がある。
例えば、オゾンで処理できる化合物は不飽和化合物のみ
であって、飽和のアルデヒド類は分解しないこと、更に
不飽和化合物が分解されて発生する化合物は飽和のアル
デヒドであり、アルデヒトそのものも還元性を有してお
り、過マンガン酸タイムを悪化させる化合物にほかなら
ないためである。そのため、オゾンで処理した後に、飽
和のアルデヒド類等を除去するために蒸留したり、活性
炭で処理するなどの精製が必要となる(特開平1−2115
48号)。
Therefore, in the conventional technique, crude acetic acid containing these minute reducing impurities is treated with ozone (Japanese Patent Publication No. 61-2052).
No.) or an oxidant (Japanese Patent Publication No. 56-10297). However, treatment with ozone or an oxidant has a limit on the concentration of impurities to be treated.
For example, the only compounds that can be treated with ozone are unsaturated compounds, saturated aldehydes do not decompose, and the compounds generated by the decomposition of unsaturated compounds are saturated aldehydes, and Aldecht itself is also reductive. This is because it is a compound that deteriorates the permanganate time. Therefore, after treatment with ozone, purification such as distillation to remove saturated aldehydes or treatment with activated carbon is required (JP-A 1-2115).
No. 48).

【0005】[0005]

【発明が解決しようとする課題】発明者等は、酢酸の品
質を悪化させる還元性不純物を詳細に同定し、それら化
合物の発生経路を詳細に検討した結果、反応中に発生す
るアセトアルデヒドがこれら還元性微量不純物の根本的
な原因物質であることを見出した。従来の酢酸製造プロ
セスにおいては反応液中に含まれる酢酸よりも沸点の低
い成分、即ち、原料のメタノールから発生する酢酸メチ
ル、助触媒であるヨウ化メチル、反応液中に存在する水
などは反応粗液中から酢酸を分離する過程で分離される
が、これらの化合物を無駄に消費しないように分離され
たほとんどすべてが反応器に循環され、再使用される。
即ち、反応器で微量に副生するアセトアルデヒドはプロ
セスから除去されることなく循環し、反応を続けるにつ
れて反応液中に蓄積する。蓄積したアセトアルデヒドは
反応条件下で縮合し、不飽和のアルデヒド類を生じる。
また、反応条件下に存在する水素により還元され、更に
反応して、プロピオン酸になる。プロピオン酸は酢酸よ
りも沸点が高いので、酢酸を分離する過程で酢酸と共に
反応系から抜き出され、酢酸の精製蒸留のための蒸留塔
で高沸点留分として酢酸から分離され、プロセスから出
ていく。即ち、反応器内で発生するアセトアルデヒドは
プロピオン酸としてプロセスから出されるか、縮合物と
して酢酸に混入し系外に出ていくか、低沸点留分として
留去され系外に出るかである。
The present inventors have identified in detail the reducing impurities that deteriorate the quality of acetic acid and studied the generation pathways of these compounds in detail. As a result, the acetaldehyde generated during the reaction is reduced by these reduction impurities. It was found to be the fundamental causative agent of trace trace impurities. In the conventional acetic acid production process, components with a boiling point lower than that of acetic acid contained in the reaction solution, that is, methyl acetate generated from methanol as a raw material, methyl iodide as a co-catalyst, water present in the reaction solution, etc. react. Almost all separated in the process of separating acetic acid from the crude liquid so as not to wastefully consume these compounds, are recycled to the reactor and reused.
That is, a small amount of acetaldehyde by-produced in the reactor circulates without being removed from the process and accumulates in the reaction solution as the reaction continues. Accumulated acetaldehyde condenses under reaction conditions to yield unsaturated aldehydes.
Further, it is reduced by hydrogen existing under the reaction conditions and further reacted to form propionic acid. Since propionic acid has a higher boiling point than acetic acid, it is extracted from the reaction system together with acetic acid in the process of separating acetic acid, and is separated from acetic acid as a high-boiling fraction in a distillation column for the purification distillation of acetic acid, and then leaves the process. Go. That is, acetaldehyde generated in the reactor is discharged from the process as propionic acid, mixed with acetic acid as a condensate and discharged out of the system, or distilled out as a low boiling point fraction and discharged out of the system.

【0006】即ち、定常状態の連続反応における反応液
のアセトアルデヒド濃度は、反応器で連続的に発生する
アセトアルデヒド量は、酢酸の精製の際に高沸点成分と
して留去され、系外に出るプロピオン酸、及び、アセト
アルデヒドから由来し酢酸に混入するか低沸物として留
去される低沸点のアルデヒド類、エステル類の合計量と
量論的にほぼ等しくなるような濃度となる。
That is, the acetaldehyde concentration of the reaction solution in the continuous reaction in the steady state is such that the amount of acetaldehyde continuously generated in the reactor is distilled off as a high boiling point component during the purification of acetic acid, and propionic acid is discharged to the outside of the system. , And a concentration that is stoichiometrically approximately equal to the total amount of low-boiling aldehydes and esters derived from acetaldehyde and mixed in acetic acid or distilled off as a low-boiling substance.

【0007】この中で、アセトアルデヒドの縮合により
生成する酢酸と沸点の近い不飽和アルデヒド類は、酢酸
の精製工程で分離されにくくなり酢酸に不純物として混
入し、酢酸の還元性物質試験において品質の悪化を引き
起こす。
Among these, unsaturated aldehydes having a boiling point close to that of acetic acid produced by the condensation of acetaldehyde become difficult to be separated in the purification step of acetic acid and are mixed as impurities in acetic acid, resulting in deterioration of quality in a test for reducing substances of acetic acid. cause.

