JPS6133442B2 - - Google Patents

Info

Publication number
JPS6133442B2
JPS6133442B2 JP15106380A JP15106380A JPS6133442B2 JP S6133442 B2 JPS6133442 B2 JP S6133442B2 JP 15106380 A JP15106380 A JP 15106380A JP 15106380 A JP15106380 A JP 15106380A JP S6133442 B2 JPS6133442 B2 JP S6133442B2
Authority
JP
Japan
Prior art keywords
loop
measured
image sensor
photoelectric conversion
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15106380A
Other languages
Japanese (ja)
Other versions
JPS5774608A (en
Inventor
Yutaka Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP15106380A priority Critical patent/JPS5774608A/en
Publication of JPS5774608A publication Critical patent/JPS5774608A/en
Publication of JPS6133442B2 publication Critical patent/JPS6133442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 本発明は二次元自動輪郭測定方法及び装置、特
に投影機で拡大された被測定物の外形形状を自動
的にデータ化することの可能な二次元自動輪郭測
定方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-dimensional automatic contour measuring method and apparatus, particularly a two-dimensional automatic contour measuring method and apparatus capable of automatically converting the external shape of a workpiece enlarged by a projector into data. It is related to the device.

小型精密部品あるいはICパターンなどの観察
測定しあるいは写真撮影するためにこれらの被測
定物を拡大する投影機が用いられており、精密測
定に極めて有効である。そして投影面に拡大され
た被測定物の外形を座標値などとしてデータ化す
るために、従来方式では、載物台の送り情報を手
動操作にて読み取り、これらの情報をコンピユー
タメモリなどに記憶させることが行なわれてお
り、極めて煩雑な作業が必要とされ、特に複雑な
外形形状を有する被測定物に対しては外形のデー
タ化が極めて困難であるという問題があつた。
Projectors are used to magnify objects to be measured, such as small precision parts or IC patterns, to observe, measure, or take photographs, and are extremely effective for precision measurements. In order to convert the external shape of the object to be measured enlarged on the projection plane into data such as coordinate values, in the conventional method, the feeding information of the stage is read manually and this information is stored in computer memory, etc. This method requires extremely complicated work, and there is a problem in that it is extremely difficult to convert the external shape into data, particularly for objects to be measured that have complicated external shapes.

本発明は上記従来の課題に鑑みなされたもので
あり、その目的は、手動操作を必要とすることな
く、自動的に被測定物の外形形状に追従しながら
載物台を相対的に送り駆動し、各送りステツプご
とに被測定物の輪郭形状を正確にデータ化するこ
とのできる二次元自動輪郭測定方法及び装置を提
供することにある。
The present invention was made in view of the above-mentioned conventional problems, and its purpose is to relatively feed and drive the workpiece table while automatically following the external shape of the object to be measured without requiring manual operation. However, it is an object of the present invention to provide a two-dimensional automatic contour measuring method and apparatus that can accurately convert the contour shape of a workpiece into data at each feeding step.

上記目的を達成するために、本発明に係る方法
は、 閉ループに配置された複数の光電変換素子を有
するループ状イメージセンサのループ内に明暗比
が所定の比率になるように被測定物の一部を投影
し、 ループを横切る被測定物の両端交差位置を検出
し、 前記両端交差位置に基づいてループ内の明暗比
を所定比率に保つような移動方向を演算し、該移
動方向に沿つて被測定物を所定量移動する送りを
繰返し、 前記送り中に、ループを横切る少くとも一方の
検出位置情報と前記送り情報とに基づき前記ルー
プと被測定物との交差位置を表す各素点を演算し
被測定物の輪郭をデータ化することを特徴とす
る。
In order to achieve the above object, the method according to the present invention includes the steps of: aligning an object to be measured such that the contrast ratio becomes a predetermined ratio within the loop of a loop-shaped image sensor having a plurality of photoelectric conversion elements arranged in a closed loop; projecting the object to be measured across the loop, detecting the crossing positions of both ends of the object to be measured across the loop, calculating a moving direction that maintains the brightness ratio in the loop at a predetermined ratio based on the crossing positions of both ends, and calculating the moving direction along the moving direction. Repeating feeding to move the object to be measured by a predetermined amount, and during the feeding, each raw point representing the intersection position of the loop and the object to be measured is determined based on the detected position information of at least one side crossing the loop and the feeding information. It is characterized by calculating and converting the outline of the object to be measured into data.

