JPS6133393B2 - - Google Patents

Info

Publication number
JPS6133393B2
JPS6133393B2 JP54097236A JP9723679A JPS6133393B2 JP S6133393 B2 JPS6133393 B2 JP S6133393B2 JP 54097236 A JP54097236 A JP 54097236A JP 9723679 A JP9723679 A JP 9723679A JP S6133393 B2 JPS6133393 B2 JP S6133393B2
Authority
JP
Japan
Prior art keywords
fuel assembly
core
control rod
enrichment
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54097236A
Other languages
Japanese (ja)
Other versions
JPS5622989A (en
Inventor
Yasukuni Oiyake
Hiroshi Mizuta
Jiro Ootsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP9723679A priority Critical patent/JPS5622989A/en
Publication of JPS5622989A publication Critical patent/JPS5622989A/en
Publication of JPS6133393B2 publication Critical patent/JPS6133393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は沸騰水型原子炉に係り、特に炉心構成
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to boiling water nuclear reactors, and more particularly to improvements in core configuration.

沸騰水型原子炉においては、炉心反応度調整の
為に、制御棒を使用している。原子炉運転初期か
ら燃料交換の為の炉停止時までの時間(1サイク
ルと称する)を考えると、炉心の余剰反応度をお
さえる為に制御棒が挿入される。沸騰水型原子炉
における制御棒は十字型をしており、制御棒が挿
入された位置の燃料集合体(以後制御棒セルと記
す)の燃料の燃焼の進み方は、制御棒が挿入され
ていない燃料集合体のそれに比べて遅く、したが
つてウラン235の核分裂の割合は制御棒が挿入さ
れていないバンドルに比べて小さい。炉心に挿入
される制御棒密度は、炉心余剰反応度が小さくな
るにつれて小さくなつていくが、サイクルを通じ
て制御棒が挿入される期間の長い燃料集合体程、
燃料の燃焼の進み方は遅くなる。したがつて長期
間制御棒が挿入された燃料集合体程、その燃料集
合体の燃焼に伴う反応度損失は、制御棒が挿入さ
れない燃料集合体のそれに比べて小さい為に、制
御棒が引抜かれた時制棒セルの出力は急激に大き
くなり、時には炉心全体で最大出力を出す燃料集
合体になる可能性があり、燃料の健全性上好まし
くない。
In boiling water reactors, control rods are used to adjust core reactivity. Considering the time (referred to as one cycle) from the initial stage of reactor operation until the reactor is shut down for fuel exchange, control rods are inserted to suppress excess reactivity in the reactor core. The control rods in a boiling water reactor are cross-shaped, and the progress of combustion of fuel in the fuel assembly (hereinafter referred to as control rod cell) at the position where the control rod is inserted is determined by the direction in which the control rod is inserted. The rate of fission of uranium-235 is therefore lower than that of a bundle without control rods. The density of control rods inserted into the reactor core decreases as the core surplus reactivity decreases, but the longer the period in which control rods are inserted throughout the cycle, the more
The progress of fuel combustion slows down. Therefore, the longer a control rod is inserted into a fuel assembly, the smaller the reactivity loss due to combustion of that fuel assembly is compared to that of a fuel assembly in which no control rod is inserted. The output of the time rod cells increases rapidly, and sometimes the fuel assembly may produce the maximum output in the entire core, which is unfavorable for the health of the fuel.

