JPS6133369B2 - - Google Patents

Info

Publication number
JPS6133369B2
JPS6133369B2 JP54120835A JP12083579A JPS6133369B2 JP S6133369 B2 JPS6133369 B2 JP S6133369B2 JP 54120835 A JP54120835 A JP 54120835A JP 12083579 A JP12083579 A JP 12083579A JP S6133369 B2 JPS6133369 B2 JP S6133369B2
Authority
JP
Japan
Prior art keywords
adsorbent
moisture
sample gas
exhaust gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54120835A
Other languages
Japanese (ja)
Other versions
JPS5644826A (en
Inventor
Hideaki Hioki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP12083579A priority Critical patent/JPS5644826A/en
Publication of JPS5644826A publication Critical patent/JPS5644826A/en
Publication of JPS6133369B2 publication Critical patent/JPS6133369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は原子力設備から排出される排ガス中の
トリチウム量を監視するために排ガス中のトリチ
ウムを回収して測定する装置に関する。 一般に原子力発電所その他放射性物質を扱う施
設からの廃棄物はその中に含まれる放射性物質の
量を監視し、環境汚染を防止しなければならな
い。これらの放射性物質の中で特にトリチウム
3Hは半減期が長い核種であるので、廃棄物たと
えば排ガス中に含まれる濃度がきわめて低い場合
であつてもその濃度を測定監視し、排出を規制し
なければならない。したがつて、排ガス中に含ま
れるこのような低濃度のトリチウムの量は測定す
るには排ガス中の水分を凝縮して回収し、この回
収された水分中に含まれるトリチウムを測定する
方法が一般に採用される。ところで、このような
方法では排ガス中の水分の量を正確に測定しない
と排ガス中のトリチウム濃度が正確に求められな
い。もちろん排ガスの温度と湿度から水分の量を
求めることはできるが、このような方法では精度
が低く実用に供し得ない。このため上記の如き方
法では排ガス中の水分を高効率で捕獲回収し、排
ガス中の水分の量を正確に求める必要がある。こ
のため、従来このような水分の回収は第1図に示
すような装置を用いておこなわれていた。すなわ
ち、Aは排ガスを排出する排気筒で、この排気筒
Aから排出される排ガスはサンプリングノズルB
から採取され、フイルタCを通り、温度湿度検出
器Dによつて温度および湿度が測定され、その測
定値は記録計Eに記録される。そしてこのガスは
コンプレツサFで所定の圧力まで圧縮され、アキ
ユムレータGを通つて冷却器Hに送られる。そし
てこの圧縮されたガスは冷却器Hで冷却されたガ
ス中に含まれる水分が凝縮液化し、試料捕集容器
Iに回収され、水分が凝縮分離されたガスは圧力
計Jによつて圧力を測定されたのち圧力調整弁K
を通つて排気筒に戻されるように構成されてい
る。そして、回収された水分の量とガス流量とか
ら排ガス中の水分の量を求めるとともに回収され
た水分を液体シンチレーシヨンカウンタ等により
測定してこの回収された水分中のトリチウム濃度
を求め、これらの結果から排ガス中のトリチウム
濃度を求めるようにしている。しかし、このよう
な方法では排ガス中の水分の量が正確に測定でき
ない不具合があつた。すなわち、上記の如き装置
では水分の凍結を防止するため、劣却器Hでの冷
却温度は0℃以上としなければならない。ところ
で水の飽和蒸気圧は0℃で4.58mmHgあるため冷
却器Hから排出されるガス中には4.58mmHgの水
蒸気が含まれ、この水蒸気は回収されずに排気筒
Aに戻されてしまう。もちろん、コンプレツサF
で圧縮する圧力を高めれば水分の回収率は高くな
るものであるが、あまり圧力を高くするとコンプ
レツサFの構造が複雑となり、その保守点検も面
倒であるとともに漏洩も多くなる等の不具合を生
じるので実際には圧力は3〜5Kg/cm2程度が限度
であり、水分の回収率の向上にも限度があつた。
このため従来はコンプレツサFで圧縮する圧力を
一定に維持するとともにあらかじめ排ガスの温
度、湿度と水分の回収率との関係を求めておき、
補正をおこなつて排ガス中の水分量を求めなけれ
ば面倒であるとともに不正確であつた。 本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは排ガス中の水分を効
