JPS6133462B2 - - Google Patents

Info

Publication number
JPS6133462B2
JPS6133462B2 JP55064493A JP6449380A JPS6133462B2 JP S6133462 B2 JPS6133462 B2 JP S6133462B2 JP 55064493 A JP55064493 A JP 55064493A JP 6449380 A JP6449380 A JP 6449380A JP S6133462 B2 JPS6133462 B2 JP S6133462B2
Authority
JP
Japan
Prior art keywords
humidity
sensitive resistor
resistor
ceramic
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55064493A
Other languages
Japanese (ja)
Other versions
JPS56160649A (en
Inventor
Keiji Juki
Toyoaki Ueki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP6449380A priority Critical patent/JPS56160649A/en
Publication of JPS56160649A publication Critical patent/JPS56160649A/en
Publication of JPS6133462B2 publication Critical patent/JPS6133462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 本発明は経時変化により劣化したセラミツク感
湿抵抗体の再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a ceramic moisture-sensitive resistor that has deteriorated over time.

従来、ZnOやMgO―Cr2O3などを主成分とする
セラミツク感湿抵抗体は、高信頼性,長寿命の抵
抗体を得るべく開発が続けられているがまだ十分
に満足すべきものが得られていない。このため最
近たとえば特開昭53―78877号公報や特開昭54―
83499号公報で提案されているように、感湿抵抗
体の周囲に発熱体を配設しこれを用いて前記感湿
抵抗体を加熱再生させる方法が採用されている
が、この方法では外部加熱のため加熱温度が400
〜600℃に達する。
Conventionally, ceramic moisture-sensitive resistors mainly composed of ZnO, MgO-Cr 2 O 3 , etc. have been developed in an effort to obtain highly reliable and long-life resistors. It hasn't been done yet. For this reason, recently, for example, Japanese Patent Application Laid-open No. 78877 and Japanese Patent Application Laid-open No. 54-
As proposed in Publication No. 83499, a method is adopted in which a heating element is disposed around the humidity-sensitive resistor and used to heat and regenerate the humidity-sensitive resistor. Because the heating temperature is 400℃
Reach ~600℃.

ZnO―LiZnVO4を主成分とする感湿抵抗体では
融点が500℃程度のため加熱温度が融点以上とな
り感湿抵抗体の組成が変動したり焼結が進行した
り特性が変化する。また感湿抵抗体のほかに発熱
体を必要としこの分だけ部品点数が多くなり、か
つ発熱体の消費電力が比較的大きく5〜10Wを必
要とし価格上昇となるなどの欠点があつた。
Since the melting point of a moisture-sensitive resistor whose main component is ZnO--LiZnVO 4 is approximately 500°C, the heating temperature exceeds the melting point, causing the composition of the humidity-sensitive resistor to fluctuate, sintering to progress, and its characteristics to change. In addition, it requires a heating element in addition to the moisture-sensitive resistor, which increases the number of parts, and the heating element consumes relatively large power of 5 to 10 W, resulting in an increase in price.

本発明は上記のような実情に鑑みてなされたも
ので、セラミツク感湿抵抗体の周囲に発熱体を配
設することなしに再生する方法を提供せんとする
ものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for regenerating a ceramic moisture-sensitive resistor without disposing a heating element around it.

以下本発明の詳細につき図面を参照しながら説
明する。すなわち本発明は上記の目的を達成する
ため第1図に示すようにZnO―LiZnVO4
MgCr2O4,Zn2TiO4またはMg2TiO4などを主成分
とするセラミツク感湿抵抗体1の湿度検知用電極
2に感湿抵抗体1の体積1mmあたり50〜
300mWとなるような電力を供給し、これによつ
て感湿抵抗体1自身が発熱体となつて少なくとも
100℃以上の温度に発熱し感湿抵抗体1を再生す
るものである。前記電極2はAg,Au,RuO2
どのペーストを印刷などの方法で塗布焼付けした
もので、該電極2にリード線3を収着する。前記
電極2は第1図のように感湿抵抗体1の両面に設
けたものに限るものではなく、片面に一対の電極
2をたとえば櫛の歯状に形成したものにでも適用
できる。
The details of the present invention will be explained below with reference to the drawings. That is, in order to achieve the above object, the present invention uses ZnO--LiZnVO 4 ,
The humidity sensing electrode 2 of the ceramic humidity-sensitive resistor 1 whose main component is MgCr 2 O 4 , Zn 2 TiO 4 or Mg 2 TiO 4 is 50 ~
300mW of power is supplied, whereby the humidity-sensitive resistor 1 itself becomes a heating element and at least
It generates heat to a temperature of 100° C. or higher to regenerate the humidity sensitive resistor 1. The electrode 2 is made by applying and baking a paste of Ag, Au, RuO 2 or the like by a method such as printing, and the lead wire 3 is adsorbed onto the electrode 2 . The electrodes 2 are not limited to those provided on both sides of the humidity-sensitive resistor 1 as shown in FIG. 1, but may also be applied to one in which a pair of electrodes 2 are formed, for example, in the shape of a comb on one side.