【0008】[0008]

【課題を解決するための手段】以上のような化学的な解
析から、本発明の発明者等は、反応器内のアセトアルデ
ヒドの濃度を1500ppm 以内に管理することにより、アセ
トアルデヒド由来の不純物、即ち、プロピオン酸、クロ
トンアルデヒド、2−エチルクロトンアルデヒドなどの
酢酸品質に悪影響を及ぼす不純物の発生量を管理下にお
くことができ、それぞれの化合物を酢酸から除去するた
めの多大な設備、精製のためのエネルギーを費やすこと
なく、高品質な酢酸を製造することができることを見い
だし、本発明を完成するに至った。
[Means for Solving the Problems] From the above chemical analysis, the inventors of the present invention, by controlling the concentration of acetaldehyde in the reactor within 1500ppm, impurities derived from acetaldehyde, namely, It is possible to control the amount of impurities such as propionic acid, crotonaldehyde, and 2-ethylcrotonaldehyde that adversely affect the quality of acetic acid, and to control the amount of each compound from acetic acid. They have found that high-quality acetic acid can be produced without spending energy, and completed the present invention.

【0009】即ち本発明は、ロジウム錯体を触媒とし、
ヨウ化メチルを助触媒として用い、連続的にメタノール
及び/又は酢酸メチル水溶液と一酸化炭素を反応させて
酢酸を製造する方法において、反応器に循環するプロセ
ス液からアセトアルデヒドを分離することにより、反応
液中のアセトアルデヒド濃度を1500ppm 以下に保ち、反
応を行うことを特徴とする高純度酢酸の製造方法に関す
る。
That is, the present invention uses a rhodium complex as a catalyst,
In the method for producing acetic acid by continuously reacting methanol and / or methyl acetate aqueous solution with carbon monoxide using methyl iodide as a co-catalyst, the reaction is performed by separating acetaldehyde from the process liquid circulating in the reactor. The present invention relates to a method for producing high-purity acetic acid, which comprises carrying out the reaction while keeping the acetaldehyde concentration in the liquid at 1500 ppm or less.

【0010】メタノールと一酸化炭素を原料とし、連続
的に酢酸を製造する方法は、モンサント法と呼ばれ、モ
ンサント社によりプロセスが開示されている (米国特許
4,102,922 、Hydrocarbon Processing, November,1972
他)(図1) 。原料であるメタノールと一酸化炭素は反応
器(1) に連続的に仕込まれ、所定の温度、圧力下で連続
的に反応させられる。反応温度は通常 150〜250 ℃、反
応圧力は、15〜40atmの範囲内で行われる。反応液中に
は、触媒であるロジウム錯体が 200〜1000ppmの濃度で
存在し、助触媒であるヨウ化メチルが5〜20wt%、溶媒
である水が 0.1〜15wt%含まれ、生成物であり、かつ溶
媒である酢酸が残りの主成分を成す。また、連続反応で
あるので原料が酢酸と反応して生成する酢酸メチルが
0.1〜30wt%の範囲で存在する。また、現実的に行われ
る長時間の連続製造の結果、反応液中には、蓄積した微
量不純物、即ち、アセトアルデヒド、クロトンアルデヒ
ド、2−エチルクロトンアルデヒドなどの不飽和アルデ
ヒド類、さらには反応器中に存在する水素により水素化
を受けた生成物である飽和のアルデヒド類、飽和の脂肪
族カルボン酸類、例えばプロピオン酸、それらのメチル
エステルなどが存在する。近年開示された生産性の高い
条件では(特開昭60−54334 号、特開昭60−239434
号)、反応液中の水分濃度を低減し、副反応性生成物発
生量を減少させることができる。この条件下では、触媒
の安定性が悪くなるのでロジウム触媒の安定化剤とし
て、ヨウ素イオンを 0.1〜20wt%添加する。ヨウ素イオ
ンを導入する場合は、カウンター陽イオンとして、アル
カリ金属、4級アンモニウムイオン、4級ホスホニウム
イオンを有する、反応液に溶解しうるヨウ化物塩が添加
される。この生産性の高い条件下では、ヨウ素イオンの
カウンター陽イオンとして塩基性のカチオンが多量に反
応液に存在し、そのため、アセトアルデヒドの縮合が促
進され、還元性物質の発生量が増加するものと思われ
る。
A method for continuously producing acetic acid using methanol and carbon monoxide as raw materials is called Monsanto method, and the process is disclosed by Monsanto Company (US Patent
4,102,922, Hydrocarbon Processing, November, 1972
Others) (Fig. 1). The raw material methanol and carbon monoxide are continuously charged in the reactor (1) and continuously reacted at a predetermined temperature and pressure. The reaction temperature is usually 150 to 250 ° C., and the reaction pressure is 15 to 40 atm. In the reaction solution, the catalyst rhodium complex was present at a concentration of 200 to 1000 ppm, the cocatalyst methyl iodide was 5 to 20 wt%, and the solvent water was 0.1 to 15 wt%. , And acetic acid as a solvent constitutes the remaining main component. In addition, since it is a continuous reaction, the methyl acetate produced when the raw material reacts with acetic acid
It exists in the range of 0.1 to 30 wt%. In addition, as a result of continuous production for a long time, which is actually performed, trace impurities accumulated in the reaction solution, that is, unsaturated aldehydes such as acetaldehyde, crotonaldehyde, and 2-ethylcrotonaldehyde, and further in the reactor. There are saturated aldehydes, saturated aliphatic carboxylic acids, such as propionic acid, their methyl esters, etc., which are products hydrogenated by the hydrogen present in. Under the conditions of high productivity disclosed in recent years (JP-A-60-54334 and JP-A-60-239434).
No.), the water concentration in the reaction solution can be reduced, and the amount of side reaction products generated can be reduced. Under this condition, the stability of the catalyst deteriorates, so 0.1 to 20 wt% of iodine ion is added as a stabilizer of the rhodium catalyst. When iodine ions are introduced, an iodide salt having an alkali metal, a quaternary ammonium ion, and a quaternary phosphonium ion as a counter cation and soluble in a reaction solution is added. Under this highly productive condition, a large amount of basic cations are present in the reaction solution as counter cations for iodine ions, which promotes the condensation of acetaldehyde and increases the amount of reducing substances generated. Be done.