そこで1サイクル中、特定の制御棒が長期間挿
入の状態をさける為には制御棒の配列(以後パタ
ーンという)を大巾に変える必要があるが、その
パターン変更時に、それまで挿入されていた制御
棒を引抜く操作があるが、その際引き抜かれる制
御棒のセルの出力の急激な上昇はさけられない。
この為、制御棒操作時は炉心出力を下げておこな
うなどの方式をとつているが、これが設備利用率
を下げる要因となつている。一方、炉心内の燃料
集合体出力分布を炉心中心から炉心最外周部へ、
炉心半径方向にみた時の出力分布(以後径方向出
力分布と記す)は、炉心中心部で大きく、炉心最
外周で最低となる。これは炉心最外周部の燃料集
合体からの炉心の外への中性子のもれが炉心内で
最大であるためである。そのため、径方向出力分
布の炉心の中心と最外周部での勾配が大きい程、
炉心中心部燃料集合体に大きな出力が集中するこ
とになり、やはり燃料健全性上好ましくない。
Therefore, in order to avoid a state in which a specific control rod is inserted for a long period of time during one cycle, it is necessary to drastically change the arrangement of control rods (hereinafter referred to as pattern). There is an operation to pull out a control rod, but a sudden increase in the output of the cell of the control rod that is being pulled out cannot be avoided.
For this reason, measures have been taken to reduce the core power when operating the control rods, but this is a factor that lowers the capacity utilization rate. On the other hand, the power distribution of fuel assemblies in the core is changed from the center of the core to the outermost periphery of the core.
The power distribution when viewed in the radial direction of the core (hereinafter referred to as radial power distribution) is large at the center of the core and lowest at the outermost periphery of the core. This is because the leakage of neutrons from the fuel assemblies at the outermost periphery of the core to the outside of the core is maximum within the core. Therefore, the greater the gradient of the radial power distribution between the center of the core and the outermost periphery, the more
A large amount of power will be concentrated in the fuel assembly at the center of the core, which is also unfavorable in terms of fuel integrity.

本発明は上記の事情に基きなされたもので、1
サイクル中、特定の制御棒の長期間の挿入状態を
可能にし、パターン変更回数を低減することによ
り設備利用率の向上を図り、同時に制御棒セルの
出力を制御棒引抜時にも低くおさえるとともに、
径方向出力分布の勾配をゆるやかにすることによ
り燃料の健全性の向上を図ることを目的としてい
る。
The present invention has been made based on the above circumstances, and includes:
During the cycle, a specific control rod can be inserted for a long period of time, reducing the number of pattern changes, thereby improving capacity utilization.At the same time, the output of the control rod cell can be kept low even when the control rod is withdrawn.
The purpose is to improve the health of the fuel by making the slope of the radial power distribution gentler.

本発明においては1サイクル中で挿入及び引抜
き操作をする制御棒を固定しておき、それら制御
棒セルの燃料濃縮度は制御棒が挿入されないバン
ドルの燃料濃縮度より低くしたものを使用するこ
とにより、制御棒引抜き時における出力を低くお
さえる事を実現する。又、制御棒セルの燃料濃縮
度を2種類以上とし、炉心半径方向にみて炉心中
心部近くでは最も低い濃縮度の制御棒セルを用
い、炉心外周部に向つて同心円上に、濃縮度の高
い制御棒セルを配列することにより、径方向出力
分布の平担化を実現する。但し、2種類以上の制
御棒セルの濃縮度は、制御棒が挿入されない燃料
集合体のそれに比べて低いことは上記の通りであ
る。
In the present invention, the control rods that are inserted and withdrawn during one cycle are fixed, and the fuel enrichment of these control rod cells is lower than the fuel enrichment of the bundle in which no control rods are inserted. , it is possible to keep the output low when the control rod is withdrawn. In addition, the control rod cells have two or more types of fuel enrichment, and the control rod cells with the lowest enrichment are used near the center of the core when viewed in the radial direction of the core, and the control rod cells with the highest enrichment are used in concentric circles toward the outer periphery of the core. By arranging the control rod cells, the radial power distribution can be made even. However, as described above, the enrichment of two or more types of control rod cells is lower than that of a fuel assembly in which no control rods are inserted.

第1図は炉心の横断面を模式的に示したもので
十字型の記号は制御棒10であり、十字型の記号
の各象限に書かれた数字1,2,3は各々種類の
異る燃料集合体1,2,3を表わす。
Figure 1 schematically shows the cross section of the reactor core. The cross-shaped symbol is the control rod 10, and the numbers 1, 2, and 3 written in each quadrant of the cross-shaped symbol are different types. Fuel assemblies 1, 2, and 3 are shown.

