JPS6133769A - Penetration welding method - Google Patents

Penetration welding method

Info

Publication number
JPS6133769A
JPS6133769A JP15386784A JP15386784A JPS6133769A JP S6133769 A JPS6133769 A JP S6133769A JP 15386784 A JP15386784 A JP 15386784A JP 15386784 A JP15386784 A JP 15386784A JP S6133769 A JPS6133769 A JP S6133769A
Authority
JP
Japan
Prior art keywords
welding
value
current
welding speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15386784A
Other languages
Japanese (ja)
Inventor
Hidehiko Ono
英彦 小野
Tetsuro Morita
哲朗 森田
Takashi Amano
隆 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP15386784A priority Critical patent/JPS6133769A/en
Publication of JPS6133769A publication Critical patent/JPS6133769A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0732Stabilising of the arc current

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To form automatically and stably satisfactory penetration beads with high efficiency by converting the fluctuation of welding current to a digital signal, measuring the fluctuation, comparing the value with the preset limit value and controlling welding speed. CONSTITUTION:The instantaneous value WI of the current under welding is read in WIread. The value WI is compared with the preset lower limit value WIth of the current amplitude and the number of times when the value WI is smaller than the value WIth within a specified period is counted (Count up N). The count value N and the preset occurrence frequency limit value NL are counted upon lapse of the specified time (time out). The welding speed is decreased when the value N is larger and the welding speed is increased conversely when the value is smaller.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼板の板継ぎ溶接で開先部裏面に不導体の裏当
材を使用して、片面溶接1ノ良好な裏波ビードを安定し
て高能率に形成する溶接方法k[?するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses a non-conducting backing material on the back side of the groove in plate joint welding of steel plates to stabilize a good uranami bead in single-sided welding. Welding method k [? It is something to do.

〔従来の技術〕[Conventional technology]

橋梁イの他にお【′Jる鋼Iの板継は、−・般に【」。 In addition to bridges A, plate joints for steel I are commonly used.

v、X等の開先を施工し両側から溶接しているため、調
料の半転や開先加J等溶接二[数が多大どなっている。
Because grooves such as V and

出願人は、この点に関し研究を進め安価な裏当材で■形
ハ面挾間先溶接により良好な裏波ビードを安定して高能
率に形成する方法につい開発し、特願昭58−1197
75号として出願した。
The applicant has conducted research on this point and has developed a method for stably and efficiently forming a good uranami bead by welding the tip of the ■-shaped C face with an inexpensive backing material.
The application was filed as No. 75.

この方法は溶接電源の数構を溶接トーチに、陽極を被溶
接物に接続し、溶接1〜−ヂを外嵌づるシールドガスノ
ズルからシールドガスを噴出さゼるとともに、溶接トー
チの後方に設けた制御ガスノズルから溶融油接延部に向
【Jて制御ガスを噴出させ、溶融池を前方へ押出し凹面
状に形成させるようにしたものである。
In this method, several welding power sources are connected to the welding torch, the anode is connected to the workpiece, and shielding gas is ejected from the shielding gas nozzle that fits the welding parts 1 to 2 externally, and is installed behind the welding torch. Control gas is ejected from a control gas nozzle toward the molten oil wetting area to push the molten pool forward and form it in a concave shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記開発した方法においては、溶接線全長が短い略20
0s以下の場合には広い溶接条件範囲で極めて良好な形
状の裏波ビードが得られるが、溶接長が長くなると開先
形状の精度とも関係して良好な形状の裏波ビードを得る
ことはむずかしいことがわかった。
In the method developed above, the total length of the weld line is approximately 20 mm.
When the welding time is 0 s or less, an extremely well-shaped uranami bead can be obtained over a wide range of welding conditions, but as the welding length becomes longer, it is difficult to obtain a uranami bead with a good shape due to the accuracy of the groove shape. I understand.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するためになされたもので
、その特徴は溶接中の溶接電流の変動をデジタル信号化
して計測し、これを予め設定した閾値(スレッシュオー
ルド・バリューThresholdValue)と比較
して溶接電流が適正になるように溶接速度を制御するよ
うにIノだものである。
The present invention was made to solve the above-mentioned problems, and its feature is to convert the fluctuation of welding current during welding into a digital signal, measure it, and compare it with a preset threshold value (ThresholdValue). It is necessary to control the welding speed so that the welding current is appropriate.