率よく捕獲回収して排ガス中のトリチウム濃度を
高精度にかつ容易に求めることができ、かつ連続
的な測定ができるとともに構造が簡単でかつ耐久
性、信頼性の高いトリチウム濃度測定装置を得る
ことにある。 以下本発明を実施例にしたがつて説明する。ま
ず本発明の装置の第1実施例を第2図にしたがつ
て説明する。図中1は排ガスを排出する排気筒で
ある。そしてこの排気筒1内を流れる排ガスは試
料ガス採取機構2によつて採取されるように構成
されている。3はそのサンプリングノズルであつ
て、このサンプリングノズルは排気筒1内に挿入
され、また吸込管4を介してポンプ5の吸込側に
接続されている。また、このポンプ5の吐出側に
は吐出管6が接続され、この吐出管6は二股に分
岐された分岐管7a,7bに接続されている。そ
してこれら分岐管7a,7bの途中には後述する
水分吸着体8,8がそれぞれ接続されている。ま
た、これらの分岐管7a,7bには上記水分吸着
体8,8の上流側および下流側に位置してそれぞ
れ切換弁9a,9b,10a,10bが設けられ
ている。また、これらの分岐管7a,7bはそれ
ぞれ戻し管11に接続され、この戻し管11は上
記排気筒1内に開口している。したがつて排気筒
1内を流れる排ガスはポンプ5によつてサンプリ
ングノズル3から吸引採取され、分岐管7a,7
bを介して水分吸着体8,8内を通過し、戻し管
11を通つて排気筒1内に戻されるように構成さ
れている。また、各分岐管7a,7bの切換弁9
a,9b,10a,10bは図示しない制御機構
によつて選択的に開弁され、いずれか一方に水分
吸着体8,8に選択的に採取された排ガスすなわ
ち試料ガスが流通されるように構成されている。
次に上記水分吸着体8,8の構成を説明する。1
2,12は吸着剤収容容器であつて略筒状をなし
ている。そしてこれら吸着剤収容容器12,12
の内側には断熱材13,13が設けられている。
そして、この吸着剤収容容器12,12内にはた
とえばモレキユラシーブ4A等の水分を吸着する
吸着剤14,14が所定量だけ収容されている。
また、これら吸着剤収容容器12,12の両端部
にはそれぞれ流入管15,15および流出管1
6,16が接続され、これらの流入管15,15
および流出管16,16の途中にはそれぞれ開閉
弁17…が設けられている。また、これら流入管
15,15および流出管16,16の先端にはそ
れぞれ接続継手18…が設けられており、これら
水分吸着体8,8はこれらの接続継手18…によ
つて分岐管7a,7bにそれぞれ着脱自在に接続
されている。また、これらの水分吸着体8,8内
には発熱線等の加熱ヒータ19,19が内蔵され
ており、これらの加熱ヒータ19,19に通電す
ることにより吸着剤14,14を加熱できるよう
に構成されている。 次に上述の如き装置を用いて排ガス中のトリチ
ウムを捕獲回収してトリチウム濃度を測定する方
法を説明する。まず、一方の分岐管7aの切換弁
9a,10aを開、他方の分岐管7bの切換弁9
b,10bを閉にし、ポンプ5を作動させ、排気
筒1から排ガスを採取し、この採取された試料ガ
スを一方の水分吸着体8中に流通させる。そし
て、この試料ガス中の水分を一方の水分吸着体8
内の吸着剤14に吸着捕獲させる。そして所定量
の試料ガスを流通させたのち一方の分岐管7aの
切換弁9a,10aを閉じ、この一方の水分吸着
体8への試料ガスの流通を停止するとともに他方
の分岐管7bの切換弁9b,10bを開き、他方
の水分吸着体8に試料ガスを流通させる。なお、
水分吸着体8,8内の吸着剤14,14の量は試
料ガスの流通を停止する前に飽和しないようにそ
の量をあらかじめ設定しておく。そして一方の水
分吸着体8の開閉弁17,17を閉じるとともに
接続継手18,18を外して一方の水分吸着体8
を取外し、その後に新しい水分吸着体を装着す
る。以下同様の操作を繰返して試料ガス中の水分
をこれら水分吸着体8,8に交互に吸着させる。
そして、取外された水分吸着体8は第3図に示す
如く重量計20によつて全体の重量が測定され
る。なお、この水分吸着体8は水分を吸着する前
の重量があらかじめ測定されており、水分を吸着
した後の重量差から吸着した水分の重量を求め
る。なお、この場合水分吸着体8には開閉弁1
7,17が設けられており、これらの開閉弁1
7,17は水分吸着体8が取外される前に閉じら
れているので、この水分吸着体8が取外されてか
ら重量が測定されるまでの間に大気中の水分が吸
着剤14に吸着されてしまうようなことはない。
そして、重量が測定された水分吸着体8は第4図
に示す如く流入管15または流出管16のいずれ
か一方たとえば流出管16を回収容器21に接続
し、この流出管16の開閉弁17を開くとともに
加熱ヒータ19を電源22に接続し、この加熱ヒ
ータ19によつて吸着剤14を加熱する。したが
つて、この吸着着14中に吸着されていた水分は
放出され、この放出された水分は回収容器21内
に流入する。この回収容器21は冷媒容器23内
に収容された冷媒24中に浸漬されており、この