3種類の燃料集合体のうち燃料集合体1が最大
の濃縮度を有し、燃料集合体1に接する制御棒は
原子炉運転中操作されず引抜かれたままの状態で
ある。第1図で燃料集合体2,3が制御棒セルと
なり、炉心中心に近い燃料集合体3が最も低濃縮
度燃料であり、炉心周辺部に在る燃料集合体2は
燃料集合体3より濃縮度は高いが燃料集合体1よ
り低い燃料濃縮度である。
Of the three types of fuel assemblies, fuel assembly 1 has the highest enrichment degree, and the control rods in contact with fuel assembly 1 remain unoperated and withdrawn during reactor operation. In Figure 1, fuel assemblies 2 and 3 are control rod cells, fuel assembly 3 near the core center has the lowest enrichment fuel, and fuel assembly 2 near the core is more enriched than fuel assembly 3. Although the concentration is high, the fuel enrichment is lower than that of fuel assembly 1.

第2図は横軸に炉心中心と炉心最外周を結ぶ炉
心径方向をとり、縦軸に制御棒が挿入されないと
きの燃料集合体出力(相対値)を示したものであ
る。第2図で、曲線Aは炉心内に低濃縮度制御棒
セルを使用せず、1種類の燃料集合体のみを使用
して炉心を構成したときの出力分布である。曲線
Bは1種類の制御棒セル(燃料集合体2と燃料集
合体3の濃縮度が同じ場合)を用いたときの燃料
集合体出力分布である。曲線Bの凹部が制御棒セ
ルに対応する部分である。曲線Bの凸部分と曲線
Aの凹を比較すると、曲線Bの方が径方向出力分
布がゆるやかである。
In FIG. 2, the horizontal axis represents the core radial direction connecting the core center and the outermost periphery of the core, and the vertical axis represents the fuel assembly output (relative value) when no control rods are inserted. In FIG. 2, curve A is the power distribution when the core is constructed using only one type of fuel assembly without using low enrichment control rod cells in the core. Curve B is the fuel assembly output distribution when one type of control rod cell (when fuel assembly 2 and fuel assembly 3 have the same enrichment). The concave portion of curve B corresponds to the control rod cell. Comparing the convex portion of curve B and the concave portion of curve A, curve B has a gentler radial output distribution.

これは、制御棒セルの存在によつて炉心中央部
の制御棒セルのバンドル出力が下がるがこのこと
によつて制御棒セル周辺のバンドル出力も低くな
ることによる。しかしながら、1種類の制御棒セ
ルを使用するときは、炉心周辺部のもともと出力
分担が少ない制御棒セルについても大きな出力低
下をもたらす低濃緒燃料を入れることになる。従
つて、実際の運転時において炉周辺部(第2図γ
又はδ)に制御棒が挿入される場合には、制御棒
セル(γ又はδ)の出力が下がりすぎ径方向の出
力分布の平担化にあまり大きな効果が得られなく
なる。
This is because the bundle output of the control rod cells in the center of the reactor core decreases due to the presence of the control rod cells, which also lowers the bundle output around the control rod cells. However, when one type of control rod cell is used, low-density fuel is put into the control rod cells in the vicinity of the core, which originally share a small amount of power, and which causes a large reduction in output. Therefore, during actual operation, the surrounding area of the furnace (Fig. 2 γ
or δ), the output of the control rod cell (γ or δ) decreases too much, making it impossible to obtain a significant effect in flattening the radial output distribution.

第2図曲線Cは本発明による制御棒セルを使用
したときであり2種類の制御棒セルを用いた場合
である。曲線Cと曲線Bを比べるとわかるように
曲線Cの方が炉心周辺部での出力が曲線Bのそれ
よりも大きく、径方向出力分布の平担化の効果は
曲線Bの場合より顕著である。
Curve C in FIG. 2 shows the case when the control rod cell according to the present invention is used, and two types of control rod cells are used. As can be seen by comparing curves C and B, curve C has a larger output around the core than curve B, and the effect of flattening the radial power distribution is more pronounced than in curve B. .