【0011】本発明においては、反応条件として、水分
が5〜10wt%の時は、触媒安定化成分として、ヨウ素イ
オンを1〜10wt%含む反応液組成で、また、水分が5wt
%以下の時は、触媒安定化成分として、ヨウ素イオンを
1〜20wt%含む反応液組成で反応を行うことが好まし
い。ヨウ素イオンのカウンター陽イオンとしてはアルカ
リ金属イオンが好ましく、その中でもリチウムイオンが
特に好ましい。
In the present invention, when the reaction conditions are water of 5 to 10 wt%, the reaction solution composition contains 1 to 10 wt% of iodine ions as a catalyst stabilizing component, and the water content is 5 wt.
%, It is preferable to carry out the reaction with a reaction liquid composition containing 1 to 20 wt% of iodine ions as a catalyst stabilizing component. Alkali metal ions are preferred as counter cations for iodine ions, and lithium ions are particularly preferred.

【0012】このような反応状況下で、反応液中のアセ
トアルデヒドの濃度を1500ppm 以下、好ましくは1000pp
m 以下に保つことにより、生成する不純物量が抑制さ
れ、粗酢酸の精製において、基本的な、簡単な蒸留操作
のみで高純度の酢酸が製造できる。
Under such reaction conditions, the concentration of acetaldehyde in the reaction solution is 1500 ppm or less, preferably 1000 pp.
By keeping it at m or less, the amount of impurities produced is suppressed, and in the purification of crude acetic acid, high-purity acetic acid can be produced only by a basic and simple distillation operation.

【0013】反応液中のアセトアルデヒドの濃度を1500
ppm 以下に保つためには、反応条件を管理するか、反応
器に循環するプロセス液からアセトアルデヒドを除去す
ることによって達成できる。反応条件の管理では、水素
分圧が最も効果的であり、水素分圧を低下することによ
りアセトアルデヒドの発生量は低下し、その結果として
プロピオン酸の発生量が低下する。しかしながら、予想
外なことに、水素分圧の低下は、クロトンアルデヒドや
2−エチルクロトンアルデヒド等の還元性物質試験に多
大な悪影響を及ぼす還元性不飽和化合物が水素化され
て、飽和の化合物に無害化される機会を奪い、かえって
品質、過マンガン酸タイムを悪化させ、純度の低い酢酸
しか得られないことがある。このことから、反応器のア
セトアルデヒドを1500ppm 以下に管理するためには、反
応器に循環するプロセス液からアセトアルデヒドを除去
することが好ましいことがわかった。反応器に循環する
プロセス液からアセトアルデヒドを除去する方法は、以
下に図1を用いてプロセスを例示しながら説明する。
The concentration of acetaldehyde in the reaction solution was 1500
Keeping below ppm can be achieved by controlling the reaction conditions or removing acetaldehyde from the process liquid circulating to the reactor. In controlling the reaction conditions, the hydrogen partial pressure is most effective. By decreasing the hydrogen partial pressure, the amount of acetaldehyde generated decreases, and as a result, the amount of propionic acid generated decreases. However, unexpectedly, a decrease in the hydrogen partial pressure causes hydrogenation of reductive unsaturated compounds that have a great adverse effect on the test for reducing substances such as crotonaldehyde and 2-ethylcrotonaldehyde, resulting in a saturated compound. It may deprive you of the opportunity to render it harmless, worsen the quality and time of permanganate, and only give you acetic acid of low purity. From this, it was found that it is preferable to remove acetaldehyde from the process liquid circulating in the reactor in order to control the acetaldehyde in the reactor to 1500 ppm or less. A method for removing acetaldehyde from the process liquid circulating in the reactor will be described below by using FIG. 1 as an example of the process.