周壁が冷却されているので放出された水分すなわ
ち水蒸気は冷却されて凝縮する。なお、水分を放
出した水分吸着体8は吸着剤14が再生され、再
度使用される。そして、この回収容器21に回収
された水は第5図に示す如く計量器25によつて
体積を測定したのち、液体シンチレーシヨンカウ
ンタ(図示せず)によりトリチウム濃度Cliq〔μ
Ci/ml〕が測定される。そして、吸着剤14に
吸着された水分の重量を体積に換算した値をV
〔ml〕、試料ガスの流量をN〔/min〕、試料ガ
スの流通時間をT〔min〕、吸着された水分の捕
獲効率をηとすれば排ガス中のトリチウム濃度C
H〔μCi/ml〕は CH=Cliq・V/N・T・η×1000 で求めることができる。そして、この方法では排
ガス中の水分は吸着剤14に吸着されるのでその
捕獲効率は実用上100%としても支障がなく、ほ
とんど補正を必要とせず、かつ精度も高いもので
ある。なお、このような効果を確認するために、
水分の量すなわち水蒸気圧を正確に一定に規制し
た試料ガスを上記の如き装置および方法によつて
吸着回収した結果を次表に記す。
The present invention relates to an apparatus for recovering and measuring tritium in exhaust gas in order to monitor the amount of tritium in exhaust gas discharged from nuclear equipment. In general, the amount of radioactive materials contained in waste from nuclear power plants and other facilities that handle radioactive materials must be monitored to prevent environmental pollution. Among these radioactive substances, especially tritium
Since 3H is a nuclide with a long half-life, its concentration must be measured and monitored, and its emissions must be regulated, even if the concentration contained in waste, such as exhaust gas, is extremely low. Therefore, in order to measure the amount of such low concentrations of tritium contained in exhaust gas, the general method is to condense and recover the moisture in the exhaust gas, and then measure the tritium contained in this recovered moisture. Adopted. By the way, with such a method, the tritium concentration in the exhaust gas cannot be accurately determined unless the amount of water in the exhaust gas is accurately measured. Of course, it is possible to determine the amount of moisture from the temperature and humidity of the exhaust gas, but this method has low accuracy and cannot be put to practical use. Therefore, in the above method, it is necessary to capture and recover moisture in the exhaust gas with high efficiency and accurately determine the amount of moisture in the exhaust gas. For this reason, such water recovery has conventionally been carried out using a device as shown in FIG. That is, A is an exhaust pipe that discharges exhaust gas, and the exhaust gas discharged from this exhaust pipe A is sent to a sampling nozzle B.