また、本発明に係る装置は、 被測定物を載置し任意の方向に移動自在な載物
台を有する投影機と、 投影機の投影面に設けられ閉ループに配置され
た複数の光電変換素子を有するループ状イメージ
センサと、 被測定物がループを横切る両端交差位置を各光
電変換素子の電気的出力により検出する位置検出
回路と、 位置検出回路の出力を処理して被測定物の投影
面のループ内での明暗比が所定比率になるように
載物台を送る駆動手段と、該送り量を検出出力す
る送り検出器と、を有する送り制御装置と、 前記位置検出回路の内の一方の検出位置情報
と、前記送り検出器の出力とに基づいてループ状
イメージセンサと被測定物との交差位置を表す各
素点を測定し被測定物の輪郭をデータ化する測定
回路と、を含む。
Furthermore, the apparatus according to the present invention includes: a projector having a stage on which an object to be measured is placed and movable in any direction; and a plurality of photoelectric conversion elements provided on the projection surface of the projector and arranged in a closed loop. a loop-shaped image sensor having a loop-shaped image sensor; a position detection circuit that detects the intersection position of both ends of the loop where the object to be measured crosses the loop; a feed control device having a drive means for feeding the stage so that the contrast ratio within the loop becomes a predetermined ratio; and a feed detector that detects and outputs the feed amount; and one of the position detection circuits. a measuring circuit that measures each raw point representing the intersection position of the loop-shaped image sensor and the object to be measured based on the detected position information of the sensor and the output of the feed detector, and converts the outline of the object to be measured into data. include.

以下図面に基づいて本発明の好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第1図は本発明が適用された測定装置の実施例
が示され、投影機10は被測定物12を載置する
載物台14を有し、該載物台14にはXサーボモ
ータ16及びYサーボモータ18が設けられ、両
モータ16,18によつて載物台14がX及びY
方向に任意量移動送りされる。そして両サーボモ
ータ16,18による載物台14の送り情報は各
サーボモータ16,18に設けられたXパルスジ
エネレータ20及びYパルスジエネレータ22か
らなる送り検出器によつて検出される。
FIG. 1 shows an embodiment of a measuring device to which the present invention is applied. and Y servo motors 18 are provided, and both motors 16 and 18 move the stage 14 to the
The object is moved by an arbitrary amount in the direction. The feed information of the stage 14 by both servo motors 16 and 18 is detected by a feed detector consisting of an X pulse generator 20 and a Y pulse generator 22 provided in each servo motor 16 and 18.

投影機10には周知の光学装置が設けられ、被
測定物12の輪郭外形が光学的に拡大されて投影
面に表示される。本実施例における投影面は通常
の目視による観察用の第1投影面24と自動輪郭
測定のための第2投影面26とを有し、被測定物
12からの拡大投影像はハーフミラー28を通つ
て両投影面24,26に輪郭形状を写し出す。
The projector 10 is equipped with a well-known optical device, and the outline of the object 12 to be measured is optically enlarged and displayed on a projection surface. The projection plane in this embodiment has a first projection plane 24 for normal visual observation and a second projection plane 26 for automatic contour measurement. The contour shape is projected onto both projection surfaces 24 and 26 through the projection.

第2投影面26にはループ状イメージセンサ3
0が設けられており、このループ状イメージセン
サ30は第2図に示されるように、閉ループ、実
施例においては円形状のループ100に沿つて配
置された複数の光電変換素子32を有し、各光電
変換素子32がループ100上に近接して配置さ
れ、各光電変換素子32に光入射があつた時に電
気的信号を出力することができる。
A loop-shaped image sensor 3 is provided on the second projection surface 26.
As shown in FIG. 2, this loop-shaped image sensor 30 has a plurality of photoelectric conversion elements 32 arranged along a closed loop, a circular loop 100 in the embodiment, Each photoelectric conversion element 32 is arranged close to each other on the loop 100, and can output an electrical signal when light is incident on each photoelectric conversion element 32.