【0014】反応液は反応器(1) から連続的に抜き出さ
れ、反応圧力よりも低圧に管理された蒸発槽(2) に導入
され、フラッシュ蒸発される。蒸発槽で蒸発した成分は
蒸留塔(3) に導入され蒸留される。この蒸留塔では低沸
点成分が主に分離される。蒸留塔塔頂の留出液は分液槽
(4) に導入され、二相に分離する。上層は酢酸を含む水
相からなり、下層は酢酸と水を含むヨウ化メチル相から
なる。これら二相にはアセトアルデヒトが濃縮される。
これら二相は反応器に戻される。蒸留塔(3) の高沸成分
も反応器に戻される。製品となる酢酸を含む蒸留塔(3)
のサイドカット液は次の蒸留塔(5) に導入される。蒸留
塔(5) で脱水された粗酢酸が塔底から抜き取られ、次の
蒸留塔(6) で蒸留される。蒸留塔(5) の塔頂液中にもア
セトアルデヒドが含まれるが、この液も反応器に戻され
る。蒸留塔(6) では、高沸点生成物であるプロピオン酸
と微少量の高沸不純物が塔底から抜き取られ、低沸点不
純物が塔頂から抜き取られる。製品の酢酸は蒸留塔(6)
のサイドカットで得られる。場合により、蒸留塔(6)
は、脱高沸塔と脱低沸塔に分けて、酢酸を精製すること
もできる。
The reaction solution is continuously withdrawn from the reactor (1), introduced into an evaporation tank (2) controlled to have a pressure lower than the reaction pressure, and flash-evaporated. The components evaporated in the evaporation tank are introduced into the distillation column (3) and distilled. In this distillation column, low boiling point components are mainly separated. Distillate at the top of the distillation column
It is introduced into (4) and separates into two phases. The upper layer consists of an aqueous phase containing acetic acid and the lower layer consists of a methyl iodide phase containing acetic acid and water. Acetaldehyde is concentrated in these two phases.
These two phases are returned to the reactor. The high boiling components of the distillation column (3) are also returned to the reactor. Distillation column containing acetic acid as a product (3)
The side cut liquid of (1) is introduced into the next distillation column (5). The crude acetic acid dehydrated in the distillation column (5) is extracted from the bottom of the column and distilled in the next distillation column (6). Acetaldehyde is also contained in the top liquid of the distillation column (5), but this liquid is also returned to the reactor. In the distillation column (6), propionic acid, which is a high-boiling product, and a small amount of high-boiling impurities are extracted from the bottom, and low-boiling impurities are extracted from the top. Product acetic acid distillation column (6)
Obtained with a side cut. Possibly distillation column (6)
Can also be separated into a high boiling column and a low boiling column to purify acetic acid.

【0015】一方、反応器のオフガス、及び各蒸留塔か
ら出るオフガス中にはアセトアルデヒドが含有される
が、ヨウ化メチルなどのオフガス中の有機成分とともに
吸収系(7) で回収され、反応器に戻される。
On the other hand, although the acetaldehyde is contained in the offgas of the reactor and the offgas discharged from each distillation column, it is recovered in the absorption system (7) together with the organic components in the offgas such as methyl iodide, and is collected in the reactor. Will be returned.

【0016】このようなプロセスからアセトアルデヒド
を分離する方法としては、アセトアルデヒドを含むプロ
セス液から蒸留分離、抽出、または抽出と蒸留の組み合
わせ、抽出蒸留等によってアセトアルデヒドのみを分離
することが好ましい。特に、アセトアルデヒドの蒸留分
離が有効に行なえるプロセス液としては、分液槽(4)の
上層及び下層、蒸留塔(5) の塔頂液、吸収系でオフガス
中の有機物を吸収した液がアセトアルデヒドの濃度が高
く好ましいが、この中でも分液槽(4) の上層及び下層が
更に好ましい。これらのアセトアルデヒドを含むプロセ
ス液中にはヨウ化メチルが存在している。ヨウ化メチル
とアセトアルデヒドは沸点が近く、これらを分離するこ
とが最も困難であるが、ヨウ化メチルはヨウ素を含む化
合物であって、廃棄することが困難であるため、分離、
回収して反応器に戻すことが必要である。アセトアルデ
ヒドの分離方法としては、アセトアルデヒドを含むプロ
セス液を一本の蒸留塔で分離蒸留することもできるが、
好ましくは、アセトアルデヒドとヨウ化メチルからなる
沸点の低い成分をまず蒸留で他の成分と分離した後、更
にヨウ化メチルとアセトアルデヒドを蒸留分離すること
もできる。また、アセトアルデヒドが水と良く混じりヨ
ウ化メチルが水と混じりにくい性質を利用し、ヨウ化メ
チルとアセトアルデヒドの分離に水抽出を用い、その後
蒸留してもよい。プロセスから分離すべきアセトアルデ
ヒドの量は、定常連続反応中の反応液中のアセトアルデ
ヒド濃度を1500ppm 以下、好ましくは1000ppm 以下に保
てる量である。本質的には、定常連続反応条件下で発生
し、定常連続反応条件下でプロセスから抜き出されてい
る、アセトアルデヒドの全量、即ち、定常連続反応状態
で、発生するプロピオン酸、クロトンアルデヒド、2−
エチルクロトンアルデヒドなどの合計量に当量のアセト
アルデヒド換算量にほぼ等しい量である。実際的には、
プロピオン酸が量的に最も多く、ほとんどを占めるの
で、プロピオン酸のモル量におよそ該当するアセトアル
デヒドモル量を抜き出せばよい。
As a method for separating acetaldehyde from such a process, it is preferable to separate only acetaldehyde from a process liquid containing acetaldehyde by distillation separation, extraction, a combination of extraction and distillation, extractive distillation or the like. In particular, as the process liquid that can effectively perform the separation of acetaldehyde by distillation, the upper and lower layers of the separation tank (4), the top liquid of the distillation column (5), and the liquid that has absorbed the organic matter in the offgas in the absorption system are acetaldehyde. Is preferred because of its high concentration, but among these, the upper and lower layers of the separation tank (4) are more preferred. Methyl iodide is present in the process liquid containing these acetaldehydes. Methyl iodide and acetaldehyde have the closest boiling points, and it is the most difficult to separate them. However, methyl iodide is a compound containing iodine and it is difficult to dispose of it.
It is necessary to recover and return to the reactor. As a method for separating acetaldehyde, a process liquid containing acetaldehyde can be separated and distilled in a single distillation column,
Preferably, the low boiling point component consisting of acetaldehyde and methyl iodide can be first separated from other components by distillation, and then methyl iodide and acetaldehyde can be further separated by distillation. Further, by utilizing the property that acetaldehyde is well mixed with water and methyl iodide is hardly mixed with water, water extraction may be used to separate methyl iodide and acetaldehyde, and then distillation may be performed. The amount of acetaldehyde to be separated from the process is such that the acetaldehyde concentration in the reaction solution during the steady continuous reaction can be kept at 1500 ppm or less, preferably 1000 ppm or less. In essence, the total amount of acetaldehyde generated under steady-state continuous reaction conditions and extracted from the process under steady-state continuous reaction conditions, that is, propionic acid, crotonaldehyde, 2-
The amount is approximately equal to the equivalent amount of acetaldehyde equivalent to the total amount of ethyl crotonaldehyde. In practice,
Propionic acid is the most quantitative and most of it, so it is sufficient to extract the molar amount of acetaldehyde corresponding to the molar amount of propionic acid.