これは、本発明の場合炉周辺部の制御棒セル
(γ又はδ)には炉中央部の制御棒セル(α又は
β)よりも濃縮度の高い燃料集合体を配している
ために周辺部の燃料集合体出力が上記一様燃料炉
心、一種類の制御棒セルを用いた炉心に較べて本
発明の場合、制御棒セルの燃料集合体及び制御棒
セルの周囲の燃料集合体共により高くなり、また
相対的に炉心中央部の燃料集合体出力は、本発明
では前二者の炉心より低くなり、径方向出力分布
の平担化効果が顕著である。
This is because in the case of the present invention, the control rod cells (γ or δ) in the periphery of the reactor are provided with fuel assemblies with higher enrichment than the control rod cells (α or β) in the center of the reactor. Compared to the above-mentioned uniform fuel core and a core using one type of control rod cell, in the case of the present invention, the fuel assembly output of the control rod cell and the fuel assembly around the control rod cell are both In addition, the fuel assembly output at the center of the core is relatively lower in the present invention than in the former two cores, and the effect of flattening the radial power distribution is remarkable.

また、実際の運転で制御棒を挿入して運転する
場合でも炉周辺部の制御棒セル(γ又はδ)の出
力が一種類の制御棒セルを用いた炉心程低下しな
い。
Furthermore, even when operating with control rods inserted during actual operation, the output of the control rod cells (γ or δ) in the peripheral area of the reactor does not decrease as much as in a core using one type of control rod cell.

従つて、径方向の出力分布の平担化効果は前二
者の炉心に対して最も顕著である。
Therefore, the effect of flattening the power distribution in the radial direction is most significant for the former two cores.

第3図は第1図中に示した燃料集合体1の濃縮
度を2.2w/o、燃料集合体2の濃縮度を1.8w/
o、燃料集合体3の濃縮度を1.2w/oとし、110
万KWe級の沸騰水型原子炉に対して、燃焼初期
より燃料取替のため炉停止までの期間(サイクル
という)の運転計画(制御棒の配列(パターン)
の変化)を1/4炉心について示したものであり、
第3図a,b,c,d,e,f,g,h,iはそ
れぞれ燃焼度0GWd/t、0.2GWd/t、
1.5GWd/t、3.0GWd/t、4.5GWd/t、
6.0GWd/t、7.5GWd/t、9.0GWd/t、
10GWd/tでの制御棒パターンである。
Figure 3 shows the enrichment of fuel assembly 1 shown in Figure 1 at 2.2w/o, and the enrichment of fuel assembly 2 at 1.8w/o.
o, the enrichment of fuel assembly 3 is 1.2w/o, 110
Operation plan (control rod arrangement (pattern)) for a 10,000 KWe class boiling water reactor for the period (called a cycle) from the initial stage of combustion until the reactor shuts down for fuel replacement.
) is shown for 1/4 core,
Figure 3 a, b, c, d, e, f, g, h, and i are burnup levels of 0 GWd/t and 0.2 GWd/t, respectively.
1.5GWd/t, 3.0GWd/t, 4.5GWd/t,
6.0GWd/t, 7.5GWd/t, 9.0GWd/t,
This is the control rod pattern at 10GWd/t.

なお第3図は炉心の1/4を示し、あとの3/4は省
略している。また、一つの□は制御棒101体に
対しその周辺に4体の燃料集合体を収容した単位
セルを示し、この単位セル内に示された数字は制
御棒の引抜かれる割合を示し、48は全引抜、0
は全挿入を示す。さらに数字が示されていない単
位セルは全引抜きを示している。
Note that Figure 3 shows 1/4 of the reactor core, and the remaining 3/4 is omitted. Also, one □ indicates a unit cell that accommodates 4 fuel assemblies around 101 control rods, and the number shown in this unit cell indicates the rate at which the control rods are withdrawn. Full withdrawal, 0
indicates full insertion. Furthermore, unit cells without numbers indicate complete extraction.

