JPH0216871B2 - - Google Patents

Info

Publication number
JPH0216871B2
JPH0216871B2 JP57045155A JP4515582A JPH0216871B2 JP H0216871 B2 JPH0216871 B2 JP H0216871B2 JP 57045155 A JP57045155 A JP 57045155A JP 4515582 A JP4515582 A JP 4515582A JP H0216871 B2 JPH0216871 B2 JP H0216871B2
Authority
JP
Japan
Prior art keywords
electrode
oxygen concentration
value
current flowing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57045155A
Other languages
Japanese (ja)
Other versions
JPS58161859A (en
Inventor
Takashige Ooyama
Tadashi Kirisawa
Minoru Oosuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57045155A priority Critical patent/JPS58161859A/en
Priority to EP83102654A priority patent/EP0089630A3/en
Publication of JPS58161859A publication Critical patent/JPS58161859A/en
Publication of JPH0216871B2 publication Critical patent/JPH0216871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 本発明は酸素濃度検出器に係り、特に燃焼器に
使用するに好適な酸素ポンプ式の酸素濃度検出器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen concentration detector, and particularly to an oxygen pump type oxygen concentration detector suitable for use in a combustor.

従来、SAE Paper 810433に開示されているよ
うな酸素ポンプ式の酸素濃度検出器が公知である
が、細孔、あるいは多孔質物体の拡散抵抗体を介
して酸素を移動させ、移動量から濃度を検出する
ものであるので、ごみ等によつて拡散抵抗体の抵
抗が変化すると誤差を生じる欠点がある。
Conventionally, oxygen pump type oxygen concentration detectors as disclosed in SAE Paper 810433 are known, but oxygen is moved through pores or a diffusion resistor of a porous object, and the concentration is calculated from the amount of movement. Since the sensor is used for detection, it has the drawback that errors may occur if the resistance of the diffused resistor changes due to dust or the like.

本発明の目的は、上記のごとく抵抗が変化した
場合でも、拡散抵抗の変化を検出し、出力信号を
補正することにより、上記誤差を解消した酸素濃
度検出器を提供するにある。
An object of the present invention is to provide an oxygen concentration detector that eliminates the above-mentioned error by detecting the change in diffused resistance and correcting the output signal even when the resistance changes as described above.

本発明の特徴は、 (a) 酸素イオン電導性の固体電解質; (b) 前記酸素イオン電導性の固体電解質の一面側
に配置され、基準となる気体と接触する第1の
電極; (c) 前記酸素イオン電導性の固体電解質の他面側
に配置された第2の電極; (d) 前記第2の電極を被測定気体と接触させる拡
散抵抗体; (e) 前記第1電極及び前記第2電極の間に電圧を
印加する電源; (f) 燃焼器の燃料を一時遮断したときの前記第1
電極及び前記第2電極の間に流れる電流の値を
記憶する記憶手段; (g) 燃料供給時の第1電極及び前記第2電極の間
に流れる電流の値を前記記憶手段に記憶された
燃料を一時遮断したときの前記第1電極及び前
記第2電極の間に流れる電流の値から定まる修
正値で補正する補正手段; (h) 前記第1電極及び前記第2電極に流れる電流
の値を検出して被測定気体の酸素濃度を測定す
る酸素濃度測定手段 とを備えた酸素濃度検出器にある。
The features of the present invention are as follows: (a) an oxygen ion conductive solid electrolyte; (b) a first electrode disposed on one side of the oxygen ion conductive solid electrolyte and in contact with a reference gas; (c) a second electrode disposed on the other side of the oxygen ion conductive solid electrolyte; (d) a diffusion resistor that brings the second electrode into contact with the gas to be measured; (e) the first electrode and the first electrode; (f) a power source that applies voltage between two electrodes;
Storage means for storing the value of the current flowing between the electrode and the second electrode; (g) storage means for storing the value of the current flowing between the first electrode and the second electrode during fuel supply; (h) correction means for correcting the value of the current flowing between the first electrode and the second electrode with a correction value determined from the value of the current flowing between the first electrode and the second electrode when the current is temporarily cut off; The oxygen concentration detector includes an oxygen concentration measuring means for detecting and measuring the oxygen concentration of a gas to be measured.

