JPS6158466B2 - - Google Patents

Info

Publication number
JPS6158466B2
JPS6158466B2 JP57152340A JP15234082A JPS6158466B2 JP S6158466 B2 JPS6158466 B2 JP S6158466B2 JP 57152340 A JP57152340 A JP 57152340A JP 15234082 A JP15234082 A JP 15234082A JP S6158466 B2 JPS6158466 B2 JP S6158466B2
Authority
JP
Japan
Prior art keywords
product
man
tower
column
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57152340A
Other languages
Japanese (ja)
Other versions
JPS5942354A (en
Inventor
Kyoshi Kawakami
Hiroyuki Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15234082A priority Critical patent/JPS5942354A/en
Publication of JPS5942354A publication Critical patent/JPS5942354A/en
Publication of JPS6158466B2 publication Critical patent/JPS6158466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はメタクリロニトリル(以下、MAN
と略称する)の製造法、さらに詳くはイソブチレ
ンあるいはターシヤリーブチルアルコール等のア
ンモキシデーシヨン反応によるMANの製造法に
関する。 MANはイソブチレン等とアンモニアおよび酸
素との気相接触反応、すなわちアンモキシデーシ
ヨン反応により生成する。この反応生成物は
MANを主体として、アセトニトリル、メタクロ
レイン、青酸、アクリロニトリル、イソブチロニ
トリル等を含有する。これら副生物のうち、メタ
クロレインと青酸は結合して不安定な高沸点縮合
物であるメタクロレインシアンヒドリン(沸点95
℃、13mmHg)となる。従つて、反応混合物を蒸
留によつて分離し製品MANを得ようとすると、
分離精製工程におおいてメタクロレインシアンヒ
ドリンを生成し、これが後段の蒸留に際し再びメ
タクロレインと青酸とに分解し留出液中に混入
し、MANの純度を低下せしめ、高純度の製品が
得られなかつた。 MANの精製は従来のアクリロニトリルのプロ
セスに準じ行なわれ、その1例は第11図に示す
ごとくである。吸収水に、吸収せしめたMANを
主成分とするアンモキシデーシヨン反応物は回収
塔1において溶媒水とともに抽出蒸留を行ない、
塔頂蒸気は凝縮器2で凝縮され、デカンター3で
分離された油層はMANのほか、メタクロレイ
ン、青酸、イソブチロニトリル等の不純物および
飽和溶解量の水分を含んだ液となる。この回収液
は脱青酸・水塔4の上部の脱青酸塔4aの中段に
フイードし、塔頂から青酸を主体とする低沸成分
を分離し、塔底抜出し液をデカンター5で水層と
有機層とを分離後、有機層を下部の脱水塔4bの
上段にフイードする。脱水塔4bの塔頂液は脱青
酸塔4aの塔底にリターンし、塔底液は抜出して
低沸分離塔6の中段にフイードする。低沸分離塔
6において塔頂から低沸物を除去し、塔底液を抜
出して、製品塔7にフイードし、微量の低沸物、
および高沸物をそれぞれ塔頂、塔底から除去し、
製品MANをライン8から取得する。 ところが、メタクロレインと青酸とは一部がメ
タクロレインシアンヒドリンとなり、脱青酸・水
塔4および低沸分離塔6において除去できず、塔
底液に混入して製品塔7に入る。このメタクロレ
インシアンヒドリンは製品塔7において再びメタ
クロレインと青酸に分解し製品MANに混入して
純度を低下せしめた。なお、アクリロニトリル製
造時に副生するアクロレインに比較し、メタクリ
ロニトリル製造時のメタクロレインが特に問題に
なる理由は、メタクロレインはアクロレインに比
べ、副生量が多大である上に、水和反応や重合反
応が起りにくいため、メタクロレインが消滅せず
プロセス内に高濃度のまま存在するためである。 この問題を解決するために、従来いくつかの提
案がなされている。 例えば、特公昭50−23017号公報には回収塔の
中段側流として青酸およびカルボニル化合物を除
去し、後段の蒸留プロセスにメタクロレインシア
ンヒドリンを持込ませない提案がある。しかし、
低沸点の青酸を回収塔サイドから全量抜出すプロ
セスで、製品品質を確保するためには、スチーム
消費量が大となり、径が大きな蒸留塔が必要とな
り設備費の負が増大する。さらに青酸を利用する
場合は不純物を分離するためストリツピングポツ
トの段数を増すか、スチーム消費量をさらに増大
する必要がある。 また、シアンヒドリンを安定化して分解による
アクロレイン類および青酸の製品中への混入を防
止するため、安定剤としてシユウ酸(特公昭39−
10112号)、スルフアミン酸または酸性硫安(特公
昭39−28316号)、スルホン酸または芳香族スルホ
ン酸を用いる提案がある。しかし、この方法はシ
アンヒドリン含量が少ない場合には有効である
が、含量が多い場合、特に連続蒸留を行なう場合
はシアンヒドリンが蓄積されて含量が多くなり、
製品純度を向上せしめる効果は低い。 特公昭43−18126号には、第1工程で薬品添加
し、シアンヒドリンを分解し、アクロレイン類お
よび青酸を蒸留分離し、第2工程で薬品を添加し
残存するシアンヒドリンを安定化しシアンヒドリ
ンを蒸留分離する提案もある。この方法は回分蒸
留においてシアンヒドリンが濃縮されない段階で
は有効であるが、連続蒸留を行なう場合や、回分
蒸留においてもシアンヒドリンが蓄積されてきた
場合には、公知の無機酸あるいは有機酸添加量を
増大する必要があり、これら酸の処理および装置
材質に問題を生じる。本発明者らの検討による
と、連続蒸留において効果を挙げるためにはシア
ンヒドリン濃度が上がらないように濃縮部を多量
に抜き出す必要があり、経済的な方法ではない。 以上述べたごとく、今までメタクロレインおよ
び青酸を含有した粗メタクリロニトリルから高純
度の製品メタクリロニトリルを取得する工業的に
完成された技術は見当らない。 この発明は上記事情に鑑みてなされたもので、
その目的はメタクロレイン、青酸の混入量が極め
て少く、高品質のMANの製造法を提案するにあ
る。その要旨は、MANを主成分とし、メタクロ
レイン、青酸を含有するアンモキシデーシヨン反
応物を水を溶媒として吸収・回収し、脱青酸塔、
脱水塔、低沸分離塔および製品塔において蒸留し
製品MANを取得するMANの製造法において、減
圧下の低沸分離塔塔底液を蒸気抜出しし製品塔に
フイードすることを特徴とするMANの製造法で
ある。 第2図はこの製造法を適用したプロセスを示す
もので、低沸分離塔6は塔底に混在するメタクロ
レインシアンヒドリンの分解を押えるために減圧
下で運転され、その塔底部液はライン9から蒸気
抜き出しして製品塔7にフイードされ、シアンヒ
ドリン等の高沸物が濃縮された塔底液はライン1
0から液状で抜出し回収塔1にリターンされる。
製品塔7にフイードされた粗MAN中イソブチロ
ニトリル等の高沸物が濃縮された塔底液はライン
11から液状で抜き出され、一部ブローダウンを
取りつつ回収塔1にリターンされる。又製品
MANはライン8より液抜きにより取得させる。 このプロセスは以上の構成であり、低沸分離塔