The temperature and humidity are measured by a temperature/humidity detector D after passing through a filter C, and the measured values are recorded on a recorder E. This gas is then compressed to a predetermined pressure by a compressor F, and sent to a cooler H through an accumulator G. This compressed gas is cooled by a cooler H, and the moisture contained in the gas is condensed and liquefied, and collected in a sample collection container I. After being measured, the pressure regulating valve K
is configured to be returned to the exhaust stack through the Then, the amount of moisture in the exhaust gas is determined from the amount of recovered moisture and the gas flow rate, and the recovered moisture is measured using a liquid scintillation counter to determine the tritium concentration in this recovered moisture. The tritium concentration in the exhaust gas is determined from the results. However, this method has a problem in that the amount of moisture in the exhaust gas cannot be accurately measured. That is, in the above-mentioned apparatus, in order to prevent water from freezing, the cooling temperature in the degrading device H must be set to 0° C. or higher. By the way, the saturated vapor pressure of water is 4.58 mmHg at 0°C, so the gas discharged from the cooler H contains 4.58 mmHg of water vapor, and this water vapor is returned to the exhaust stack A without being recovered. Of course, Compressa F
If the compression pressure is increased, the water recovery rate will be increased, but if the pressure is increased too much, the structure of the compressor F will become complicated, its maintenance and inspection will be troublesome, and problems such as increased leakage will occur. In reality, the pressure was limited to about 3 to 5 kg/cm 2 , and there was a limit to the improvement in water recovery rate.
For this reason, in the past, the pressure compressed by compressor F was maintained constant, and the relationship between the temperature and humidity of the exhaust gas and the moisture recovery rate was determined in advance.
It would be troublesome and inaccurate if the amount of water in the exhaust gas was not determined by making corrections. The present invention has been made based on the above circumstances, and its purpose is to efficiently capture and recover moisture in exhaust gas, to easily and accurately determine the tritium concentration in exhaust gas, and to continuously The object of the present invention is to obtain a tritium concentration measuring device which is capable of performing accurate measurements, has a simple structure, and is highly durable and reliable. The present invention will be explained below using examples. First, a first embodiment of the apparatus of the present invention will be described with reference to FIG. In the figure, numeral 1 is an exhaust pipe that discharges exhaust gas. The exhaust gas flowing through the exhaust stack 1 is configured to be sampled by a sample gas sampling mechanism 2. Reference numeral 3 designates the sampling nozzle, which is inserted into the exhaust pipe 1 and connected to the suction side of the pump 5 via the suction pipe 4. Further, a discharge pipe 6 is connected to the discharge side of the pump 5, and the discharge pipe 6 is connected to two branch pipes 7a and 7b. Moisture adsorbents 8, 8, which will be described later, are connected to the middle of these branch pipes 7a, 7b, respectively. Further, these branch pipes 7a, 7b are provided with switching valves 9a, 9b, 10a, 10b located upstream and downstream of the moisture adsorbents 8, 8, respectively. Further, these branch pipes 7a and 7b are each connected to a return pipe 11, and this return pipe 11 opens into the exhaust pipe 1. Therefore, the exhaust gas flowing inside the exhaust pipe 1 is sucked and sampled from the sampling nozzle 3 by the pump 5, and is transferred to the branch pipes 7a, 7.
It is configured so that it passes through the moisture adsorbers 8, 8 via the pipe b, and is returned into the exhaust pipe 1 through the return pipe 11. Moreover, the switching valve 9 of each branch pipe 7a, 7b
The valves a, 9b, 10a, and 10b are selectively opened by a control mechanism (not shown), and the exhaust gas selectively collected by the moisture adsorbers 8, 8, that is, the sample gas, is configured to flow through one of them. has been done.
Next, the structure of the moisture adsorbents 8, 8 will be explained. 1
Reference numerals 2 and 12 denote adsorbent storage containers, which are approximately cylindrical in shape. And these adsorbent storage containers 12, 12
Heat insulating materials 13, 13 are provided inside.
A predetermined amount of adsorbents 14, 14, such as molecular sieves 4A, which adsorb moisture, are accommodated in the adsorbent containers 12, 12.
Further, an inflow pipe 15, 15 and an outflow pipe 1 are provided at both ends of these adsorbent storage containers 12, 12, respectively.
6, 16 are connected, and these inflow pipes 15, 15
On-off valves 17 are provided in the middle of the outflow pipes 16, 16, respectively. Further, connection joints 18 are provided at the tips of these inflow pipes 15, 15 and outflow pipes 16, 16, respectively, and these moisture adsorbents 8, 8 are connected to branch pipes 7a, 7b, respectively, in a detachable manner. Furthermore, heaters 19, 19 such as heating wires are built in these moisture adsorbents 8, 8, and the adsorbents 14, 14 can be heated by supplying electricity to these heaters 19, 19. It is configured. Next, a method of capturing and recovering tritium in exhaust gas and measuring the tritium concentration using the above-mentioned apparatus will be explained. First, the switching valves 9a and 10a of one branch pipe 7a are opened, and the switching valve 9 of the other branch pipe 7b is opened.
b, 10b are closed, the pump 5 is operated, exhaust gas is sampled from the exhaust pipe 1, and the sample gas thus sampled is made to flow into one of the moisture adsorbents 8. Then, the moisture in this sample gas is absorbed into one moisture adsorbent 8.