〔実施例〕〔Example〕

以下本発明を第1図乃至第8図に基づいて説明する。第
1図および第2図は本発明方法を説明するだめの図で第
1図は溶接方向前方より見た正面断面図、第2図は第1
図の側面図である。
The present invention will be explained below based on FIGS. 1 to 8. 1 and 2 are diagrams for explaining the method of the present invention. FIG. 1 is a front sectional view seen from the front in the welding direction, and FIG.
FIG.

溶接トーチ40にはワイヤ26がワイヤリールからワイ
ヤオシシー1〜装置27を介して供給ローラ28により
曲がりぐせの付与された状態で供給される。
A wire 26 is supplied from a wire reel to the welding torch 40 via the wire oscillator 1 to the device 27 in a bent state by a supply roller 28 .

そして溶接時アーク30を周囲の空気から遮断するため
溶接1・−チ40を外嵌する第1ノズル3とさらにこの
第1ノズル3を外嵌する第2ノズル4が設Gノられ、第
2ノズル1の下端には被溶接物25に接触するように石
綿などのシールド材18が設けられている。
In order to isolate the arc 30 from the surrounding air during welding, a first nozzle 3 into which the welding 1-ch 40 is fitted, and a second nozzle 4 into which the first nozzle 3 is fitted are provided. A shielding material 18 such as asbestos is provided at the lower end of the nozzle 1 so as to come into contact with the workpiece 25 to be welded.

また第1ノズル3と第2ノズル4の遊隙には溶接トーチ
40の進行方向後部に位置するように制御ノズル5が設
けられている。
Further, a control nozzle 5 is provided in the gap between the first nozzle 3 and the second nozzle 4 so as to be located at the rear in the direction in which the welding torch 40 moves.

溶接に当っては被溶接物25を適当なルート間隔(10
IIIl+!程度)を設けて拘束治具で拘束し、開先裏
面直下には、ガラス等の裏当材32が銅製の当金33で
挿着される。そして溶接トーチ40は溶接電源のマイナ
ス側に、被溶接物25はプラス側にいわゆる棒マイブス
にして結線されている。
During welding, the workpiece 25 is spaced at an appropriate root interval (10
IIIl+! A backing material 32 made of glass or the like is inserted directly under the back surface of the groove with a stopper 33 made of copper. The welding torch 40 is connected to the negative side of the welding power source, and the object to be welded 25 is connected to the positive side of the welding power source in a so-called rod-shaped configuration.

溶接中は第1ノズル3からシールドガス(30%^r+
70%C02稈痘)を噴射するとともに第2ノズル4か
らは安価なシールドガス(100%C02)が噴射され
、アーク30を周囲の空気から遮断する。
During welding, shielding gas (30%^r+
At the same time, an inexpensive shielding gas (100% C02) is injected from the second nozzle 4 to isolate the arc 30 from the surrounding air.

ワイヤ26はオシレート装置27によりねじり回転面げ
が与えられているので、ワイヤ先端は回転運動しながら
供給され、アーク30は溶融池31の表面を回転運動す
る。そ1ノてこの溶融池31の後延部に向けて溶接トー
チ40後方に設けた制御ノズル5から制御ガス(70%
^r+3Q%Co2)を噴出する。
Since the wire 26 is given a torsional rotation surface by the oscillation device 27, the tip of the wire is supplied while rotating, and the arc 30 rotates on the surface of the molten pool 31. A control gas (70%
^r+3Q%Co2) is ejected.

これにより溶融池31を前方へ押出Jとともにこのガス
の動圧により溶融池31を凹面状に形成する。
As a result, the molten pool 31 is pushed forward J and the molten pool 31 is formed into a concave shape by the dynamic pressure of this gas.