は減圧運転されシアンヒドリンの分解が押えら
れ、かつ塔底液を蒸気抜出しするので、シアンヒ
ドリン分解物および高沸物であるシアンヒドリン
の混入が極めて少ない蒸気を製品塔にフイードす
ることができる。従つて製品塔におけるメタクロ
レインシアンヒドリン濃度が低減し、その分解物
であるメタクロレインおよび青酸の製品MANへ
の混入量が低下しMAN純度が向上する。 実施例 1 MANを主成分とし、メタクロレイン、メタク
ロレインシアンヒドリン、アクリロニトリル及び
イソブチロニトリルを含有した脱青酸・水塔々底
液を270mmHgの圧力下、内径32φ、棚段70段を有
する低沸分離塔の45段に84g/Hrでフイードしメ
タクロレイン及びアクリロニトリル等の低沸物は
塔頂より6g/Hrで抜き出した塔底釜からは、64
g/Hrでガス相を突き出し、シアンヒドリン等の
高沸物を低減した粗MANを取得した。なおシア
ンヒドリン等の高沸物を含有した塔底釜の液相は
14g/Hrで抜き出し、高沸濃縮倍率(=フイード
量/塔底液抜き出し量)を6倍にて運転した。塔
底抜き出し液は回収塔フイード液へリサイクルし
た。 得られた粗MANは、次いで速やかに350mmHg
の圧力下、内径32φ、棚段55段を有する製品塔の
30段に64g/Hrでフイードし、イソブチロニトリ
ル等の高沸物を除去し、製品MANを50段より59
g/Hrで液抜き出しにより取得した。製品MAN
及び途中プロセス液中不純物濃度を表1に示し
た。
This invention is based on methacrylonitrile (hereinafter referred to as MAN
It relates to a method for producing MAN (abbreviated as ), and more specifically to a method for producing MAN by an ammoxidation reaction of isobutylene or tert-butyl alcohol. MAN is produced by a gas phase contact reaction between isobutylene, etc., ammonia and oxygen, that is, an ammoxidation reaction. This reaction product is
Mainly composed of MAN, it also contains acetonitrile, methacrolein, hydrocyanic acid, acrylonitrile, isobutyronitrile, etc. Among these by-products, methacrolein and hydrocyanic acid combine to form an unstable high-boiling condensate, methacrolein cyanhydrin (boiling point 95
℃, 13mmHg). Therefore, when attempting to separate the reaction mixture by distillation to obtain the product MAN,
During the separation and purification process, methacrolein cyanohydrin is generated, which decomposes into methacrolein and hydrocyanic acid again during the subsequent distillation and mixes into the distillate, reducing the purity of MAN and making it difficult to obtain a high-purity product. I couldn't help it. Purification of MAN is carried out according to the conventional process for acrylonitrile, an example of which is shown in FIG. The ammoxide reaction product mainly composed of MAN absorbed in the absorbed water is subjected to extractive distillation together with solvent water in the recovery column 1.
The top vapor is condensed in a condenser 2, and the oil layer separated in a decanter 3 becomes a liquid containing MAN, impurities such as methacrolein, hydrocyanic acid, isobutyronitrile, and a saturated dissolved amount of water. This recovered liquid is fed into the middle stage of the hydrocyanic acid removal tower 4a located at the upper part of the hydrocyanic acid removal tower 4, and low-boiling components mainly composed of hydrocyanic acid are separated from the top of the tower. After separation, the organic layer is fed to the upper stage of the lower dehydration tower 4b. The top liquid of the dehydration tower 4b is returned to the bottom of the prussic acid removal tower 4a, and the bottom liquid is extracted and fed to the middle stage of the low boiling point separation tower 6. In the low-boiling separation column 6, low-boiling substances are removed from the top of the column, and the bottom liquid is taken out and fed to the product column 7, where trace amounts of low-boiling substances,
and high-boiling substances are removed from the top and bottom of the tower, respectively,