前記イメージセンサ30の出力は位置検出回路
34に供給され、被測定物12の投影画像が前記
ループを横切つた時にその横切られた光電変換素
子32の位置を電気的に検出することができる。
そして、位置検出回路34の両端検出位置情報は
送り制御装置36に供給され、該送り制御装置3
6は演算された移動方向に沿つて載物台14を送
り制御するために前記サーボモータ16,18に
送り制御信号を供給する。
The output of the image sensor 30 is supplied to a position detection circuit 34, and when the projected image of the object to be measured 12 crosses the loop, the position of the photoelectric conversion element 32 traversed can be electrically detected.
Then, the position information detected at both ends of the position detection circuit 34 is supplied to the feed control device 36.
6 supplies a feed control signal to the servo motors 16 and 18 in order to control the feed of the stage 14 along the calculated moving direction.

前記位置検出回路34の一方の位置検出情報は
測定回路38に供給され、また前述した両パルス
ジエネレータ20,22からの送り情報も同様に
測定回路38へ供給され、これらの情報から測定
回路38は被測定物12の各素点を測定して被測
定物12の輪郭をデータ化することができる。
The position detection information of one of the position detection circuits 34 is supplied to the measurement circuit 38, and the information sent from both pulse generators 20 and 22 mentioned above is similarly supplied to the measurement circuit 38, and from this information, the measurement circuit 38 can measure each raw point of the object to be measured 12 and convert the contour of the object to be measured 12 into data.

本発明の好適な実施例は以上の構成からなり、
以下に本発明の作用を説明する。
A preferred embodiment of the present invention has the above configuration,
The operation of the present invention will be explained below.

本発明はかかる輪郭測定は通常の投影作業と同
様に被測定物12を載物台14上に固定し、両投
影面24,26にその投影像を作ることから開始
されるが、本発明において特徴的なことは、測定
開始時において必ずイメージセンサ30のループ
100内に被測定物12の一部を投影することで
あり、すなわち投影面がループ100を横切るよ
うにその初期位置を設定することである。このよ
うな初期位置を設定することによつて、輪郭測定
中イメージセンサ30はそのループ100内に常
に被測定物12の投影面を把え、これを追従する
ことが可能となる。
In the present invention, such contour measurement is started by fixing the object to be measured 12 on the stage 14 and creating its projected image on both projection planes 24 and 26 in the same way as in normal projection work. A characteristic feature is that a part of the object 12 to be measured is always projected within the loop 100 of the image sensor 30 at the start of measurement, that is, the initial position is set so that the projection plane crosses the loop 100. It is. By setting such an initial position, the image sensor 30 can always grasp and follow the projection plane of the object 12 within the loop 100 during contour measurement.

本発明において、前記初期位置におけるループ
100内での投影像の明暗比は任意の比率に設定
できるが、実施例においては、この明暗比をほぼ
1対1に設定することが好適であり、以降の追従
時に投影像がイメージセンサ30から外れること
を確実に防止することが可能となる。
In the present invention, the contrast ratio of the projected image within the loop 100 at the initial position can be set to any desired ratio, but in the embodiment, it is preferable to set this contrast ratio to approximately 1:1; It is possible to reliably prevent the projected image from deviating from the image sensor 30 during tracking.

以上のようにして測定初期位置が定められる
と、次にループ100を横切る被測定物12の両
端位置が検出される。すなわち、第3図に示され
るように、初期位置ではループ100を投影像が
ほぼ半分割した状態となつており、この時にその
両端位置A1,A2が位置検出回路34によつて検
出される。すなわち、ループ100上の光電変換
素子32は両端A1,A2を境として暗部からは電
気的な出力がなく、また明部からは所定の電気的
出力が得られ、これらの電気的出力を処理するこ
とによつて明暗境界部にある光電変換素子32か
ら前記両端の位置情報を検出することが可能とな
る。
Once the initial measurement position is determined as described above, the positions of both ends of the object to be measured 12 crossing the loop 100 are then detected. That is, as shown in FIG. 3, at the initial position, the projected image of the loop 100 is approximately divided into halves, and at this time, the positions A 1 and A 2 of both ends are detected by the position detection circuit 34. Ru. That is, the photoelectric conversion element 32 on the loop 100 has no electrical output from the dark area with both ends A 1 and A 2 as boundaries, and a predetermined electrical output from the bright area, and these electrical outputs are By processing, it becomes possible to detect the positional information of both ends from the photoelectric conversion element 32 located at the bright/dark boundary.