また、この制御ガスはAr組成が多いのでアーク30の
状態を良好にする役割もある。
Furthermore, since this control gas has a high Ar composition, it also plays a role in improving the condition of the arc 30.

このようにして溶接を行うと、挾間先内で点弧している
アーク30は開先底部のみならず側壁へも分散して発生
し、さらに溶融池31表面をワイヤ26が回転運動4る
ことによりアーク熱が分散され、アーク熱が開先直下に
集中す、ることがないので裏当材32を溶抜くこともな
く、良好な裏波ビードが形成される。
When welding is performed in this manner, the arc 30 ignited within the welding tip is generated not only at the bottom of the groove but also distributed to the side walls, and furthermore, the wire 26 rotates on the surface of the molten pool 31. As a result, arc heat is dispersed, and since the arc heat does not concentrate directly under the groove, the backing material 32 is not melted out, and a good Uranami bead is formed.

さてこの溶接においては、溶接電流、溶接電圧。Now, in this welding, welding current and welding voltage.

溶接速度が一定で且つ、開先幅の寸法精面が良い場合に
は、極めて良好に裏波ビードが形成されるが、溶接中の
電流、電圧の動特性や開先幅の変動により実際にはこれ
を満足させることは困ガであり、どくに溶接長が艮い場
合(200調以上)には裏波ビードが適正に形成され難
い。
If the welding speed is constant and the groove width has good dimensional precision, an uranami bead can be formed very well, but due to the dynamic characteristics of the current and voltage during welding and fluctuations in the groove width, It is difficult to satisfy this requirement, and if the weld length is extremely long (more than 200 degrees), it is difficult to properly form the uranami bead.

第3図は溶接電流450A、電圧35v、ワイヤ径1.
6#で開先幅を10INRとし、溶接速度を2 F3c
m/min 、 32cm/min 、 20Ci/1
nとして溶接した場合の溶接電流波形を示すものである
Figure 3 shows a welding current of 450A, a voltage of 35V, and a wire diameter of 1.
6#, groove width 10INR, welding speed 2F3c
m/min, 32cm/min, 20Ci/1
This shows a welding current waveform when welding is performed with n.

これから解るように溶接中には溶接電流は常に変動して
おり、その振幅は溶接速度が速いほど大きくなっている
。そしてその場合の溶接結果は、溶接速度が適正な26
cm/1ain  (第3図(a)の場合)では第4図
(alのような適正な裏波ビートubが形成されるが、
溶接速度の速い32cIR/min  (第3同市)〉
では溶着量が不足して第4同市〉に示すような溶は抜は
状態が発生しやすいし、逆に理い20cm/Bin  
(第3図(C))では、溶Gノ込み不良が生じやすく第
4図(C)のような状態になり易いことが解つ lこ 
As can be seen, the welding current constantly fluctuates during welding, and its amplitude increases as the welding speed increases. In that case, the welding result is 26mm when the welding speed is appropriate.
cm/1ain (in the case of Fig. 3(a)), a proper Uranami beat ub as shown in Fig. 4 (al) is formed, but
Fast welding speed of 32cIR/min (3rd city)>
In this case, the amount of welding is insufficient and the welding condition as shown in No. 4 Doichi is likely to occur.
(Fig. 3 (C)) shows that failure of molten G injection is likely to occur and the situation as shown in Fig. 4 (C) is likely to occur.
.

そこで適正な裏波ビードを常に形成させるlこめには溶
接中の溶接電流の変動を測定し、溶接電流が適正になる
ように適時溶接速度を増減させる必要がある。
Therefore, in order to always form a proper Uranami bead, it is necessary to measure the fluctuations in the welding current during welding and increase or decrease the welding speed as appropriate so that the welding current becomes appropriate.

次にこの溶接電流のコントロールについて第5図及び第
6図で説明する。
Next, control of this welding current will be explained with reference to FIGS. 5 and 6.