つぎに本発明の実施例について詳述する。 Next, embodiments of the present invention will be described in detail.

実施例 1 NnOを主成分としこれにLiZnVO4を混合し800
℃で焙焼を行いポリビニルアルコール5%水溶液
をバインダとして造粒したのち円板状に成型し
1300℃で2時間焼結した直径8.5mmφ×厚さ0.3mm
tの焼結体に直径7.0mmφの金電極をスクリーン
印刷により設けたZnO―LiZnVO4系セラミツク感
湿抵抗体を用い、第2図に示すように該感湿抵抗
体1と固定抵抗4とが直列に接続され、前記感湿
抵抗体1の他端は切換スイツチ5を介して
AC100V、50Hzの再生用電源6またはAC1V,120
Hzの湿度検知用電源7のどちらかに接続され、該
両電極6,7の他端はいずれも前記固定低抗4の
他端に接続されており、該固定抵抗4の両端の電
圧を湿度検知時の出力電圧とする。通常の湿度検
知時は切換スイツチ5を側に倒しておき感湿抵
抗体の変化に応じた出力電圧の変化を検知して湿
度が検知する。該感湿抵抗体1が劣化し再生する
必要が生じたときは前記切換スイツチ5を側に
倒して感湿抵抗体1に850mWの電力(感湿抵抗
体1体積1mmあたり50mWの電力)を供給し感
湿抵抗体1を100℃以上に発熱させる。そして5
〜30秒経過したのち切換スイツチ5を側にもど
し再び湿度検知を行う。
Example 1 NnO is the main component, and LiZnVO 4 is mixed with it.
After roasting at ℃ and granulating with a 5% polyvinyl alcohol aqueous solution as a binder, it was molded into a disk shape.
Diameter 8.5mmφ x thickness 0.3mm sintered at 1300℃ for 2 hours
Using a ZnO--LiZnVO 4 ceramic humidity-sensitive resistor in which a gold electrode with a diameter of 7.0 mmφ is provided on a sintered body of T by screen printing, the humidity-sensitive resistor 1 and a fixed resistor 4 are connected as shown in FIG. They are connected in series, and the other end of the moisture sensitive resistor 1 is connected via a changeover switch 5.
AC100V, 50Hz playback power supply 6 or AC1V, 120
The other ends of both electrodes 6 and 7 are both connected to the other end of the fixed resistor 4, and the voltage across the fixed resistor 4 is connected to either the humidity detection power supply 7. This is the output voltage at the time of detection. During normal humidity detection, the changeover switch 5 is turned to the side and humidity is detected by detecting changes in the output voltage in accordance with changes in the humidity-sensitive resistor. When the humidity-sensitive resistor 1 deteriorates and needs to be regenerated, the changeover switch 5 is turned to the side to apply 850 mW of power to the humidity-sensitive resistor 1 (50 mW of power per 1 mm 3 volume of the humidity-sensitive resistor). The moisture-sensitive resistor 1 is supplied with heat to a temperature of 100°C or higher. and 5
After ~30 seconds have elapsed, the changeover switch 5 is returned to the side and humidity detection is performed again.