次に、前記両端位置A1,A2に基づいてループ
100内の明暗比を所定比率に保つような移動方
向が送り制御装置36によつて演算され、該移動
方向に沿つて被測定物12すなわち載物台14を
所定量移量するための送り制御が行なわれる。送
り制御装置36には前記位置検出回路34からの
両端位置情報A1,A2が供給されており、両信号
から移動方向が演算されるが、第3図の初期状態
においては、予めループ100内の投影像が1対
1の明暗比で位置決めされているため、初期移動
方向としては両端位置A1,A2の延長線上にaな
る移動量が設定される。この時の移動量はループ
100の半径より小さい所定量が設定され、送り
制御装置36は両サーボモータ16,18にこの
ような送り制御信号を供給して載物台14を相対
的に送り移動することができる。前記移動方向は
ループ100内の明暗比を所定比率例えば実施例
における1対1に保つような移動方向として設定
され、第3図の初期位置では明暗比が1対1であ
るためにその移動方向も両端位置の延長に設定さ
れるのである。また移動量がループ100の半径
より小さく設定されることによつて投影像がルー
プ100から外れることが防止されている。
Next, the feed control device 36 calculates a moving direction in which the contrast ratio in the loop 100 is maintained at a predetermined ratio based on the end positions A 1 and A 2 , and the object to be measured 12 is moved along the moving direction. That is, feed control is performed to move the stage 14 by a predetermined amount. The feed control device 36 is supplied with both end position information A 1 and A 2 from the position detection circuit 34, and the moving direction is calculated from both signals. In the initial state shown in FIG. Since the projected images within are positioned with a contrast ratio of 1:1, a movement amount a is set as the initial movement direction on the extension line of both end positions A 1 and A 2 . The amount of movement at this time is set to a predetermined amount smaller than the radius of the loop 100, and the feed control device 36 supplies such a feed control signal to both servo motors 16 and 18 to relatively feed and move the stage 14. can do. The moving direction is set as a moving direction that maintains the contrast ratio within the loop 100 at a predetermined ratio, for example, 1:1 in the embodiment, and since the contrast ratio is 1:1 at the initial position in FIG. is also set as an extension of both end positions. Furthermore, by setting the amount of movement smaller than the radius of the loop 100, the projected image is prevented from deviating from the loop 100.

第4図には2回目以降の送り状態を示し、前述
した送り制御装置36による送りが行なわれた後
被測定物12の投影像外形が直線でない場合にル
ープ100内の明暗比が1対1から外れた状態を
示し、第4図では斜線を施した暗部が増加してい
ることが理解される。従つて、第4図の状態から
は明暗比を一定にするために、両端位置A1,A2
の延長線であるaに加えて明暗比を1対1にする
ための補正移動量bを加味しなければならず、こ
の結果、第4図からの送りは両移動量a,bの合
成ベクトルである移動量cに設定しなければなら
ず、送り制御36は前述した演算により移動方向
を求めた後、この移動方向に沿つた信号を両サー
ボモータ16,18に供給して載物台14すなわ
ち被測定物12を所定量送り移動することができ
る。第5図には逆に明部に対して暗部が少なくな
つた状態を示し、この時にも同様に明暗比を1対
1にする方向の移動量cが演算される。
FIG. 4 shows the feeding state from the second time onwards, and when the projected image outline of the object to be measured 12 is not a straight line after the feeding by the above-mentioned feeding control device 36, the contrast ratio in the loop 100 is 1:1. In FIG. 4, it can be seen that the dark areas indicated by diagonal lines are increasing. Therefore, from the state shown in FIG. 4, in order to keep the brightness ratio constant, both end positions A 1 and A 2
In addition to a, which is the extension line of The feed control 36 calculates the movement direction by the calculation described above, and then supplies signals along this movement direction to both servo motors 16 and 18 to move the workpiece table 14. In other words, the object to be measured 12 can be moved by a predetermined amount. In contrast, FIG. 5 shows a state where the dark areas are smaller than the bright areas, and at this time, the amount of movement c in the direction of making the contrast ratio 1:1 is calculated in the same way.

以上のようにして、本発明によれば、載物台の
相対的送りをイメージセンサ30で把えた投影像
を自動的に追従することで行なうことができ、こ
の結果、なんらの手動操作を必要とすることなく
予め定めた任意の初期位置から被測定物12の輪
郭形状に沿つてイメージセンサ30をなぞらせる
ことが可能となる。第6図にはこの状態が示さ
れ、イメージセンサ30のループ100が確実に
投影像の輪郭に追従して相対移動している状態が
明らかとなつている。
As described above, according to the present invention, the relative movement of the stage can be performed by automatically following the projected image captured by the image sensor 30, and as a result, no manual operation is required. It becomes possible to trace the image sensor 30 along the outline of the object to be measured 12 from any predetermined initial position without having to do so. This state is shown in FIG. 6, and it is clear that the loop 100 of the image sensor 30 is moving relative to the contour of the projected image with certainty.