It is adsorbed and captured by the adsorbent 14 inside. After a predetermined amount of sample gas is passed through, the switching valves 9a and 10a of one branch pipe 7a are closed, and the flow of the sample gas to the moisture adsorbent 8 is stopped, and the switching valve of the other branch pipe 7b is closed. 9b and 10b are opened to allow the sample gas to flow through the other moisture adsorbent 8. In addition,
The amount of the adsorbents 14, 14 in the moisture adsorbents 8, 8 is set in advance so as not to be saturated before the flow of the sample gas is stopped. Then, close the on-off valves 17, 17 of one moisture adsorbent 8, remove the connecting joints 18, 18, and remove the connecting joints 18, 18.
Remove it and then install a new moisture absorber. Thereafter, the same operation is repeated to cause the moisture in the sample gas to be adsorbed alternately onto the moisture adsorbents 8, 8.
Then, the entire weight of the removed moisture adsorbent 8 is measured using a weighing scale 20 as shown in FIG. Note that the weight of this moisture adsorbent 8 before adsorbing moisture is measured in advance, and the weight of the absorbed moisture is determined from the difference in weight after adsorbing moisture. In this case, the moisture adsorbent 8 is equipped with an on-off valve 1.
7 and 17 are provided, and these on-off valves 1
7 and 17 are closed before the moisture adsorbent 8 is removed, moisture in the atmosphere is absorbed into the adsorbent 14 between the time the moisture adsorbent 8 is removed and the weight is measured. There is no such thing as being absorbed.
Then, as shown in FIG. 4, the water adsorbent 8 whose weight has been measured is connected to either the inflow pipe 15 or the outflow pipe 16, for example, the outflow pipe 16, to the collection container 21, and the on-off valve 17 of the outflow pipe 16 is connected. When opened, the heater 19 is connected to the power source 22, and the adsorbent 14 is heated by the heater 19. Therefore, the moisture adsorbed in the adsorbent 14 is released, and the released moisture flows into the collection container 21. This recovery container 21 is immersed in a refrigerant 24 housed in a refrigerant container 23, and since the peripheral wall thereof is cooled, the released water, that is, water vapor, is cooled and condensed. Note that the moisture adsorbent 8 that has released moisture has its adsorbent 14 regenerated and used again. The volume of the water collected in the collection container 21 is measured using a measuring device 25 as shown in FIG. 5, and then the tritium concentration Cliq [μ
Ci/ml] is measured. Then, V
[ml], the flow rate of the sample gas is N [/min], the flow time of the sample gas is T [min], and the capture efficiency of adsorbed water is η, then the tritium concentration in the exhaust gas is C.
H [μCi/ml] can be determined by C H =Cliq·V/N·T·η×1000. In this method, the moisture in the exhaust gas is adsorbed by the adsorbent 14, so the capture efficiency can be 100% in practice without any problem, almost no correction is required, and the accuracy is high. In addition, in order to confirm this effect,
The following table shows the results of adsorption and recovery of a sample gas whose water content, ie, water vapor pressure, was precisely regulated to a constant level using the above-described apparatus and method.