第1図において、燃焼器1は例えば、ガソリン
エンジン、デイーゼルエンジンである。燃焼器1
の出口は排気管2に接続されている。排気管1の
一部に検出器3が取り付けられる。検出器3は、
固体電解質31から成る。電解質31は、例えば
ZrO2−Y2O3の混合物である。酸素イオン電導性
を有するものであれば、他のものでもよい。電解
質31の両側には、多孔性の白金電極32,33
が設けられている。電解質31のまわりには、耐
熱性材料からなるおおい34が取り付けられ、電
解質31の電極33が直接排気にさらされるのを
防止している。おおい34の一部に拡散抵抗体で
あるオリフイス36,37が設けられ排気は、こ
のオリフイス36,37を介して、チヤンバ35
に流入する。検出器3の一部には、電解質31、
おおい34を600〜1000℃に高めるためのヒータ
38が設けられている。ここでヒータ38の端子
は省略してある。おおい34の一部はねじ等で、
排気管2に取り付けられるようになつている。電
極32は端子39と接続し、端子39は中空であ
る。電極33はおおい34と接続されている。オ
リフイス36,37の外側には、ごみよけ40が
設けられ、端子39とおおい34は電気回路50
に電気的に接続されている。電気回路50の一部
はマイクロプロセツサ、書き換え可能記憶装置5
1から構成されている。
In FIG. 1, a combustor 1 is, for example, a gasoline engine or a diesel engine. Combustor 1
The outlet of is connected to the exhaust pipe 2. A detector 3 is attached to a part of the exhaust pipe 1. The detector 3 is
It consists of a solid electrolyte 31. The electrolyte 31 is, for example,
It is a mixture of ZrO2 - Y2O3 . Other materials may be used as long as they have oxygen ion conductivity. Porous platinum electrodes 32 and 33 are placed on both sides of the electrolyte 31.
is provided. A cover 34 made of a heat-resistant material is attached around the electrolyte 31 to prevent the electrodes 33 of the electrolyte 31 from being directly exposed to exhaust gas. Orifices 36 and 37, which are diffusion resistors, are provided in a part of the cover 34, and the exhaust gas is passed through the chamber 35 through the orifices 36 and 37.
flows into. A part of the detector 3 includes an electrolyte 31,
A heater 38 is provided to raise the temperature of the cover 34 to 600-1000°C. Here, the terminal of the heater 38 is omitted. A part of the cover 34 is made of screws, etc.
It is adapted to be attached to the exhaust pipe 2. The electrode 32 is connected to a terminal 39, and the terminal 39 is hollow. Electrode 33 is connected to canopy 34 . A dust guard 40 is provided on the outside of the orifices 36 and 37, and the terminal 39 and the cover 34 are connected to an electric circuit 50.
electrically connected to. Part of the electric circuit 50 is a microprocessor and a rewritable storage device 5
It consists of 1.