まずWIreadで溶接中の電流の瞬時値Wlを読取る
。これは第6図に示すようにアンプA−pを介してAI
Dコンバータでデジタル化してコンピュータCPUに入
力される。この読込みは25〜100マイクロ秒毎に行
われるが、溶接電流波形の1振幅は3ミリ秒程度である
ので1振幅の間に30〜120回稈麻計測される。
First, the instantaneous value Wl of the current during welding is read using WIread. This is done through the amplifier A-p as shown in Figure 6.
The data is digitized by a D converter and input to the computer CPU. This reading is performed every 25 to 100 microseconds, but since one amplitude of the welding current waveform is about 3 milliseconds, the culm is measured 30 to 120 times during one amplitude.

そ1ノてこの瞬時1ifiWIが予め設定した電流振幅
の下限IWIth(閾1ii T hreshold 
 V alue)と比較し、一定の時間内(0,5〜1
.5秒に設定)に瞬時値Wlが下限値W I thより
小さい場合が何回あるか計数する( Count up
 N )。
The instant 1ifiWI of the first lever is the lower limit IWIth of the current amplitude (threshold 1ii T threshold
Value) within a certain time (0,5 to 1
.. 5 seconds), count how many times the instantaneous value Wl is smaller than the lower limit value W I th (Count up
N).

一定時間経過(time 01lt)すると、上記七1
数鎮−〇  − Nと予め設定した出限頻度限界値N1とを比較して、計
数値Nが大きい場合には溶接速度を減少させ、逆に11
数値Nが小さい場合には溶接速度を上げる。
After a certain period of time (time 01lt), the above 71
Compare the count value N with the preset frequency limit value N1, and if the count value N is large, reduce the welding speed, and conversely reduce the welding speed to 11.
If the numerical value N is small, increase the welding speed.

出限頻度限界値N[は下限値W I thとの関係で定
められるもので実験で適数値が選定される。また溶接速
度の増減は一定時間time o吋と関係させて適宜に
選定できるが一回の指令で1cIR/sin程廓が良い
The output frequency limit value N[ is determined in relation to the lower limit value W I th, and an appropriate value is selected through experiments. Further, the increase or decrease in the welding speed can be appropriately selected in relation to a certain time period, but it is preferable to increase or decrease the welding speed by one command at about 1 cIR/sin.

なお闇値は上記の例では電流振幅の下限値で行ったが電
流振幅の上限値としてもよく、また上限と下限に設けて
いわゆるゾーンコント【コール方式%式% 第7図は■開先10a*で溶接電流360A〜380A
、電圧33V〜34Vで溶接電流の下限値WItl+を
260Δどして溶接速度を制御した場合を示し、第8図
は第7図と同じ条件で溶接速度を20ca+/m1n一
定で溶接した場合を示す−bのである。
In the above example, the darkness value was set as the lower limit of the current amplitude, but it may also be set as the upper limit of the current amplitude, or it may be set at the upper and lower limits as a so-called zone control [Cole method % formula % Figure 7 shows ■ Groove 10a * Welding current 360A to 380A
, shows the case where the welding speed is controlled by setting the lower limit value WItl+ of the welding current to 260Δ at a voltage of 33V to 34V, and Fig. 8 shows the case where welding is carried out under the same conditions as Fig. 7 at a constant welding speed of 20ca+/m1n. -b's.

溶接速度を制御した場合第7図に示ず如く溶接電流はほ
ぼ一定の波形となり、裏波ビードも良好であったが、溶
接速度を一定にした場合は第8図に示す如く溶接電流の
変動により溶は抜けが生じた。
When the welding speed was controlled, the welding current had a nearly constant waveform as shown in Figure 7, and the Uranami bead was also good, but when the welding speed was kept constant, the welding current fluctuated as shown in Figure 8. As a result, melting occurred.

第9図は第7図と同じ条件で開先幅を9Mから12#ま
で暫時増加させて溶接速度を制御しながら溶接した場合
を示し、第10図は逆に開先幅を12#Iから9Jll
まで減少させて溶接した場合を示すものである。
Figure 9 shows the case where the groove width was temporarily increased from 9M to 12# under the same conditions as Figure 7, and welding was carried out while controlling the welding speed. 9Jll
This figure shows the case where welding is performed with the amount reduced to .