【表】【table】

【表】 この結果から明らかにように水蒸気圧がきわめ
て低い場合を除いて水分の捕獲効率は100%であ
り、補正はほとんど不要であり、また精度も高い
ものである。なお、最終的に液体状態で回収され
る水の量は吸着剤14に吸着捕獲された水の約1/
2であるがこの水はトリチウム濃度を測定するに
必要な量だけあればよく、上記の量で充分であ
る。 なお、本発明は上記の実施例には限定されな
い。 たとえば第6図には本発明の第2実施例を示
す。この第2実施例は水分吸着体8の流入管15
および流出管16と接続継手18,18との間に
可撓性を有する可撓継手26,26を介装したも
のである。この第2実施例はこの水分吸着体8を
試料ガス採取機構2の分岐管7aに接続した状態
でも浮動状態であるため、この水分吸着体8を分
岐管7aに接続したまま重量計20によつてその
重量を測定でき、重量を測定する際にこれを取外
す必要がないものである。 また、第7図には本発明の第3実施例を示す。
この第3実施例は水分吸着体8の内部にペルチエ
効果を利用したいわゆる電子冷凍素子27を設け
たもので、その周囲は断熱材28で囲繞されてい
る。この第3実施例は電子冷凍素子27に供給す
る電流の方向を制御することにより、冷却、加熱
がおこなえるので、吸着剤14に水分を吸着させ
る際の温度制御および吸着した杉分を放出させる
際の加熱が容易である。 さらに本発明は上記の実施例にも限定されず、
たとえば水分吸着体は2個に限らず必要に応じて
3個以上を設けてもよい。 また本発明は必らずしも上記のものに限定され
ず、たとえば吸着剤はモレキユラシーブ4Aに限
らず、その他水分を吸着する吸着剤たとえばシリ
カゲル、活性炭等でもよい。 上述の如く本発明は試料ガスを吸着剤を通して
流通させて水分を吸着させ、この吸着剤の重量増
加によつて試料ガス中の水分の量を求め、またこ
の吸着剤を加熱して水分を放出させこの水分を凝
縮させ、この水に含まれるトリチウムを測定して
試料ガス中のトリチウム濃度を測定するものであ
る。したがつてこの吸着剤によつて試料ガス中の
水分はほぼ100%吸着捕獲され、この捕獲された
水の量は重量測定によつて正確に求められるの
で、試料ガス中の水分の量はきわめて正確に求め
ることができ、よつて試料ガス中のトリチウム濃
度を正確に求めることができ、かつ補正等を必要
とせず操作が簡単である。 また、内部に吸着剤を収容した水分吸着体を複
数個設け、これらに交互に試料ガスを流通させる
ものであるから、試料ガス中の水分を連続的に吸
着させることができ、連続的な測定が可能である
とともに構造も簡単であり、またこの水分吸着体
ごと吸着剤を取り扱えるので便利であり、また試
料ガスの圧力はこれが吸着剤中を通過するに必要
なきわめて低い圧力でよく、ポンプ等の構造も簡
単なものでよく耐久性も良好である。又吸着材収
容容器には温度制御手段が設置されているので、
加熱して吸着材に吸着された水分を放出させる等
の操作も容易に行なうことができるとともに、断
熱材の断熱効果により上記温度制御手段による温
度制御もより効果的なものとなる。さらに上記吸
着材収容容器には可撓性継手が接続されているの
で、仮に吸着材収容容器を重量計の上に載置した
状態で設置するとすれば、吸着材収容容器は浮動
状態にあるので、装置から取外すことなく重量測
定が可能になる等その効果は大である。
[Table] As is clear from this result, the moisture capture efficiency is 100% except when the water vapor pressure is extremely low, almost no correction is required, and the accuracy is high. Note that the amount of water finally recovered in a liquid state is approximately 1/1 of the amount of water adsorbed and captured by the adsorbent 14.
However, the amount of water required for measuring the tritium concentration is sufficient, and the above amount is sufficient. Note that the present invention is not limited to the above embodiments. For example, FIG. 6 shows a second embodiment of the present invention. This second embodiment is based on the inflow pipe 15 of the moisture adsorbent 8.
Also, flexible joints 26, 26 having flexibility are interposed between the outflow pipe 16 and the connecting joints 18, 18. In this second embodiment, even when the moisture adsorbent 8 is connected to the branch pipe 7a of the sample gas sampling mechanism 2, it is in a floating state. There is no need to remove it when measuring the weight. Further, FIG. 7 shows a third embodiment of the present invention.