第4図は上記運転計画での制御棒密度の推移を
示したものである。Mは中央部の制御棒セル、N
は周辺部の制御棒セルを表わす。第3図、第4図
に示されるようにサイクル初期および中期までは
2種類の制御棒セルの制御棒を用いるが、サイク
ル末期付近では中央部の制御棒セルの制御棒のみ
が挿入されサイクル末期では全制御棒が引抜れて
いる。
Figure 4 shows the change in control rod density under the above operation plan. M is the control rod cell in the center, N
represents control rod cells at the periphery. As shown in Figures 3 and 4, control rods from two types of control rod cells are used at the beginning and middle of the cycle, but near the end of the cycle, only the control rods from the central control rod cell are inserted. All control rods have been pulled out.

第5図は、第3図に示した運転計画をとつたと
きの熱的制限値中の最大線出力密度(本実施例で
の許容最大線出力密度は13.4KW/ftである)に
注目したものである。
Figure 5 focuses on the maximum linear power density (the allowable maximum linear power density in this example is 13.4KW/ft) in the thermal limit values when the operation plan shown in Figure 3 is adopted. It is something.

ここに、第5図は横軸に1サイクルの炉心平均
燃焼度(GWD/t)を、縦軸に燃料集合体の最
大出力密度(KW/ft)をとつたもので、本発明
による制御棒セルを2種類使用した場合の効果の
1例を表わしている。第5図のP、Q、Rは各々
第1図中の燃料集合体1,2,3に対応してい
る。第5図からわかるように制御棒セルの出力密
度Q、RはPよりも低くなつており、長期間特定
の制御棒のみによる運転を行つても、燃料健全性
をそこなうことなく十分な熱的余裕をもつて運転
できる事を示している。
Here, in Fig. 5, the horizontal axis shows the average burnup of the core in one cycle (GWD/t), and the vertical axis shows the maximum power density of the fuel assembly (KW/ft). This shows an example of the effect when two types of cells are used. P, Q, and R in FIG. 5 correspond to fuel assemblies 1, 2, and 3 in FIG. 1, respectively. As can be seen from Figure 5, the power densities Q and R of the control rod cells are lower than P, and even if only a specific control rod is operated for a long period of time, sufficient thermal power can be maintained without impairing the fuel integrity. This shows that you can drive comfortably.

以上述べたごとく、本発明によればサイクルを
通じて、炉心の径方向の出力分布(燃料集合体出
力分布)は、平担に保たれ、運転中に使用する制
御棒を特定し、これら特定された制御棒をもつて
炉心の反応度調節をサイクル末期に近ずくにつれ
て徐々に引抜くことによつて、即ち、大巾な制御
棒のパターン変更を要せずに行うことができるた
め、従来必要であつた制御棒パターン変更時の出
力低下が著しく少くなることによつて設備利用率
向上に対する寄与が大である。
As described above, according to the present invention, the power distribution in the radial direction of the reactor core (fuel assembly power distribution) is kept flat throughout the cycle, and the control rods to be used during operation are identified. By gradually withdrawing the control rods to adjust the reactivity of the core toward the end of the cycle, it is possible to adjust the reactivity of the reactor core without having to change the pattern of the control rods, which was previously necessary. This significantly reduces the output drop when changing the hot control rod pattern, making a large contribution to improving the capacity utilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を模式的に示す炉心
の横断面図、第2図は本発明の効果の説明図、第
3図は本発明を適用した運転計画での制御棒パタ
ーンの推移を示す図、第4図は燃焼度に対する制
御棒密度の変化を示す図、第5図は本発明の効果
の説明図である。 1……燃料集合体、2……燃料集合体、3……
燃料集合体、10……制御棒。
Fig. 1 is a cross-sectional view of a reactor core schematically showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the effects of the present invention, and Fig. 3 is a control rod pattern in an operation plan to which the present invention is applied. FIG. 4 is a diagram showing the change in control rod density with respect to burnup, and FIG. 5 is a diagram illustrating the effect of the present invention. 1... Fuel assembly, 2... Fuel assembly, 3...
Fuel assembly, 10...control rod.