【0017】即ち、アセトアルデヒドをプロセス液から
抜き取ることによって、製品酢酸中のアセトアルデヒド
由来の還元性微量不純物が減少するのみならず、モンサ
ント法酢酸の副生物であるプロピオン酸も減少させるこ
とができ、酢酸の精製が容易になる利点がある。
That is, by extracting acetaldehyde from the process liquid, not only reducing trace impurities derived from acetaldehyde in the acetic acid product can be reduced, but also propionic acid which is a by-product of the Monsanto acetic acid can be reduced. Has the advantage that it can be easily purified.

【0018】[0018]

【実施例】以下に実施例を示し、本方法を具体的に説明
するが、本発明はこれらの実施例によって限定されるの
ではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 アセトアルデヒドの蒸留分離が可能であることを示す。
アセトアルデヒドを1wt%含有する分液槽上層液のモデ
ル液を調製し、内径40mm、30段のオールダショウ蒸留塔
で以下の条件で蒸留した。 仕込み液組成;ヨウ化メチル 7 wt% 酢酸 44 wt% 水 48 wt% アセトアルデヒド 1.0 wt% 蒸留条件;還流比 1.5 フィード量 100部 抜き取り量 塔頂から 8.5部、塔底から91.5部 フィード段上から17段目 蒸留塔の塔頂から留出した液には仕込まれたすべてのア
セトアルデヒドとヨウ化メチルの大部分が留出した。こ
の液の組成は以下のようであった。 ヨウ化メチル 82.3 wt% 水 5.9 wt% アセトアルデヒド 11.8 wt% この留出液を、内径40mm、60段の蒸留塔で以下の条件で
蒸留したところ、塔頂からアセトアルデヒドが留出し、
ヨウ化メチルと分離した。
Example 1 It is shown that acetaldehyde can be separated by distillation.
A model liquid of the upper layer liquid of a separating tank containing 1 wt% of acetaldehyde was prepared and distilled under the following conditions in an Oldasha distillation column having an inner diameter of 40 mm and a plate size of 30. Feed composition: Methyl iodide 7 wt% Acetic acid 44 wt% Water 48 wt% Acetaldehyde 1.0 wt% Distillation conditions: Reflux ratio 1.5 Feed amount 100 parts Extraction amount 8.5 parts from the top of the tower, 91.5 parts from the bottom of the tower 17 from the top of the feed stage Most of all acetaldehyde and methyl iodide charged in the liquid distilled from the top of the first distillation column were distilled. The composition of this liquid was as follows. Methyl iodide 82.3 wt% Water 5.9 wt% Acetaldehyde 11.8 wt% When this distillate was distilled under the following conditions in a distillation column with an inner diameter of 40 mm and 60 stages, acetaldehyde was distilled from the top of the column,
Separated from methyl iodide.

【0020】蒸留条件;フィード段上から57段目 還流比 150 フィード量 100部 抜き取り量 塔頂から11部、塔底から89部 塔頂液組成;アセトアルデヒド 99.99 wt% ヨウ化メチル 100ppm 以下。Distillation conditions: 57th from the top of the feed stage Reflux ratio 150 Feed amount 100 parts Extraction amount 11 parts from the top of the tower, 89 parts from the bottom of the tower Top liquid composition: acetaldehyde 99.99 wt% Methyl iodide 100 ppm or less.

【0021】実施例2 実施例1と同様にアセトアルデヒドを 0.4wt%含有する
分液槽下層液のモデル液を調製し、内径40mm、30段のオ
ールダショウ蒸留塔で以下の条件で蒸留した。
Example 2 A model liquid of a lower layer liquid of a separating tank containing 0.4 wt% of acetaldehyde was prepared in the same manner as in Example 1, and was distilled under the following conditions in an Oldshaw distillation column having an inner diameter of 40 mm and 30 stages.