実施例 2 実施例1と同じ組成および形状・寸法の感湿抵
抗体1を用い第3図に示すようにAC,50Hzの交
流可変電圧電源8,感湿抵抗体1,固定抵抗4が
それぞれ直列に接続されており、該固定抵抗4の
両端の電圧を湿度検知時の出力電圧とする。通常
の湿度検知時には前記交流可変電圧電源8の出力
電圧を1Vにして湿度を検知する。前記感湿抵抗
体1が劣化し再生する必要が生じたときは前記交
流可変電圧電源8の出力電圧を供給電力として
900mW(感湿抵抗体1の体積1mmあたり
53mWの電力)の電力を供給して感湿抵抗体1を
100℃以上に発熱させる。そして5〜30秒経過し
たのち交流可変電圧電源8の出力電圧を再び1V
にもどして湿度検知を行う。
Example 2 Using a moisture-sensitive resistor 1 having the same composition, shape, and dimensions as in Example 1, an AC, 50 Hz variable voltage power source 8, a humidity-sensitive resistor 1, and a fixed resistor 4 were connected in series, respectively, as shown in FIG. The voltage across the fixed resistor 4 is used as the output voltage when detecting humidity. During normal humidity detection, the output voltage of the AC variable voltage power supply 8 is set to 1V to detect humidity. When the humidity sensitive resistor 1 deteriorates and needs to be regenerated, the output voltage of the AC variable voltage power source 8 is used as the supplied power.
900mW (per volume 1mm3 of humidity sensitive resistor 1)
53mW of power) to connect the moisture sensitive resistor 1.
Generates heat over 100℃. After 5 to 30 seconds have passed, the output voltage of the AC variable voltage power supply 8 is changed to 1V again.
Return to humidity detection.

つぎに本発明による効果を詳述する。第4図は
それぞれ試験に供したZnO―LiZnVO4系セラミツ
ク感湿抵抗体の初期の相対湿度特性(曲線A),
室内放置10時間後の相対湿度特性(曲線B),室
内放置10時間後に本発明の再生方法を施したのち
相対湿度特性(曲線C)を示すものである。曲線
Bの室内放置10時間経過後の相対湿度特性は曲線
Aの初期の相対湿度特性と比較し30%RHで抵抗
値が増加しており、90%RHでの抵抗値はわずか
に減少している。しかし、前述の本発明の再生方
法を採用することによつて曲線Cに示すように30
%RHでの抵抗値はほぼ初期値に復帰し、90%RH
での抵抗値も初期値に比べてわずかに小さくなつ
ているにすぎず、全体としてほぼ±1%RH以内
で初期値に回復していることがわかる。このよう
に本発明の再生方法を採用することによつて劣化
した感湿抵抗体はほとんど初期の相対湿度特性と
同じ特性に回復させることが可能であり、感湿抵
抗体の経時変化による湿度検知誤差を小さくする
ことができる。また供給電力をさらに大きくする
と感湿抵抗体の表面汚染物、たとえば油などを焼
却し除去することも可能である。なお感湿抵抗体
の体積1mmあたり50〜300mWの電力を供給す
るようにしたのは50mW未満では感湿抵抗体の温
度が100℃に達しないため、水分を蒸発させたり
表面汚染物を焼却させたりしてこれらを除去する
ことができず十分な再生効果が得られないためで
ある。また300mWを越えるとZnO―LiNnVO4
セラミツク感湿抵抗体では加熱温度が600℃を越
えるため組成が変動したり焼結が進行したり特性
が変化する。MgCr2O4系・Zn2TiO4系または
Mg2TiO4系セラミツク感湿抵抗体では加熱温度
が800℃まで上昇させても組成変動は起こらない
が、Ag,AuまたはRuO2などの電極ペーストに
含まれているガラスフリツトが600℃から溶け始
めるため溶けたガラスフリツトが感湿抵抗体のポ
アに入り込み目詰まりし感湿特性が劣化する。こ
れらのことからは感湿抵抗体の体積1mmあたり
の供給電力は50〜300mWが最適範囲である。感
湿抵抗体の体積1mmあたりの供給電力と感湿抵
抗体の温度との関係を第5図に示す。
Next, the effects of the present invention will be explained in detail. Figure 4 shows the initial relative humidity characteristics (curve A) of the ZnO-LiZnVO 4 ceramic humidity-sensitive resistor subjected to the test.
The relative humidity characteristics (curve B) after being left indoors for 10 hours and the relative humidity characteristics (curve C) after being subjected to the regeneration method of the present invention after being left indoors for 10 hours are shown. The relative humidity characteristics of curve B after being left indoors for 10 hours show that the resistance value increases at 30% RH compared to the initial relative humidity characteristics of curve A, and the resistance value slightly decreases at 90% RH. There is. However, by adopting the above-mentioned regeneration method of the present invention, as shown in curve C, 30
The resistance value at %RH almost returns to the initial value and reaches 90%RH.
It can be seen that the resistance value at is only slightly smaller than the initial value, and overall it has recovered to the initial value within approximately ±1%RH. As described above, by adopting the regeneration method of the present invention, it is possible to restore a deteriorated humidity-sensitive resistor to almost the same initial relative humidity characteristics, and it is possible to detect humidity based on changes in the humidity-sensitive resistor over time. The error can be reduced. Moreover, if the supplied power is further increased, it is also possible to incinerate and remove surface contaminants such as oil on the humidity-sensitive resistor. The reason for supplying 50 to 300 mW of power per 1 mm3 of humidity-sensitive resistor is that if the temperature is less than 50 mW, the temperature of the humidity-sensitive resistor will not reach 100°C, so water will evaporate and surface contaminants will be incinerated. This is because it is not possible to remove these substances by causing the oxidation to occur, and a sufficient regeneration effect cannot be obtained. Furthermore, if the power exceeds 300 mW, the heating temperature of the ZnO--LiNnVO 4 ceramic humidity-sensitive resistor exceeds 600°C, causing the composition to fluctuate, sintering to progress, and the characteristics to change. MgCr 2 O 4 series/Zn 2 TiO 4 series or
In Mg 2 TiO 4 ceramic humidity-sensitive resistors, compositional changes do not occur even when the heating temperature rises to 800°C, but the glass frit contained in the electrode paste, such as Ag, Au or RuO 2 , begins to melt at 600°C. Therefore, the molten glass frit enters the pores of the moisture-sensitive resistor, clogging it and deteriorating the moisture-sensing characteristics. From these facts, the optimum range of power supplied per 1 mm 3 of volume of the humidity-sensitive resistor is 50 to 300 mW. FIG. 5 shows the relationship between the power supplied per 1 mm 3 of the volume of the humidity-sensitive resistor and the temperature of the humidity-sensitive resistor.