Claims (1)

【特許請求の範囲】 1 制御棒と、この制御棒の周囲に配置される4
体の燃料集合体と、この4体の燃料集合体に対し
ほぼ1体の割で前記制御棒を配置してなる炉心
と、この炉心を主要部に配置してなる原子炉にお
いて、前記燃料集合体に収納されるウラン235の
濃縮度は3種類以上からなり、原子炉運転期間を
通してパターン変更のために操作されない制御棒
周囲は濃縮度の最も高い第1の燃料集合体で構成
され、原子炉運転期間を通してパターン変更のた
めに操作されかつ炉心の中心軸に近い制御棒周囲
は最も濃縮度の低い第3の燃料集合体で構成さ
れ、原子炉運転期間を通してパターン変更のため
に操作されかつ炉心周辺部に近い制御棒周囲は前
記第3の燃料集合体より濃縮度の高い第2の燃料
集合体で構成されて成ることを特徴とする原子
炉。 2 第1の燃料集合体の濃縮度Aと、第2の燃料
集合体の濃縮度Bと、第3の燃料集合体の濃縮度
Cは、A>B>Cなる関係にあることを特徴とす
る特許請求の範囲第1項記載の原子炉。
[Claims] 1. A control rod, and 4.
In a nuclear reactor in which the control rods are arranged in approximately one fuel assembly for each of the four fuel assemblies, and the core is arranged in the main part, the fuel assembly There are three or more types of enrichment of uranium-235 stored in the reactor, and the area around the control rods that are not operated to change the pattern throughout the reactor operation period is composed of the first fuel assembly with the highest enrichment, and the reactor The area around the control rods, which are operated to change the pattern throughout the operating period and are close to the central axis of the reactor core, is composed of a third fuel assembly with the lowest enrichment. A nuclear reactor characterized in that the area around the control rods near the periphery is constituted by a second fuel assembly having a higher enrichment than the third fuel assembly. 2 The enrichment level A of the first fuel assembly, the enrichment level B of the second fuel assembly, and the enrichment level C of the third fuel assembly are characterized by a relationship of A>B>C. A nuclear reactor according to claim 1.
JP9723679A 1979-08-01 1979-08-01 Nuclear reactor Granted JPS5622989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9723679A JPS5622989A (en) 1979-08-01 1979-08-01 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9723679A JPS5622989A (en) 1979-08-01 1979-08-01 Nuclear reactor

Publications (2)

Publication Number Publication Date
JPS5622989A JPS5622989A (en) 1981-03-04
JPS6133393B2 true JPS6133393B2 (en) 1986-08-01

Family

ID=14186974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9723679A Granted JPS5622989A (en) 1979-08-01 1979-08-01 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPS5622989A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915888A (en) * 1982-07-19 1984-01-26 株式会社東芝 Bwr type reactor core

Also Published As

Publication number Publication date
JPS5622989A (en) 1981-03-04

Similar Documents

Publication Publication Date Title
JPS6244632B2 (en)
JPH03108690A (en) Fuel assembly
JPS6171389A (en) Fuel aggregate
JPS6133393B2 (en)
JPH05249270A (en) Core of nuclear reactor
JPH0588439B2 (en)
JPH0415436B2 (en)
JP3075749B2 (en) Boiling water reactor
JP3080663B2 (en) Operation method of the first loading core
JP3894784B2 (en) Fuel loading method for boiling water reactor
JPH0432355B2 (en)
JP3596831B2 (en) Boiling water reactor core
JP2958856B2 (en) Fuel assembly for boiling water reactor
Nishimura 3.2 Advances of reactor core and fuel assembly 3.2. 1 High burnup fuel design
JPS63121789A (en) Nuclear reactor initial charging core
JPS58131589A (en) Method of operating bwr type reactor
JPH102982A (en) Core for nuclear reactor and its operating method
JPS6280585A (en) Initial loading core for nuclear reactor
Bender et al. Boiling water reactor reload fuel for high burnup: 9 x 9 with internal water channel
JPS6356514B2 (en)
JP2656279B2 (en) Fuel assembly for boiling water reactor
JPH0216477B2 (en)
JPH0350997B2 (en)
JPS6158789B2 (en)
JPS6359116B2 (en)