これから解るように開先幅の変化により、溶接電流の波
形が乱れ易くZ値を切る頻度が多くなり溶接速度が急激
に変動している。
As can be seen from this, due to changes in the groove width, the waveform of the welding current is likely to be disturbed, the Z value is more frequently cut off, and the welding speed fluctuates rapidly.

尚、1配実施例では1形狭開先のガスシールドメタルア
〜り溶接で制御ガスを利用して溶融池を前方に押出すよ
うにしたもので説明したが、本発明はこれに限定される
ものではなくV形、1ノ形等の開先にも適用でき、どく
に制御ガスを使用しなくてもよい。また、サブマージア
ーク溶接にも勿論利用できる。
In addition, in the first embodiment, the molten pool is pushed forward using a control gas in type 1 narrow gap gas shield metal welding, but the present invention is not limited to this. It can also be applied to V-shaped, single-shaped grooves, etc., and there is no need to use a control gas at the groove. Of course, it can also be used for submerged arc welding.

〔発明の効果〕〔Effect of the invention〕

以上説明したにうに本発明は溶接中の溶接電流の変動を
デジタル信号化して41測し、これを予め設定した閾値
と比較して溶接電流が適正になるように溶接速度を制御
するようにしたので開先の制度が悪くても、自動的に良
好な裏波ビードを安定して高能率に形成でき完全な自動
化が可能となる効果がある。
As explained above, according to the present invention, fluctuations in welding current during welding are converted into digital signals, measured, and compared with a preset threshold value to control the welding speed so that the welding current is appropriate. Therefore, even if the groove precision is poor, a good Uranami bead can be automatically and stably formed with high efficiency, making complete automation possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法を説明するための図で
、第1図は溶接方向前方より見た正面断面図、第2図は
第1図の側面図、第3図は溶接電流450A、電圧35
■、ワイヤ径1.6mで開先幅を10s+mとし、溶接
速度を26 car/ 1llin 、 32cm/l
1in 、 20cm/1ainとして溶接した場合の
溶接電、流波形を示すグラフ図、第4図は裏板ビードの
状態を示す説明図、第5図は本発明方法に係る一実施例
を示すフローチャート、第6図はデータ入力部の説明図
、第7図は溶接速度を制御した場合の、溶接状態を示す
説明4図、第8図は溶接速度を一定にした・、郷合の説
明図、第9図は開発幅を暫−12一 時増加させて溶接速度を制御しながら溶接した場合を示
す説明図、第10図は開先幅を減少させて溶接した場合
を示す説明図である。 3・・・第1ノズル  4・・・第2ノズル  5・・
・制御ノズル  18・・・シールド材  25・・・
被溶接物  26・・・ワイヤ  27・・・ワイA7
オシレート装置  28・・・供給ローラ  30・・
・アーク31・・・溶融池  32・・・裏当材33・
・・当金40・・・溶接トーチ  ub・・・裏波ビー
ドA11)・・・アンプ  A/D・・・コンバータC
PU・・・コンピュータ
Figures 1 and 2 are diagrams for explaining the method of the present invention. Figure 1 is a front sectional view seen from the front in the welding direction, Figure 2 is a side view of Figure 1, and Figure 3 is a welding current. 450A, voltage 35
■, wire diameter 1.6m, groove width 10s+m, welding speed 26 car/1llin, 32cm/l
A graph showing the welding current and current waveform when welding at 1 inch and 20 cm/1 ain, Fig. 4 is an explanatory diagram showing the state of the back plate bead, Fig. 5 is a flow chart showing an embodiment of the method of the present invention, Fig. 6 is an explanatory diagram of the data input section, Fig. 7 is an explanatory diagram showing the welding state when the welding speed is controlled, Fig. 8 is an explanatory diagram of the welding state when the welding speed is kept constant, FIG. 9 is an explanatory diagram showing a case in which welding is performed while controlling the welding speed by increasing the development width by 1-12 times, and FIG. 10 is an explanatory diagram showing a case in which welding is performed by decreasing the groove width. 3...First nozzle 4...Second nozzle 5...
・Control nozzle 18... Shield material 25...
Object to be welded 26... Wire 27... Wire A7
Oscillating device 28... Supply roller 30...
・Arc 31... Molten pool 32... Backing material 33.
...Welding torch ub...Uranami bead A11)...Amplifier A/D...Converter C
PU...computer