以上のようにして本発明の自動送りが明らかと
なるが、このような自動送りでは、イメージセン
サ30の中心Oは被測定物12の輪郭形状に対し
てループ100の半径Rだけ誤差をもつて移動す
ることとなり、この結果、単にパルスジエネレー
タ20,22からなる送り検出器の送り情報から
は輪郭形状を正確に求めることができず、最大R
なる誤差を有するために到底精密な測定を行なう
ことは不可能である。本発明は、送り中に被測定
物12と交差するループ100の交点位置に基づ
き、被測定物12の各素点を測定することを特徴
とするものである。
As described above, the automatic feeding of the present invention becomes clear. In such automatic feeding, the center O of the image sensor 30 has an error relative to the contour shape of the object 12 by the radius R of the loop 100. As a result, the contour shape cannot be accurately determined simply from the feed information of the feed detector consisting of the pulse generators 20 and 22, and the maximum R
Because of this error, it is impossible to perform accurate measurements. The present invention is characterized in that each raw point of the object to be measured 12 is measured based on the intersection position of the loop 100 that intersects the object to be measured 12 during feeding.

すなわち、本発明は、ループ100の中心位置
Oを表す送り情報に加えて、ループ100を横切
る少なくとも一方の検出位置情報、実施例におい
てはA2を用い、被測定物12の各素点を測定す
ることを特徴とし、実施例においては、各パルス
ジエネレータ20,22からの送り情報X,Yは
測定回路38において位置検出回路34からの一
方の位置情報A2と演算される。
That is, in the present invention, in addition to the feed information representing the center position O of the loop 100, the detection position information of at least one side across the loop 100, A2 in the embodiment, is used to measure each raw point of the object to be measured 12. In this embodiment, the sending information X, Y from each pulse generator 20, 22 is calculated with one of the position information A2 from the position detection circuit 34 in the measurement circuit 38.

例えば第3図に示されるように、位置情報A2
は半径Rと角度θとからなり、前記送り情報X,
Yに対する補正量△X,△Yを与えることができ
る。そして、測定回路38は両情報を演算するこ
とにより被測定物12の輪郭(X+△X,Y+△
Y)を正確にデータ化することが可能となる。
For example, as shown in FIG.
consists of radius R and angle θ, and the feed information X,
Correction amounts ΔX and ΔY for Y can be given. Then, the measurement circuit 38 calculates the contour of the object 12 (X+△X, Y+△
Y) can be accurately converted into data.

以上のように、本発明によれば、自動的に投影
像を追従し、その輪郭を正確にデータ化すること
が可能となる。
As described above, according to the present invention, it is possible to automatically follow a projected image and accurately convert its outline into data.

第7図には本発明に用いられる他の実施例が示
され、第2図の実施例がループ100上に複数の
光電変換素子32を直接円形に配列したのに対
し、第7図では、光電変換素子32は通常の直線
型リニアアレーを用い、このリニアアレーとルー
プ100との間に複数の光フアイバ40を設けた
ことを特徴とし、光フアイバー40はその一端が
投影面上のループ100に対向して配列され、ま
た他端が光電変換素子32を含むリニアアレーに
対向して配列されている。従つて、この実施例に
よれば、光フアイバー40の可撓性を利用して、
ループ形状を任意に選択しまたその大きさも自由
に変更することが可能であり、単一のリニアアレ
ーを用いて種々の測定に好適なループ状イメージ
センサを構成することが可能となる。
FIG. 7 shows another embodiment used in the present invention, and while the embodiment in FIG. 2 has a plurality of photoelectric conversion elements 32 arranged directly in a circular manner on the loop 100, in FIG. The photoelectric conversion element 32 is characterized by using a normal linear linear array and having a plurality of optical fibers 40 provided between the linear array and the loop 100, with one end of the optical fiber 40 facing the loop 100 on the projection plane. The photoelectric conversion elements 32 are arranged so that the other end faces the linear array including the photoelectric conversion elements 32. Therefore, according to this embodiment, by utilizing the flexibility of the optical fiber 40,
The loop shape can be arbitrarily selected and its size can be freely changed, and a loop-shaped image sensor suitable for various measurements can be constructed using a single linear array.