Get product MAN from line 8. However, a portion of methacrolein and hydrocyanic acid becomes methacrolein cyanohydrin, which cannot be removed in the prussic acid removal/water column 4 and low boiling point separation column 6, and enters the product column 7 as a mixture in the bottom liquid. This methacrolein cyanohydrin was again decomposed into methacrolein and hydrocyanic acid in the product column 7 and mixed into the product MAN, reducing its purity. The reason why methacrolein is particularly problematic during the production of methacrylonitrile compared to acrolein, which is produced as a by-product during the production of acrylonitrile, is that methacrolein produces a large amount of by-product compared to acrolein, and is also susceptible to hydration reactions. This is because methacrolein does not disappear and remains at a high concentration in the process because the polymerization reaction is difficult to occur. Several proposals have been made to solve this problem. For example, Japanese Patent Publication No. 50-23017 proposes removing hydrocyanic acid and carbonyl compounds as a side stream in the middle stage of the recovery column to prevent methacrolein cyanohydrin from being carried into the subsequent distillation process. but,
In the process of extracting the entire amount of low-boiling hydrocyanic acid from the recovery column side, in order to ensure product quality, a large amount of steam is consumed and a large-diameter distillation column is required, increasing equipment costs. Furthermore, when hydrocyanic acid is used, it is necessary to increase the number of stripping pots or to further increase the amount of steam consumed in order to separate impurities. In addition, in order to stabilize cyanohydrin and prevent acrolein and hydrocyanic acid from being mixed into the product due to decomposition, oxalic acid (Special Publication
10112), sulfamic acid or acidic ammonium sulfate (Japanese Patent Publication No. 39-28316), sulfonic acid or aromatic sulfonic acid. However, this method is effective when the cyanohydrin content is low, but when the content is high, especially when continuous distillation is carried out, cyanohydrin accumulates and the content increases.
The effect of improving product purity is low. Japanese Patent Publication No. 43-18126 describes that in the first step, chemicals are added to decompose cyanohydrin, and acrolein and hydrocyanic acid are separated by distillation, and in the second step, chemicals are added to stabilize the remaining cyanohydrin, and cyanohydrin is separated by distillation. I have some suggestions. This method is effective when cyanohydrin is not concentrated during batch distillation, but when performing continuous distillation or when cyanohydrin has accumulated even during batch distillation, it is necessary to increase the amount of known inorganic or organic acids added. This poses problems in the treatment of these acids and the materials used in the equipment. According to studies conducted by the present inventors, in order to obtain an effect in continuous distillation, it is necessary to extract a large amount of the condensing part so as to prevent the concentration of cyanohydrin from increasing, which is not an economical method. As stated above, until now there has been no industrially completed technology for obtaining a highly purified product methacrylonitrile from crude methacrylonitrile containing methacrolein and hydrocyanic acid. This invention was made in view of the above circumstances,