Claims (1)

【特許請求の範囲】[Claims] 1、開先部裏面に電気不導体の裏当材を設けて片面溶接
し裏波を形成させる板継溶接において、溶接中の溶接電
流の変動をデジタル信号化して計測し、これを予め設定
した閾値と比較して溶接電流が適正になるように溶接速
度を制御するようにしたことを特徴とする裏波溶接法。
1. In plate joint welding in which an electrically nonconducting backing material is provided on the back side of the groove and one side is welded to form a back wave, the fluctuations in the welding current during welding are converted into digital signals and measured, and this is set in advance. The Uranami welding method is characterized in that the welding speed is controlled so that the welding current is appropriate in comparison with a threshold value.
JP15386784A 1984-07-24 1984-07-24 Penetration welding method Pending JPS6133769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15386784A JPS6133769A (en) 1984-07-24 1984-07-24 Penetration welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15386784A JPS6133769A (en) 1984-07-24 1984-07-24 Penetration welding method

Publications (1)

Publication Number Publication Date
JPS6133769A true JPS6133769A (en) 1986-02-17

Family

ID=15571836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15386784A Pending JPS6133769A (en) 1984-07-24 1984-07-24 Penetration welding method

Country Status (1)

Country Link
JP (1) JPS6133769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135793A (en) * 2010-12-27 2012-07-19 Ihi Corp Butt welding method, and butt welding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210649A (en) * 1975-07-16 1977-01-27 Toshiba Corp Currency transactions system
JPS5686681A (en) * 1979-12-17 1981-07-14 Kobe Steel Ltd Method of detecting burn through of molten metal in welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210649A (en) * 1975-07-16 1977-01-27 Toshiba Corp Currency transactions system
JPS5686681A (en) * 1979-12-17 1981-07-14 Kobe Steel Ltd Method of detecting burn through of molten metal in welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135793A (en) * 2010-12-27 2012-07-19 Ihi Corp Butt welding method, and butt welding device

Similar Documents

Publication Publication Date Title
US4441006A (en) Process of joining a contact
GB1448188A (en) Method and apparatus for short-circuit arc welding
US5618451A (en) High current plasma arc welding electrode and method of making the same
JP2007030018A (en) Arc start control method for robot welding
JP4420863B2 (en) Control method of laser arc composite welding
US4816639A (en) Automatic arc-welding method
ES481106A1 (en) Method of welding metal parts.
US4816641A (en) Automatic arc-welding method
Cheepu et al. Penetration estimation of GTAW with C-type filler by net heat input ratio
KR910003525B1 (en) Bevel profiling control method for arc welding
JPS6133769A (en) Penetration welding method
US3390250A (en) Application of a pulsating current to tube-to-tube sheet welding
JP3867164B2 (en) Welding method
JPS57175079A (en) Arc starting method using consumable electrode
SU725834A1 (en) Method of electric arc welding
KR102597063B1 (en) Clad pipe producting method using pulse wavedorm overlay welding
JPS6019815Y2 (en) TIG arc spot welding equipment
JPS6119342B2 (en)
EP4070902A1 (en) Improved method and arrangement for a martensite-free brazing process
JPS5762865A (en) Pulse arc welding machine
JPS55109576A (en) Automatic narrow gap welding method
JPS57171585A (en) Automatic copying method of welding line
JPH10291075A (en) Arc sensor copying control method
JPH0260435B2 (en)
RU1830320C (en) Method of control of arc welding process