以上説明したように、本発明によれば、複雑な
形状の被測定物であつても、その輪郭形状を自動
的に且つ高精度でデータ化し、その外形寸法測定
その他に極めて有効な測定方式を提供することが
できる利点を有する。
As explained above, according to the present invention, even if the object to be measured has a complex shape, the contour shape can be automatically converted into data with high precision, and an extremely effective measurement method can be used for measuring the external dimensions and other purposes. It has the advantages that it can offer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる測定方式が適用された
二次元自動輪郭装置の好適な実施例を示す概略構
成図、第2図は第1図におけるループ状イメージ
センサの好適な実施例を示す説明図、第3,4,
5,6図はそれぞれ本発明の作用を示す説明図、
第7図は本発明に好適なループ状イメージセンサ
の他の実施例を示す概略構成図である。 10…投影機、12…被測定物、14…載物
台、16…Xサーボモータ、18…Yサーボモー
タ、20…Xパルスジエネレータ、22…Yパル
スジエネレータ、26…第2投影面、30…ルー
プ状イメージセンサ、32…光電変換素子、34
…位置検出回路、36…送り制御装置、38…測
定回路、40…光フアイバ。
Fig. 1 is a schematic configuration diagram showing a preferred embodiment of a two-dimensional automatic contouring device to which the measurement method according to the present invention is applied, and Fig. 2 is an explanation showing a preferred embodiment of the loop-shaped image sensor in Fig. 1. Figures, 3rd, 4th,
Figures 5 and 6 are explanatory diagrams showing the action of the present invention, respectively.
FIG. 7 is a schematic configuration diagram showing another embodiment of a loop-shaped image sensor suitable for the present invention. DESCRIPTION OF SYMBOLS 10... Projector, 12... Measured object, 14... Stage, 16... X servo motor, 18... Y servo motor, 20... X pulse generator, 22... Y pulse generator, 26... Second projection surface, 30... Loop-shaped image sensor, 32... Photoelectric conversion element, 34
...position detection circuit, 36...feeding control device, 38...measuring circuit, 40...optical fiber.

Claims (1)

【特許請求の範囲】 1 閉ループに配置された複数の光電変換素子を
有するループ状イメージセンサのループ内に明暗
比が所定の比率になるように被測定物の一部を投
影し、 ループを横切る被測定物の両端交差位置を検出
し、 前記両端交差位置に基づいてループ内の明暗比
を所定比率に保つような移動方向を演算し、該移
動方向に沿つて被測定物を所定量移動する送りを
繰返し、 前記送り中に、ループを横切る少くとも一方の
検出位置情報と前記送り情報とに基づき前記ルー
プと被測定物との交差位置を表す各素点を演算し
被測定物の輪郭をデータ化することを特徴とする
二次元自動輪郭測定方法。 2 被測定物を載置し任意の方向に移動自在な載
物台を有する投影機と、 投影機の投影面に設けられ閉ループに配置され
た複数の光電変換素子を有するループ状イメージ
センサと、 被測定物がループを横切る両端交差位置を各光
電変換素子の電気的出力により検出する位置検出
回路と、 位置検出回路の出力を処理して被測定物の投影
面のループ内での明暗比が所定の比率になるよう
に載物台を送る駆動手段と、該送り量を検出出力
する送り検出器と、を有する送り制御装置と、 前記位置検出回路の内の一方の検出位置情報
と、前記送り検出器の出力とに基づいてループ状
イメージセンサと被測定物との交差位置を表す各
素点を測定し被測定物の輪郭をデータ化する測定
回路と、 を含む二次元自動輪郭測定装置。 3 特許請求の範囲2記載の装置において、ルー
プ状イメージセンサは一端が投影面に他端が光電
変換素子に対向して設けられた複数の光フアイバ
を含み、各光フアイバの一端は投影面でループ状
に配列されていることを特徴とする二次元自動輪
郭測定装置。
[Claims] 1. Project a part of the object to be measured into the loop of a loop-shaped image sensor having a plurality of photoelectric conversion elements arranged in a closed loop so that the contrast ratio becomes a predetermined ratio, and cross the loop. Detecting the intersection positions of both ends of the object to be measured, calculating a moving direction that maintains the contrast ratio in the loop at a predetermined ratio based on the crossing positions of both ends, and moving the object to be measured by a predetermined amount along the moving direction. The feeding is repeated, and during the feeding, each raw point representing the intersection position of the loop and the object to be measured is calculated based on the detected position information of at least one side crossing the loop and the feeding information, and the outline of the object to be measured is calculated. A two-dimensional automatic contour measurement method characterized by converting it into data. 2. A projector having a stage on which an object to be measured is placed and movable in any direction; a loop-shaped image sensor provided on the projection surface of the projector and having a plurality of photoelectric conversion elements arranged in a closed loop; A position detection circuit that detects the intersection position of both ends of the loop where the object to be measured crosses the loop using the electrical output of each photoelectric conversion element, and a position detection circuit that processes the output of the position detection circuit to determine the brightness ratio of the projection surface of the object to be measured within the loop. a feed control device having a drive means for feeding the stage to a predetermined ratio; a feed detector for detecting and outputting the feed amount; detected position information of one of the position detection circuits; A two-dimensional automatic contour measuring device comprising: a measurement circuit that measures each raw point representing the intersection position of the loop image sensor and the object to be measured based on the output of the feed detector and converts the contour of the object to be measured into data; . 3. In the device according to claim 2, the loop-shaped image sensor includes a plurality of optical fibers each having one end facing the projection surface and the other end facing the photoelectric conversion element, and one end of each optical fiber facing the projection surface. A two-dimensional automatic contour measuring device characterized by being arranged in a loop shape.
JP15106380A 1980-10-28 1980-10-28 Automatic measuring method and apparatus for planar contour Granted JPS5774608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106380A JPS5774608A (en) 1980-10-28 1980-10-28 Automatic measuring method and apparatus for planar contour