In this third embodiment, a so-called electronic refrigeration element 27 utilizing the Peltier effect is provided inside a moisture adsorbent 8, and the periphery thereof is surrounded by a heat insulating material 28. In this third embodiment, cooling and heating can be performed by controlling the direction of the electric current supplied to the electronic refrigeration element 27, so temperature control is performed when adsorbing moisture to the adsorbent 14, and when releasing adsorbed cedar fraction. Heating is easy. Furthermore, the present invention is not limited to the above embodiments,
For example, the number of moisture adsorbents is not limited to two, and three or more may be provided as necessary. Furthermore, the present invention is not necessarily limited to the above, and for example, the adsorbent is not limited to Molecular Sieve 4A, but may be other adsorbents that adsorb moisture, such as silica gel, activated carbon, etc. As described above, the present invention allows sample gas to flow through an adsorbent to adsorb moisture, determines the amount of moisture in the sample gas by increasing the weight of the adsorbent, and heats the adsorbent to release moisture. The water in the sample gas is condensed and the tritium contained in this water is measured to determine the tritium concentration in the sample gas. Therefore, almost 100% of the moisture in the sample gas is adsorbed and captured by this adsorbent, and the amount of captured water can be accurately determined by weight measurement, so the amount of moisture in the sample gas is extremely low. Therefore, the tritium concentration in the sample gas can be determined accurately, and the operation is simple without requiring correction or the like. In addition, since multiple moisture adsorbents containing adsorbents are installed and the sample gas is passed through them alternately, the moisture in the sample gas can be adsorbed continuously, allowing for continuous measurement. It is possible to do this and has a simple structure, and it is convenient because the adsorbent can be handled together with the moisture adsorbent.Also, the pressure of the sample gas can be extremely low, which is necessary for the gas to pass through the adsorbent, and pumps, etc. It has a simple structure and good durability. Also, since the adsorbent storage container is equipped with temperature control means,
Operations such as heating to release moisture adsorbed by the adsorbent can be easily performed, and the temperature control by the temperature control means described above becomes more effective due to the heat insulating effect of the heat insulating material. Furthermore, since a flexible joint is connected to the adsorbent container, if the adsorbent container is installed on a weighing scale, the adsorbent container will be in a floating state. The effects are great, such as making it possible to measure weight without removing it from the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例装置の系統図である。また第2
図は本発明装置の第1実施例の系統図、第3図な
いし第5図は本発明の方法を工程順に示す工程説
明図、第6図は本発明装置の第2実施例の要部の
側面図、第7図は同第3実施例の要部の縦断面図
である。 1……排気筒、2……試料ガス採取機構、5…
…ポンプ、7a,7b……分岐管、8……水分吸
着体、9a,9b……切換弁、10a,10b…
…切換弁、14……吸着剤、15……流入管(流
入口)、16……流出管(流出口)、17……開閉
弁、18……接続継手、19……加熱ヒータ、2
6……可撓継手、27……電子冷凍素子。
FIG. 1 is a system diagram of a conventional device. Also the second
The figure is a system diagram of the first embodiment of the apparatus of the present invention, Figures 3 to 5 are process explanatory diagrams showing the method of the present invention in the order of steps, and Figure 6 is a diagram showing the main parts of the second embodiment of the apparatus of the present invention. The side view and FIG. 7 are longitudinal cross-sectional views of essential parts of the third embodiment. 1...Exhaust stack, 2...Sample gas sampling mechanism, 5...
...Pump, 7a, 7b... Branch pipe, 8... Moisture adsorbent, 9a, 9b... Switching valve, 10a, 10b...
...Switching valve, 14...Adsorbent, 15...Inflow pipe (inflow port), 16...Outflow pipe (outflow port), 17...Opening/closing valve, 18...Connection joint, 19...Heater, 2
6...Flexible joint, 27...Electronic refrigeration element.