以上の構成の動作は下記のとおりである。まず
ヒータ38に電力を供給し、電解質31、おおい
34を600〜1000℃に加熱する。このような温度
に達すると、電解質31の酸素イオン電導性が増
大する。ここで、電気回路50で、電極32に
正、電極33に負の0〜2V程度の電圧を印加す
ると、酸素ポンプ効果で電流Iが流れる。電気I
によつて、チヤンバ35内の酸素は、電極32側
に移送され、端子39の中空を通つて大気に排出
される。チヤンバ35内の酸素分圧が低下する
と、オリフイス36,37等の拡散抵抗を介し
て、チヤンバ35内に酸素が流れこむ。オリフイ
ス36,37の外側の酸素濃度(分圧)PAとチ
ヤンバ35内の酸素濃度(分圧)PVとすると、
オリフイス36,37を介して流れ込む酸素の量
はK(PA−PV)に比例する。Kは拡散抵抗で、温
度、圧力の他に、オリフイス36,37の形状、
寸法によつて変化する。ここで、オリフイス3
6,37の径は0.5mm、長さ2mm程度である。こ
の酸素量は、フアラデーの法則で電流Iに比例す
る。すなわち、 I∝K(PA−PV) ……(1) となる。したがつて、電圧を増大し、Iを増して
くるとPVが低下してくる。ギブスの自由エネル
ギの法則から ここに、E:電圧 F:フアラデー定数 R:ガス定数 T:温度 の関係が成立し、PVが小さくなると、Eが急激
に変化する。すなわち、Eを増して、PVを小さ
くすると、Iが増大するが、これは、(1)式からわ
かるように、KPAを超えることはできない。すな
わち、PV≒0近くの状態の電流Iは、KPAを比
例し、Iを測定することによつて、PA、すなわ
ち、酸素濃度を検出することができる。しかし、
上述のごとく、電流はKによつて、すなわち、オ
リフイス36,37の一部に排ガス中のごみが付
着すると、Kが10%程度変化するので、この影響
が誤差となりやすい。ここで、本発明では、第2
図に示したように、燃焼器1に供給する燃料を一
時しや断し、排気管2内の排ガスが大気と同じ条
件(酸素21%)になるまで、一定時間待つて、こ
のときの電流I0を測定し、これを記憶装置51に
一時記憶する。その後、燃料を供給し、そのとき
の電流Iを測定すれば、そのときの酸素濃度xは x=21I/I0 ……(3) となり、オリフイス36,37のごみによるつま
りの影響を解消することができる。このxの値を
用いて、xが設定値になるように燃料量を調節す
る。ここで、拡散抵抗は、ガスの温度の影響を受
けるので、I0,I測定時のオリフイス36,37
を通るガスの温度はヒータ38によつて一定に保
持される。また、拝ガス中に含まれる鉛、炭素の
粒子、重質油分がオリフイス36,37に近付か
ないよう、ごみよけ40が設けられているので、
オリフイス36,37が大きなごみでつまること
はない。また、オリフイス36,37は測定時、
600〜1000℃に加熱されているので、軽質のごみ
はすべて焼却される。オリフイス36,37は、
拡散抵抗を与えるものであるので、セラミツク等
の多孔質材でもよい。第3図は電圧と電流の関係
を測定した結果の一例を示したものである。電流
I0,Iは酸素濃度に比例している。燃焼器1が内
燃機関、例えば、自動車用のガソリン機関、デイ
ーゼル機関の場合は、減速時に燃料をしや断すれ
ばよく、このしや断の方法は公知の方法で実施す
るとができる。
The operation of the above configuration is as follows. First, power is supplied to the heater 38 to heat the electrolyte 31 and the cover 34 to 600 to 1000°C. When such a temperature is reached, the oxygen ion conductivity of electrolyte 31 increases. Here, when a positive voltage of about 0 to 2 V is applied to the electrode 32 and a negative voltage to the electrode 33 in the electric circuit 50, a current I flows due to the oxygen pump effect. Electricity I
As a result, oxygen in the chamber 35 is transferred to the electrode 32 side and exhausted to the atmosphere through the hollow space of the terminal 39. When the partial pressure of oxygen in the chamber 35 decreases, oxygen flows into the chamber 35 via the diffusion resistance of the orifices 36, 37 and the like. Assuming that the oxygen concentration (partial pressure) P A outside the orifices 36 and 37 and the oxygen concentration (partial pressure) P V inside the chamber 35,
The amount of oxygen flowing through the orifices 36, 37 is proportional to K( PA - PV ). K is the diffusion resistance, and in addition to temperature and pressure, the shape of orifices 36 and 37,