The purpose is to propose a method for producing high-quality MAN with extremely low amounts of methacrolein and hydrocyanic acid. The gist of the project is to absorb and recover an ammoxidation reaction product containing MAN as a main component, methacrolein, and hydrocyanic acid using water as a solvent;
In the MAN production method in which product MAN is obtained by distillation in a dehydration tower, low-boiling separation tower, and product tower, the MAN is characterized in that the bottom liquid of the low-boiling separation tower under reduced pressure is extracted as vapor and fed to the product tower. It is a manufacturing method. Figure 2 shows a process to which this production method is applied. The low boiling point separation column 6 is operated under reduced pressure to suppress the decomposition of methacrolein cyanohydrin mixed at the bottom of the column, and the bottom liquid is passed through the line. Steam is extracted from 9 and fed to product column 7, and the bottom liquid in which high-boiling substances such as cyanohydrin are concentrated is sent to line 1.
It is extracted in liquid form from 0 and returned to the recovery tower 1.
The bottom liquid in which high-boiling substances such as isobutyronitrile in the crude MAN fed to the product column 7 are concentrated is extracted in liquid form from the line 11 and returned to the recovery column 1 while being partially blown down. . Also product
MAN is obtained by draining liquid from line 8. This process has the above-mentioned structure. The low-boiling separation column is operated under reduced pressure to suppress the decomposition of cyanohydrin, and the bottom liquid is extracted as vapor, so that the vapor contains very little cyanohydrin decomposition products and cyanohydrin, which is a high-boiling substance. The product can be fed into the tower. Therefore, the concentration of methacrolein cyanohydrin in the product tower is reduced, and the amount of methacrolein and hydrocyanic acid, which are decomposition products thereof, mixed into the product MAN is reduced, and the purity of MAN is improved. Example 1 A hydrocyanic acid/water column bottoms containing MAN as a main component and containing methacrolein, methacrolein cyanohydrin, acrylonitrile and isobutyronitrile was heated under a pressure of 270 mmHg in a low-pressure tank with an inner diameter of 32φ and 70 trays. The 45 stages of the boiling separation column were fed at a rate of 84 g/Hr, and low-boiling substances such as methacrolein and acrylonitrile were extracted from the top of the column at a rate of 6 g/Hr.
By extruding the gas phase at a rate of g/Hr, crude MAN with reduced high-boiling substances such as cyanohydrin was obtained. The liquid phase of the bottom pot containing high boiling substances such as cyanohydrin is
The system was operated at a high boiling concentration ratio (=feed amount/bottom liquid extraction amount) of 6 times. The liquid taken out from the bottom of the column was recycled to the recovery column feed liquid. The resulting crude MAN is then immediately adjusted to 350 mmHg
of a product column with an inner diameter of 32φ and 55 trays under the pressure of
Feed at 64g/Hr to the 30th stage, remove high boiling substances such as isobutyronitrile, and reduce the product MAN from the 50th stage to 59
Obtained by liquid withdrawal at g/hr. ProductMAN
Table 1 shows the impurity concentrations in the process liquid.