Claims (1)

【特許請求の範囲】 1 断熱材を介して内部に吸着材を収容するとと
もに温度制御手段を備えた複数の吸着材収容容器
と、試料ガスを採取するとともにこの試料ガスを
上記複数の吸着材収容容器に選択的に切換えて供
給する試料ガス採取機構と、上記吸着材収容容器
に形成された流入口および流出口と、これら流入
口および流出口を開閉する開閉弁と、上記流入口
および流出口を前記試料ガス採取機構に着脱自在
に接続する接続継手と、試料ガス中の水分を吸着
した状態で吸着材を収容した吸着材収容容器を計
量する計量手段と、温度制御手段により加熱して
吸着材から水分を放出させる際にこの放出された
水分を捕集して凝縮液化させる凝縮液化手段とを
具備したことを特徴とするトリチウム濃度測定装
置。 2 上記温度制御手段は加熱ヒータであることを
特徴とする特許請求の範囲第1項記載のトリチウ
ム濃度測定装置。 3 前記温度制御手段は、電子冷凍素子であるこ
とを特徴とする特許請求の範囲第1項記載のトリ
チウム濃度測定装置。 4 前記吸着材収容容器は可撓性継手を備えてい
ることを特徴とする特許請求の範囲第1項記載の
トリチウム濃度測定装置。
[Scope of Claims] 1. A plurality of adsorbent storage containers each containing an adsorbent therein via a heat insulating material and equipped with a temperature control means, and a plurality of adsorbent storage containers for collecting a sample gas and storing the sample gas therein. A sample gas collection mechanism that selectively switches and supplies the sample gas to the container, an inlet and an outlet formed in the adsorbent container, an on-off valve that opens and closes the inlet and the outlet, and the inlet and the outlet. a connecting joint for removably connecting the sample gas to the sample gas sampling mechanism; a measuring means for weighing the adsorbent container containing the adsorbent in a state in which water in the sample gas has been adsorbed; A tritium concentration measuring device characterized by comprising a condensing and liquefying means that collects and condenses and liquefies the released moisture when moisture is released from the material. 2. The tritium concentration measuring device according to claim 1, wherein the temperature control means is a heater. 3. The tritium concentration measuring device according to claim 1, wherein the temperature control means is an electronic refrigeration element. 4. The tritium concentration measuring device according to claim 1, wherein the adsorbent container is equipped with a flexible joint.
JP12083579A 1979-09-21 1979-09-21 Measuring method and system of tritium concentration Granted JPS5644826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12083579A JPS5644826A (en) 1979-09-21 1979-09-21 Measuring method and system of tritium concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12083579A JPS5644826A (en) 1979-09-21 1979-09-21 Measuring method and system of tritium concentration

Publications (2)

Publication Number Publication Date
JPS5644826A JPS5644826A (en) 1981-04-24
JPS6133369B2 true JPS6133369B2 (en) 1986-08-01

Family

ID=14796131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12083579A Granted JPS5644826A (en) 1979-09-21 1979-09-21 Measuring method and system of tritium concentration

Country Status (1)

Country Link
JP (1) JPS5644826A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924252A (en) * 1982-07-30 1984-02-07 Shimadzu Corp Quartz oscillation type moisture meter
JP6993887B2 (en) * 2018-01-23 2022-01-14 三菱重工業株式会社 Air purification system
KR102117493B1 (en) * 2019-05-03 2020-06-01 한전원자력연료 주식회사 Moisture content measurement system in UO2 powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032992A (en) * 1973-07-20 1975-03-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032992A (en) * 1973-07-20 1975-03-29

Also Published As

Publication number Publication date
JPS5644826A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US6475802B2 (en) Apparatus for and method of collecting gaseous mercury and differentiating between different mercury components
US10226731B2 (en) Xenon collection method and system
US4435644A (en) Radioactive effluent gas monitoring apparatus
CN110208048A (en) The system and method that coal-fired flue-gas Some Organic Pollutants binary channels samples simultaneously
CN107561177B (en) Continuous monitoring device and method for radioactive gas
JPS6133369B2 (en)
JP3651525B2 (en) Gas sampling device
JP2599979B2 (en) Iodine measuring device
CN209917576U (en) Experimental device for activated carbon adsorption and steam desorption
KR102031004B1 (en) Absorption device for krypton and method for absorbing krypton using the same
JPS5844375A (en) Collecting and measuring system for radioactive gas
Hayes et al. Operations of the Automated Radioxenon Sampler/Analyzer—ARSA
CN110941005B (en) On-line continuous monitoring device for carbon-14 in air and calculation method for carbon-14 activity concentration in air
JPS56140274A (en) Method and device for analysis of radon
Hayes et al. Xenon collection method and system
CN213364369U (en) Purification, transmission and sampling device for volatile organic compounds in waste gas of fixed pollution source
CN216525760U (en) Automatic analysis device for analyzing gaseous total mercury
Cox et al. Determination of low levels of total nonmethane hydrocarbon content in ambient air
JPS59102192A (en) Method and device for detecting failed fuel position
KR102305532B1 (en) Qualitative and quantitative analysis apparatus and method for inert gas
JPH01316693A (en) Method and device for recovering heavy water in which high-concentration tritium coexists
CN212674558U (en) Waste gas volatile organic compounds sampling device
JP2653530B2 (en) Tritium concentration measuring device
JPH06198119A (en) Method for recovering volatile matter
JPS5919896A (en) Method and device for condensing tag gas