Varies depending on size. Here, orifice 3
6 and 37 have a diameter of 0.5 mm and a length of about 2 mm. This amount of oxygen is proportional to the current I according to Faraday's law. In other words, I∝K(P A - P V )...(1). Therefore, as the voltage increases and I increases, P V decreases. From Gibbs' free energy law Here, the relationship of E: voltage, F: Faraday's constant, R: gas constant, and T: temperature is established, and when P V becomes small, E changes rapidly. That is, if E is increased and P V is decreased, I increases, but as can be seen from equation (1), I cannot exceed K A . That is, the current I in a state where P V ≈0 is proportional to K A and by measuring I, P A , that is, the oxygen concentration can be detected. but,
As mentioned above, the current depends on K, that is, when dust in the exhaust gas adheres to a portion of the orifices 36, 37, K changes by about 10%, and this effect tends to cause errors. Here, in the present invention, the second
As shown in the figure, the fuel supplied to the combustor 1 is temporarily cut off, and the current is I 0 is measured and temporarily stored in the storage device 51. After that, if fuel is supplied and the current I is measured at that time, the oxygen concentration x at that time will be x = 21I/I 0 ...(3), which eliminates the effect of clogging of orifices 36 and 37 with debris. be able to. Using this value of x, the fuel amount is adjusted so that x becomes the set value. Here, since the diffusion resistance is affected by the temperature of the gas, the orifices 36 and 37 during the measurement of I 0 and I
The temperature of the gas passing through is kept constant by a heater 38. In addition, a dust guard 40 is provided to prevent lead, carbon particles, and heavy oil contained in the gas from coming close to the orifices 36 and 37.
Orifices 36 and 37 are not clogged with large debris. Also, the orifices 36 and 37 are used during measurement.
Since it is heated to 600-1000℃, all light garbage is incinerated. Orifices 36 and 37 are
Since it provides diffusion resistance, a porous material such as ceramic may be used. FIG. 3 shows an example of the results of measuring the relationship between voltage and current. current
I 0 and I are proportional to the oxygen concentration. When the combustor 1 is an internal combustion engine, for example, a gasoline engine or a diesel engine for automobiles, the fuel may be cut off during deceleration, and this cutting can be carried out by a known method.