【表】 実施例 2 実施例1と同一のフイード液及び装置を用い低
沸分離塔の高沸物濃縮倍率を3倍にて運転した。
すなわち、低沸分離塔へのフイード量は84g/Hr
低沸分離塔の塔底ガス相を50g/Hr、液相を28
g/Hrで抜き出した。得られた塔底ガス相は、次
いで製品塔へ50g/Hrでフイードし、サイド液抜
き出しにより46g/Hrで製品MBNを取得した。表
2に製品MAN及び途中プロセス液中不純物濃度
を示した。
[Table] Example 2 Using the same feed liquid and equipment as in Example 1, the low boiling point separation column was operated at a high boiling point concentration ratio of 3 times.
In other words, the feed amount to the low-boiling separation column is 84g/Hr.
The bottom gas phase of the low-boiling separation column is 50g/Hr, and the liquid phase is 28g/Hr.
It was extracted at g/hr. The obtained column bottom gas phase was then fed to the product column at a rate of 50 g/Hr, and product MBN was obtained at a rate of 46 g/Hr by side liquid withdrawal. Table 2 shows the product MAN and the impurity concentration in the intermediate process liquid.

【表】 比較例 実施例−1と同一のフイード液を用い、低沸分
離塔の塔底抜き出しを全量液相を抜いた運転を行
なつたすなわち、低沸分離塔へのフイード量は84
g/Hr、塔底より78g/Hrで液相を抜き出し、低
沸物を低減した粗MANを取得した。次いで、こ
の粗MANを78g/Hrで製品塔へフイードし、サ
イド液抜き出しにより、71g/Hrで製品MANを
取得した。表3に製品MAN及び途中プロセス液
中不純物濃度を示した。
[Table] Comparative Example The same feed liquid as in Example 1 was used, and the bottom of the low-boiling separation column was operated by removing the entire liquid phase. In other words, the amount of feed to the low-boiling separation column was 84.
The liquid phase was extracted from the bottom of the column at a rate of 78 g/Hr to obtain crude MAN with reduced low-boiling substances. Next, this crude MAN was fed to the product column at 78 g/Hr, and the product MAN was obtained at 71 g/Hr by drawing out the side liquid. Table 3 shows the product MAN and the impurity concentration in the intermediate process liquid.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMAN製造プロセスのフローシ
ート、第2図はこの発明の製造方法に係わる
MAN製造プロセスのフローシートである。 1……回収塔、2……凝縮器、3……デカンタ
ー、4……脱青酸・水塔、4a……脱青酸塔、4
b……脱水塔、5……デカンター、6……低沸分
離塔、7……製品塔、8……液ライン、9……ガ
スライン、10……液ライン、11……液ライ
ン。
Figure 1 is a flow sheet of the conventional MAN manufacturing process, and Figure 2 is related to the manufacturing method of this invention.
This is a flow sheet of the MAN manufacturing process. 1... Recovery tower, 2... Condenser, 3... Decanter, 4... Hydrocyanic acid removal/water tower, 4a... Hydrocyanic acid removal tower, 4
b... Dehydration tower, 5... Decanter, 6... Low boiling point separation column, 7... Product column, 8... Liquid line, 9... Gas line, 10... Liquid line, 11... Liquid line.