【0022】 仕込み液組成;ヨウ化メチル 90.2 wt% 酢酸メチル 5.0 wt% 酢酸 3.5 wt% 水 0.9 wt% アセトアルデヒド 0.4 wt% 蒸留条件;還流比 3.0 フィード量 100部 抜き取り量 塔頂から94部、塔底から6部 フィード段上から17段目 蒸留塔の塔頂から留出した液には仕込まれたすべてのア
セトアルデヒドとヨウ化メチルの大部分が留出した。こ
の液の組成は以下のようであった。
Composition of feed liquid: methyl iodide 90.2 wt% methyl acetate 5.0 wt% acetic acid 3.5 wt% water 0.9 wt% acetaldehyde 0.4 wt% Distillation conditions; reflux ratio 3.0 feed amount 100 parts withdrawal amount 94 parts from top, bottom 6 parts from the 17th stage from the top of the feed stage Most of all the acetaldehyde and methyl iodide charged were distilled in the liquid distilled from the top of the distillation column. The composition of this liquid was as follows.

【0023】ヨウ化メチル 93.3 wt% 酢酸メチル 5.3 wt% 水 0.96 wt% アセトアルデヒド 0.43 wt% この留出液を、内径40mm、60段の蒸留塔で以下の条件で
蒸留したところ、塔頂からアセトアルデヒドが留出し、
ヨウ化メチルと分離した。 蒸留条件;フィード段上から57段目 還流比 150 フィード量 100部 抜き取り量 塔頂から0.28部 (仕込んだアセトアルデヒドの70wt%に相当する。) 塔頂液組成;アセトアルデヒド 99.99 wt% ヨウ化メチル 100ppm 以下。
Methyl iodide 93.3 wt% Methyl acetate 5.3 wt% Water 0.96 wt% Acetaldehyde 0.43 wt% When this distillate was distilled under the following conditions in a distillation column having an inner diameter of 40 mm and 60 plates, acetaldehyde was produced from the top of the column. Distilling,
Separated from methyl iodide. Distillation conditions: 57th stage from the top of the feed stage Reflux ratio 150 Feed amount 100 parts Extracted amount 0.28 parts from the top of the column (equivalent to 70 wt% of the acetaldehyde charged) Top liquid composition: Acetaldehyde 99.99 wt% Methyl iodide 100 ppm or less .

【0024】実施例3 図1に示された方法に基づいて以下の実験を行った。原
料であるメタノールと一酸化炭素は反応器(1) に連続的
に仕込まれ、温度 187〜189 ℃、圧力28kg/cm2 下で連
続的に反応させられる。反応液は反応器から連続的に抜
き出され、反応圧力よりも低圧の蒸発槽(2) に導入さ
れ、フラッシュ蒸発される。蒸発槽で蒸発した成分は蒸
留塔(3) に導入され蒸留される。蒸留塔塔頂の留出液は
分液槽(4) に導入され、二相に分離する。蒸留塔(3) の
高沸成分も反応器に戻される。製品となる酢酸を含む蒸
留塔(3) のサイドカット液は次の蒸留塔(5) に導入され
る。蒸留塔(5) で脱水された粗酢酸が塔底から抜き取ら
れ、次の蒸留塔(6) で蒸留される。蒸留塔(6) では、高
沸点生成物であるプロピオン酸と微少量の高沸不純物が
塔底から抜き取られ、低沸点不純物が塔頂から抜き取ら
れる。製品の酢酸は蒸留塔(6) のサイドカットで得られ
る。一方、反応器のオフガス、及び各蒸留塔から出るオ
フガス中にはアセトアルデヒドが含有されるが、ヨウ化
メチルなどのオフガス中の有機成分とともに吸収系(7)
で回収され、反応器に戻される。このプロセスで、反応
器内の反応液中にアセトアルデヒドが800〜1000ppm 存
在する状態で連続反応を行った。反応条件は、ロジウム
濃度450ppm、ヨウ化メチル13wt%、水8wt%、ヨウ化リ
チウム 4.5wt%、酢酸メチル 1.2wt%であった。この製
造条件下でアセトアルデヒド 0.5wt%を含む水、酢酸、
ヨウ化メチル、酢酸メチルからなる分液槽(4) の上層液
を毎時0.25リットル (上層液全体量の1/3)の量で抜き取
り、内径60mm、40段の蒸留塔で、 1.2kg/cm2Gの加圧
下、連続的に蒸留した。仕込み段は、上から20段目であ
った。塔頂液の還流比は3.0 であった。塔底からは毎時
0.24リットルで抜き取り反応器に戻した。主にヨウ化メ
チルとアセトアルデヒドからなる塔頂液は塔頂から毎時
0.015リットルで抜き取り、抜き取った液は、内径50m
m、60段の蒸留塔の57段目に仕込み、圧力 1.0kg/cm2G
の加圧下、還流比40で蒸留した。塔頂から毎時 0.8gの
アセトアルデヒドが分離した。塔底からは毎時 0.015リ
ットルの液を抜き取って、反応器に戻した。このプロセ
スで得られた酢酸、即ち、蒸留塔6のサイドカットで得
られた酢酸中の過マンガン酸タイムは 240分であった。
また、反応液中のアセトアルデヒドの濃度は 800〜1000
ppm に保たれていた。
Example 3 The following experiment was conducted based on the method shown in FIG. The raw material methanol and carbon monoxide are continuously charged into the reactor (1) and continuously reacted at a temperature of 187 to 189 ° C. and a pressure of 28 kg / cm 2 . The reaction solution is continuously withdrawn from the reactor, introduced into an evaporation tank (2) having a pressure lower than the reaction pressure, and flash-evaporated. The components evaporated in the evaporation tank are introduced into the distillation column (3) and distilled. The distillate at the top of the distillation column is introduced into the separation tank (4) and separated into two phases. The high boiling components of the distillation column (3) are also returned to the reactor. The side cut liquid of the distillation column (3) containing acetic acid as a product is introduced into the next distillation column (5). The crude acetic acid dehydrated in the distillation column (5) is extracted from the bottom of the column and distilled in the next distillation column (6). In the distillation column (6), propionic acid, which is a high-boiling product, and a small amount of high-boiling impurities are extracted from the bottom, and low-boiling impurities are extracted from the top. The product acetic acid is obtained by side-cutting the distillation column (6). On the other hand, although the acetaldehyde is contained in the offgas of the reactor and the offgas discharged from each distillation column, the absorption system together with the organic components in the offgas such as methyl iodide (7)
And then returned to the reactor. In this process, continuous reaction was carried out in a state where acetaldehyde was present in the reaction liquid in the reactor in an amount of 800 to 1000 ppm. The reaction conditions were a rhodium concentration of 450 ppm, methyl iodide 13 wt%, water 8 wt%, lithium iodide 4.5 wt% and methyl acetate 1.2 wt%. Under this production condition, water containing 0.5 wt% of acetaldehyde, acetic acid,
The upper layer liquid of the liquid separation tank (4) consisting of methyl iodide and methyl acetate was withdrawn at an amount of 0.25 liters per hour (1/3 of the total amount of the upper layer liquid), 1.2 kg / cm in a distillation column with an inner diameter of 60 mm and 40 stages. It was continuously distilled under a pressure of 2 G. The preparation stage was the 20th stage from the top. The reflux ratio of the overhead liquid was 3.0. Every hour from the bottom of the tower
0.24 liters were withdrawn and returned to the reactor. Overhead liquid consisting mainly of methyl iodide and acetaldehyde is delivered from the top of the tower every hour.
Withdraw 0.015 liters and remove the liquid with an inner diameter of 50 m
Prepared at the 57th stage of a 60-stage distillation column with a pressure of 1.0 kg / cm 2 G
Distilled at a reflux ratio of 40 under pressure. 0.8 g of acetaldehyde was separated from the top of the column every hour. From the bottom of the column, 0.015 liter of liquid was withdrawn every hour and returned to the reactor. The permanganate time in the acetic acid obtained by this process, that is, the acetic acid obtained by the side cut of the distillation column 6, was 240 minutes.
The concentration of acetaldehyde in the reaction solution is 800-1000.
It was kept at ppm.