なお、第2図および第3図において感湿抵抗体
1に直列に固定抵抗4を接続したのは再生時に使
用する電源6,8に何らかの異常が生じて瞬間的
な高電圧が直接感湿抵抗体1に印加され感湿抵抗
体1の微細構造が破壊されるのを固定抵抗4で分
圧し防ぐため、および再生終了後直ちに固定抵抗
4両端の電圧変化を検出することにより湿度変化
に応じた感湿抵抗体1の抵抗変化を検出すること
ができるなどのためである。
Note that the reason why the fixed resistor 4 is connected in series with the humidity-sensitive resistor 1 in FIGS. 2 and 3 is that when some abnormality occurs in the power supplies 6 and 8 used during playback, a momentary high voltage is directly applied to the humidity-sensitive resistor. In order to prevent the fine structure of the humidity-sensitive resistor 1 from being destroyed due to the voltage applied to the body 1, the fixed resistor 4 divides the voltage and detects the voltage change across the fixed resistor 4 immediately after the regeneration is completed, so as to respond to humidity changes. This is because a change in resistance of the humidity-sensitive resistor 1 can be detected.

以上詳述したように本発明によればセラミツク
感湿抵抗体が劣化し再生する必要が生じた場合、
該感湿抵抗体の体積1mmあたり50〜300mWの
電力を供給して発熱させて水分や表面汚染物を除
去することによつて別個に発熱体を配設すること
なく容易に初期値に回復させることができるなど
実用性の大なるセラミツク感湿抵抗体の再生方法
を提供することができる。
As detailed above, according to the present invention, when the ceramic moisture-sensitive resistor deteriorates and needs to be regenerated,
By supplying 50 to 300 mW of power per 1 mm 3 of volume of the moisture-sensitive resistor to generate heat and remove moisture and surface contaminants, the initial value can be easily restored without installing a separate heating element. It is possible to provide a highly practical method for regenerating a ceramic moisture-sensitive resistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミツク感湿抵抗体を示す断面図、
第2図は本発明の一実施例に係る再生方法を示す
回路図、第3図は本発明の他の実施例に係る再生
方法を示す回路図、第4図は感湿抵抗体の相対湿
度特性を示す曲線図、第5図は供給電力と感湿抵
抗体の温度との関係を示す曲線図である。 1…感湿抵抗体、2…電極、4…固定抵抗、5
…切換スイツチ、6…再生用電源、7…湿度検知
用電源、8…交流可変電圧電源。
Figure 1 is a cross-sectional view of a ceramic moisture-sensitive resistor;
Fig. 2 is a circuit diagram showing a regeneration method according to an embodiment of the present invention, Fig. 3 is a circuit diagram showing a regeneration method according to another embodiment of the invention, and Fig. 4 is a relative humidity of a humidity sensitive resistor. FIG. 5 is a curve diagram showing the relationship between the supplied power and the temperature of the humidity-sensitive resistor. 1... Moisture sensitive resistor, 2... Electrode, 4... Fixed resistance, 5
...Selector switch, 6...Power supply for reproduction, 7...Power supply for humidity detection, 8...AC variable voltage power supply.