Claims (1)

【特許請求の範囲】[Claims] 1 メタクリロニトリルを主成分とし、メタクロ
レイン、青酸を含有するアンモキシデーシヨン反
応物を水を溶媒として吸収、回収し、脱青酸塔、
脱水塔、低沸分離塔および製品塔において蒸留し
製品メタクリロニトリルを取得するプロセスにお
いて、減圧下の低沸分離塔塔底部液を蒸気抜出し
し製品塔にフイードすることを特徴とするメタク
リロニトリルの製造法。
1. An ammoxide reaction product containing methacrylonitrile as a main component, methacrolein, and hydrocyanic acid is absorbed and recovered using water as a solvent,
Methacrylonitrile characterized in that in the process of distilling in a dehydration tower, a low boiling point separation tower and a product tower to obtain the product methacrylonitrile, the bottom liquid of the low boiling point separation tower under reduced pressure is extracted as vapor and fed to the product tower. manufacturing method.
JP15234082A 1982-09-01 1982-09-01 Preparation of methacrylonitrile Granted JPS5942354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15234082A JPS5942354A (en) 1982-09-01 1982-09-01 Preparation of methacrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15234082A JPS5942354A (en) 1982-09-01 1982-09-01 Preparation of methacrylonitrile

Publications (2)

Publication Number Publication Date
JPS5942354A JPS5942354A (en) 1984-03-08
JPS6158466B2 true JPS6158466B2 (en) 1986-12-11

Family

ID=15538393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15234082A Granted JPS5942354A (en) 1982-09-01 1982-09-01 Preparation of methacrylonitrile

Country Status (1)

Country Link
JP (1) JPS5942354A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085041B2 (en) * 1993-08-25 2000-09-04 三菱電機株式会社 Tape loading device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862890A (en) * 1971-09-03 1975-01-28 Robert D Presson Fractional distillation using a vapor side stream to control hcn concentration in purificatin of crude nitriles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862890A (en) * 1971-09-03 1975-01-28 Robert D Presson Fractional distillation using a vapor side stream to control hcn concentration in purificatin of crude nitriles

Also Published As

Publication number Publication date
JPS5942354A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
US2971010A (en) Production of dicarboxylic acid anhydrides
JP5476774B2 (en) Method for recovering (meth) acrylonitrile
US4554054A (en) Methacrylic acid separation
KR20180059264A (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
EP0031097B1 (en) Method for distilling ethyl alcohol
US3210399A (en) Method of preparing acrylonitrile free from acetonitrile
US6605192B1 (en) Method for producing highly pure monoethylene glycol
EP0957084B1 (en) Process for the purification of aqueous acrylonitrile process streams
JPS6133809B2 (en)
KR100468483B1 (en) A process for the preparation of ethylamines
JPS6158466B2 (en)
US3442771A (en) Extractive distillation process for separating nitrites,peroxides and precursors thereof from crude unsaturated nitriles saturated with water by alkaline addition
JP2924563B2 (en) Purification method of ethyl acetate
JPH034057B2 (en)
JPS6158470B2 (en)
JPH033655B2 (en)
US20230192600A1 (en) Acetonitrile separation process
JPS6158464B2 (en)
JPS6158465B2 (en)
JPS5953450A (en) Preparation of methacrylonitrile
CN1151123C (en) Acetonitrile refining and recovering process
JPS63227538A (en) Recovery of cyclohexanone from thermal decomposition reaction mixture solution of 1,1'-peroxydicyclohexylamine
US20220251030A1 (en) Acetonitrile separation process
JP2690366B2 (en) Separation method of cyclohexanol
EP0098710B1 (en) Process for producing methacrylonitrile