【0025】比較例 実施例3で、アセトアルデヒドの蒸留除去を行わないで
同様の反応条件、運転条件下で反応を連続的に行った。
この時、反応系中のアセトアルデヒド濃度は1700〜1800
ppm で定常に達し、定常状態で得られた酢酸の過マンガ
ン酸タイムは60分であった。
Comparative Example In Example 3, the reaction was continuously performed under the same reaction conditions and operating conditions without removing acetaldehyde by distillation.
At this time, the acetaldehyde concentration in the reaction system is 1700 to 1800.
The steady state was reached at ppm and the permanganate time of the acetic acid obtained at steady state was 60 minutes.

【0026】[0026]

【発明の効果】本発明によれば、酢酸の連続製造プロセ
ス内で反応器に循環しているアセトアルデヒドを含む低
沸点プロセス液から、反応条件下で発生する量に匹敵す
るアセトアルデヒドを、蒸留分離で除去することによっ
て、反応条件下での反応液中のアセトアルデヒド濃度を
1500ppm 以内に管理して反応を行わせることにより、オ
ゾン処理等の精製処理工程を必要とせず、通常に実施さ
れる精製工程のみの精製で、十分に高品質な、即ち過マ
ンガン酸タイムの優れた酢酸が得られる。
INDUSTRIAL APPLICABILITY According to the present invention, from a low boiling process liquid containing acetaldehyde circulating in a reactor in a continuous production process of acetic acid, acetaldehyde which is comparable to the amount generated under the reaction conditions can be separated by distillation. By removing it, the acetaldehyde concentration in the reaction solution under the reaction conditions can be increased.
By controlling the reaction within 1500 ppm, the purification process such as ozone treatment is not required, and only the purification process that is normally performed is sufficient to obtain sufficiently high quality, that is, excellent permanganate time. Acetic acid is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】酢酸を連続製造するモンサント法のフロー図で
ある。
FIG. 1 is a flow chart of a Monsanto method for continuously producing acetic acid.

【符号の説明】[Explanation of symbols]

1 反応槽 2 蒸発槽 3 低沸蒸留塔 4 分液槽 5 蒸留塔 (脱水塔) 6 酢酸蒸留塔 7 吸収系 1 Reaction tank 2 Evaporation tank 3 Low boiling distillation column 4 Liquid separation tank 5 Distillation tower (dehydration tower) 6 Acetic acid distillation tower 7 Absorption system