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106380A JPS5774608A (en) 1980-10-28 1980-10-28 Automatic measuring method and apparatus for planar contour

Publications (2)

Publication Number Publication Date
JPS5774608A JPS5774608A (en) 1982-05-10
JPS6133442B2 true JPS6133442B2 (en) 1986-08-02

Family

ID=15510485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106380A Granted JPS5774608A (en) 1980-10-28 1980-10-28 Automatic measuring method and apparatus for planar contour

Country Status (1)

Country Link
JP (1) JPS5774608A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913218A (en) * 1982-07-15 1984-01-24 Nippon Kogaku Kk <Nikon> Shaping device of spectacle frame
JPS6015623A (en) * 1983-07-07 1985-01-26 Tokyo Optical Co Ltd Adjusting device of glasses
JPS6285803A (en) * 1985-10-11 1987-04-20 Asaka Riken Kogyo Kk Automatic inspecting method for object to be inspected provided with punch hole
JPS6285804A (en) * 1985-10-11 1987-04-20 Asaka Riken Kogyo Kk Automatic inspecting device for object to be inspected provided with punch hole
JPS6285802A (en) * 1985-10-11 1987-04-20 Asaka Riken Kogyo Kk Automatic inspecting device for object to be inspected provided with punch hole

Also Published As

Publication number Publication date
JPS5774608A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
US5461478A (en) Method and apparatus for measuring three-dimensional position and orientation of an object using light projection
JP3511450B2 (en) Position calibration method for optical measuring device
US5450204A (en) Inspecting device for inspecting printed state of cream solder
EP0160160B1 (en) Video measuring system for defining location orthogonally
US5671056A (en) Three-dimensional form measuring apparatus and method
US5362970A (en) Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US4585350A (en) Pulsed robotic inspection
US7508529B2 (en) Multi-range non-contact probe
US4838696A (en) Pulsed robotic inspection
EP0532169B1 (en) Optical Inspection Probe
JPS63180111A (en) Automatically positioning system
JPH04105341A (en) Method and equipment for detecting bending and floating of lead of semiconductor device
JP2771594B2 (en) Method and apparatus for measuring displacement of object
JPH0514217B2 (en)
JPS643050B2 (en)
JPS6133442B2 (en)
EP0280903B1 (en) Apparatus for measuring a shape
US6490541B1 (en) Method and apparatus for visual measurement
JPS60774B2 (en) Pattern inspection method
JPS6125003A (en) Configuration measuring method
EP0296252A1 (en) Optical measuring instrument
JPH08327337A (en) Three dimensional shape measuring apparatus
JP3095411B2 (en) Calibration method of CCD camera
JPS6311771B2 (en)
JP2795790B2 (en) Sensor coordinate correction method for three-dimensional measuring device