本発明によれば、拡散抵抗の変化による出力変
化を容易に補正することができるので、燃焼器の
排ガス等、ごみ、不純分が存在する場合でも、酸
素濃度の検出誤差を解消することができる。
According to the present invention, output changes due to changes in diffusion resistance can be easily corrected, so even when dust and impurities such as combustor exhaust gas are present, detection errors in oxygen concentration can be eliminated. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図は動作原理を
説明するフローチヤート、第3図は測定データの
一例である。 1……燃焼器、2……排気管、3……検出器、
51……記憶装置。
FIG. 1 is a block diagram of the present invention, FIG. 2 is a flowchart explaining the principle of operation, and FIG. 3 is an example of measurement data. 1... Combustor, 2... Exhaust pipe, 3... Detector,
51...Storage device.

Claims (1)

【特許請求の範囲】 1 (a) 酸素イオン電導性の固体電解質; (b) 前記酸素イオン電導性の固体電解質の一面側
に配置され、基準となる気体と接触する第1の
電極; (c) 前記酸素イオン電導性の固体電解質の他面側
に配置された第2の電極; (d) 前記第2の電極を被測定気体と接触させる拡
散抵抗体; (e) 前記第1電極及び前記第2電極の間に電圧を
印加する電源; (f) 燃焼器の燃料を一時遮断したときの前記第1
電極及び前記第2電極の間に流れる電流の値を
記憶する記憶手段; (g) 燃料供給時の前記第1電極及び前記第2電極
の間に流れる電流の値を前記記憶手段に記憶さ
れた燃料を一時遮断したときの前記第1電極及
び前記第2電極の間に流れる電流の値から定ま
る修正値で補正する補正手段; (h) 前記第1電極及び前記第2電極に流れる電流
の値を検出して被測定気体の酸素濃度を測定す
る酸素濃度測定手段 とを備えたことを特徴とする酸素濃度検出器。 2 特許請求の範囲第1項記載の酸素濃度検出器
において、前記補正手段は前記記憶手段に記憶さ
れた燃料を一時遮断したときの前記第1電極及び
前記第2電極の間に流れる電流の値と基準となる
気体の酸素濃度の比から燃料供給時の前記第1電
極及び前記第2電極の間に流れる電流の値を修正
することを特徴とする酸素濃度検出器。
[Scope of Claims] 1 (a) An oxygen ion conductive solid electrolyte; (b) A first electrode disposed on one side of the oxygen ion conductive solid electrolyte and in contact with a reference gas; (c ) a second electrode disposed on the other side of the oxygen ion conductive solid electrolyte; (d) a diffusion resistor that brings the second electrode into contact with the gas to be measured; (e) the first electrode and the (f) a power supply that applies a voltage between the second electrode; (f) the first
Storage means for storing the value of the current flowing between the electrode and the second electrode; (g) the storage means stores the value of the current flowing between the first electrode and the second electrode during fuel supply; Correction means for correcting with a correction value determined from the value of the current flowing between the first electrode and the second electrode when the fuel is temporarily cut off; (h) the value of the current flowing between the first electrode and the second electrode; An oxygen concentration detector comprising an oxygen concentration measuring means for detecting the oxygen concentration of a gas to be measured. 2. In the oxygen concentration detector according to claim 1, the correction means adjusts the value of the current flowing between the first electrode and the second electrode when the fuel is temporarily cut off, which is stored in the storage means. An oxygen concentration detector, characterized in that the value of the current flowing between the first electrode and the second electrode during fuel supply is corrected based on the ratio of the oxygen concentration of the gas and the oxygen concentration of the reference gas.
JP57045155A 1982-03-19 1982-03-19 Oxygen concentration detector Granted JPS58161859A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57045155A JPS58161859A (en) 1982-03-19 1982-03-19 Oxygen concentration detector
EP83102654A EP0089630A3 (en) 1982-03-19 1983-03-17 Device for measuring oxygen concentration in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045155A JPS58161859A (en) 1982-03-19 1982-03-19 Oxygen concentration detector

Publications (2)

Publication Number Publication Date
JPS58161859A JPS58161859A (en) 1983-09-26
JPH0216871B2 true JPH0216871B2 (en) 1990-04-18

Family

ID=12711370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045155A Granted JPS58161859A (en) 1982-03-19 1982-03-19 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPS58161859A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1306316B1 (en) 1998-07-16 2001-06-04 Magneti Marelli Spa METHOD OF CONTROL OF A LINEAR OXYGEN PROBE.
JPS62267544A (en) * 1986-05-16 1987-11-20 Hitachi Ltd Air-fuel ratio control device for internal combustion engine
JP5114444B2 (en) * 2009-03-12 2013-01-09 トヨタ自動車株式会社 Oxygen sensor control device and oxygen sensor control method

Also Published As

Publication number Publication date
JPS58161859A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
EP0880026B1 (en) Gas sensor
US4510036A (en) Limiting electric current type oxygen sensor with heater and limiting electric current type oxygen concentration detecting device using the same
US5236569A (en) Air/fuel ratio sensor having resistor for limiting leak current from pumping cell to sensing cell
EP0987546B1 (en) Gas concentration sensing apparatus
EP0066228A2 (en) Oxygen concentration detector
US5413683A (en) Oxygen sensing apparatus and method using electrochemical oxygen pumping action to provide reference gas
JPS644145B2 (en)
EP0816836B1 (en) Gas sensor, method for controlling gas sensor, gas concentration controller and method for controlling gas concentration
US4505802A (en) Oxygen concentration detector
US4505804A (en) Oxygen concentration detector
JPH0125419B2 (en)
JP2020159881A (en) Gas sensor and sensor element
US4472247A (en) Method for measuring the oxygen concentration in gas mixtures
EP0816835B1 (en) Gas sensor and gas concentration controller
JPH03282247A (en) Detection of flammable gas
JPH0216871B2 (en)
US20070215470A1 (en) Gas concentration measuring apparatus designed to enhance response of sensor
JPH09500959A (en) Method and apparatus for the detection of oxidizable substances in space
CA2100233C (en) Workfunction based a/f sensor
JPH0125418B2 (en)
EP0089630A2 (en) Device for measuring oxygen concentration in exhaust gas
JPH07159371A (en) Oxygen content detector in exhaust gas of internal combustion engine for vehicle driving
JPH0128905B2 (en)
JPS58161858A (en) Oxygen concentration detector
JPH02310453A (en) Detection of deterioration of catalyst