Claims (1)

【特許請求の範囲】 1 経時変化により劣化したセラミツク感湿抵抗
体の再生方法において、該感湿抵抗体に体積1mm
あたり50〜300mWの電力を供給することによ
つて該感湿抵抗体自身を発熱させ再生することを
特徴とするセラミツク感湿抵抗体の再生方法。 2 感湿抵抗体に固定抵抗を直列に接続しさらに
切換スイツチを介して再生用電源と接続したこと
を特徴とする特許請求の範囲第1項記載のセラミ
ツク感湿抵抗体の再生方法。 3 感湿抵抗体に固定抵抗と交流可変電圧電源と
を直列に接続したことを特徴とする特許請求の範
囲第1項記載のセラミツク感湿抵抗体の再生方
法。
[Claims] 1. A method for regenerating a ceramic humidity-sensitive resistor that has deteriorated over time, wherein the humidity-sensitive resistor has a volume of 1 mm.
1. A method for regenerating a ceramic humidity-sensitive resistor, characterized in that the humidity-sensitive resistor itself is regenerated by generating heat by supplying 50 to 300 mW of power per 300 mW. 2. A method for regenerating a ceramic humidity-sensitive resistor according to claim 1, characterized in that a fixed resistor is connected in series to the humidity-sensitive resistor and further connected to a regeneration power source via a changeover switch. 3. A method for regenerating a ceramic humidity-sensitive resistor according to claim 1, characterized in that a fixed resistor and an AC variable voltage power source are connected in series to the humidity-sensitive resistor.
JP6449380A 1980-05-14 1980-05-14 Regeneration and regenerative circuit of ceramic moisture sensitive resistor Granted JPS56160649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6449380A JPS56160649A (en) 1980-05-14 1980-05-14 Regeneration and regenerative circuit of ceramic moisture sensitive resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6449380A JPS56160649A (en) 1980-05-14 1980-05-14 Regeneration and regenerative circuit of ceramic moisture sensitive resistor

Publications (2)

Publication Number Publication Date
JPS56160649A JPS56160649A (en) 1981-12-10
JPS6133462B2 true JPS6133462B2 (en) 1986-08-02

Family

ID=13259778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6449380A Granted JPS56160649A (en) 1980-05-14 1980-05-14 Regeneration and regenerative circuit of ceramic moisture sensitive resistor

Country Status (1)

Country Link
JP (1) JPS56160649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784786A (en) * 2015-01-09 2016-07-20 罗伯特·博世有限公司 Sensor Device Used For Detecting Gas State Analytes And Manufacture Method Thereof
CN108689700A (en) * 2018-06-27 2018-10-23 合肥同佑电子科技有限公司 A kind of pressure-sensitive ceramic material of high pass current capacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784786A (en) * 2015-01-09 2016-07-20 罗伯特·博世有限公司 Sensor Device Used For Detecting Gas State Analytes And Manufacture Method Thereof
CN108689700A (en) * 2018-06-27 2018-10-23 合肥同佑电子科技有限公司 A kind of pressure-sensitive ceramic material of high pass current capacity

Also Published As

Publication number Publication date
JPS56160649A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
JP3361805B2 (en) Method for protecting exhaust gas purification catalyst and reaction heat sensor for performing the method
JPH05502719A (en) Resistance measurement sensor for gas composition detection and method for manufacturing this resistance measurement sensor
US4326414A (en) Humidity detecting apparatus
JPS59196453A (en) Particulate detecting element
US10088405B2 (en) Method for operating a particle sensor
JPS6133462B2 (en)
US3961301A (en) Humidity sensor
US4481813A (en) Dew sensor
JPS5844338A (en) Humidity sensor
JPS60123757A (en) Smoke sensor
EP0115953A2 (en) Gas sensor
JPH0124624Y2 (en)
JPS6214921B2 (en)
JPH08271466A (en) Gas sensor
JPS6155064B2 (en)
JPS58105046A (en) Sensing element for temperature and humidity
JPH0614018Y2 (en) Exhaust gas filter regeneration device
JPS6136619B2 (en)
JP3035362B2 (en) Gas sensor
JPH05307994A (en) Heater structure
JPS6322441B2 (en)
JPH0448529Y2 (en)
JPH0216871B2 (en)
JP3171774B2 (en) Gas detection element
JPS6359983B2 (en)