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロジウム錯体を触媒とし、ヨウ化メチル
を助触媒として用い、連続的にメタノール及び/又は酢
酸メチル水溶液と一酸化炭素を反応させて酢酸を製造す
る方法において、反応液中のアセトアルデヒド濃度を15
00ppm 以下に保ち、反応を行うことを特徴とする高純度
酢酸の製造方法。
1. A method for producing acetic acid by continuously reacting an aqueous methanol and / or methyl acetate solution with carbon monoxide using a rhodium complex as a catalyst and methyl iodide as a co-catalyst to produce acetic acid. Concentration 15
A method for producing high-purity acetic acid, which is characterized in that the reaction is carried out while keeping it at 00 ppm or less.
【請求項2】 反応器に循環するプロセス液からアセト
アルデヒドを分離することにより、反応液中のアセトア
ルデヒド濃度を1500ppm 以下に保ち、反応を行うことを
特徴とする請求項1記載の高純度酢酸の製造方法。
2. The production of high-purity acetic acid according to claim 1, wherein the reaction is carried out by separating acetaldehyde from the process liquid circulating in the reactor to keep the acetaldehyde concentration in the reaction liquid at 1500 ppm or less. Method.
JP16920593A 1993-07-08 1993-07-08 Method for producing high-purity acetic acid Expired - Lifetime JP3244351B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16920593A JP3244351B2 (en) 1993-07-08 1993-07-08 Method for producing high-purity acetic acid
TW083103131A TW283702B (en) 1993-07-08 1994-04-09
MYPI94001594A MY111225A (en) 1993-07-08 1994-06-20 Process for producing highly purified acetic acid
KR1019940015919A KR0143802B1 (en) 1993-07-08 1994-07-04 Production of highly pure acetic acid
CN94108223A CN1067046C (en) 1993-07-08 1994-07-07 Process for producing highly purified acetic acid
US08/591,947 US5756836A (en) 1993-07-08 1996-01-23 Process for producing highly purified acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16920593A JP3244351B2 (en) 1993-07-08 1993-07-08 Method for producing high-purity acetic acid

Publications (2)

Publication Number Publication Date
JPH0725814A true JPH0725814A (en) 1995-01-27
JP3244351B2 JP3244351B2 (en) 2002-01-07

Family

ID=15882155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16920593A Expired - Lifetime JP3244351B2 (en) 1993-07-08 1993-07-08 Method for producing high-purity acetic acid

Country Status (1)

Country Link
JP (1) JP3244351B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508362A (en) * 1999-08-31 2003-03-04 セラニーズ・インターナショナル・コーポレーション Rhodium / inorganic iodide catalyst system for methanol carbonylation process with improved purity characteristics
JP2012508166A (en) * 2008-11-07 2012-04-05 セラニーズ・インターナショナル・コーポレーション Methanol carbonylation with improved aldehyde removal rate
JP2013082715A (en) * 2004-03-02 2013-05-09 Celanese Internatl Corp Removal of permanganate reducing compounds from methanol carbonylation process stream
US20160137578A1 (en) * 2014-11-14 2016-05-19 Celanese International Corporation Processes for improving acetic acid yield by removing iron

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260369B1 (en) 2014-11-14 2016-02-16 Celanese International Corporation Processes for producing acetic acid product having low butyl acetate content
US9540304B2 (en) 2014-11-14 2017-01-10 Celanese International Corporation Processes for producing an acetic acid product having low butyl acetate content

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508362A (en) * 1999-08-31 2003-03-04 セラニーズ・インターナショナル・コーポレーション Rhodium / inorganic iodide catalyst system for methanol carbonylation process with improved purity characteristics
JP4693320B2 (en) * 1999-08-31 2011-06-01 セラニーズ・インターナショナル・コーポレーション Rhodium / inorganic iodide catalyst system for methanol carbonylation process with improved purity characteristics
JP2013082715A (en) * 2004-03-02 2013-05-09 Celanese Internatl Corp Removal of permanganate reducing compounds from methanol carbonylation process stream
JP2012508166A (en) * 2008-11-07 2012-04-05 セラニーズ・インターナショナル・コーポレーション Methanol carbonylation with improved aldehyde removal rate
US20160137578A1 (en) * 2014-11-14 2016-05-19 Celanese International Corporation Processes for improving acetic acid yield by removing iron
US9688600B2 (en) * 2014-11-14 2017-06-27 Celanese International Corporation Processes for improving acetic acid yield by removing iron
JP2017533936A (en) * 2014-11-14 2017-11-16 セラニーズ・インターナショナル・コーポレーション Improvement of acetic acid yield by iron removal.

Also Published As

Publication number Publication date
JP3244351B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US6143930A (en) Removal of permanganate reducing compounds and alkyl iodides from a carbonylation process stream
JP3244385B2 (en) Method for producing high-purity acetic acid
JP6506657B2 (en) Removal of permanganate reducible compounds from the stream of methanol carbonylation process
US6339171B1 (en) Removal or reduction of permanganate reducing compounds and alkyl iodides from a carbonylation process stream
JP3332594B2 (en) Acetic acid purification method
CA2556899C (en) Removal of permanganate reducing compounds from methanol carbonylation process stream
EP0687662B2 (en) Process for producing high purity acetic acid
EP2627624B1 (en) Process for recovering halogen promoters and removing permanganate reducing compounds
KR102113365B1 (en) Process for recovering permanganate reducing compounds from an acetic acid production process
JP3244350B2 (en) Method for producing high-purity acetic acid
WO2017057142A1 (en) Method and apparatus for producing acetic acid
JPH0820555A (en) Production of acetic acid and/or acetic anhydride
JPH07133249A (en) Production of high-purity acetic acid
JP3244351B2 (en) Method for producing high-purity acetic acid
JPH04308548A (en) Method of purifying carboxylic acid
JP2924563B2 (en) Purification method of ethyl acetate
US6494996B2 (en) Process for removing water from aqueous methanol
KR102591297B1 (en) Method for producing acetic acid
EP3401302B1 (en) Method for producing acetic acid
JPH0253081B2 (en)
JPS60226839A (en) Method for purifying acetaldehyde
JPS6158470B2 (en)
JPH06321846A (en) Method for recovering acetic acid from waste oil mixture
JPS6158468B2 (en)
JPS6158465B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term