JPS5924252A - Quartz oscillation type moisture meter - Google Patents

Quartz oscillation type moisture meter

Info

Publication number
JPS5924252A
JPS5924252A JP13414082A JP13414082A JPS5924252A JP S5924252 A JPS5924252 A JP S5924252A JP 13414082 A JP13414082 A JP 13414082A JP 13414082 A JP13414082 A JP 13414082A JP S5924252 A JPS5924252 A JP S5924252A
Authority
JP
Japan
Prior art keywords
moisture
passage
meter
sample gas
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13414082A
Other languages
Japanese (ja)
Other versions
JPH0342419B2 (en
Inventor
Kenji Hirai
研治 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP13414082A priority Critical patent/JPS5924252A/en
Publication of JPS5924252A publication Critical patent/JPS5924252A/en
Publication of JPH0342419B2 publication Critical patent/JPH0342419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To always perform the measurement of moisture in high preciseness, by a method wherein a first and a second moisture removing passages are provided in parallel and, when the moisture absorbing capacity of the first moisture removing passage is lowered to a definite limit or less, the second moisture removing passage is used. CONSTITUTION:A specimen gas is introduced for a definite time from an introducing passage 10 to be passed through a first moisture removing passage 11 and sent to a moisture meter 15 while the moisture thereof is substantially removed. Subsequently, the specimen gas is introduced from an introducing passage 16 for a definite time and passed through a solenoid valve 17 to be sent to the moisture meter 15. The moisture content of the specimen gas is measured from the difference in two frequencies oscillated from the moisture meter 15. At appropriate time intervals, a second moisture removing passage 18 is used to send the specimen gas to the moisture meter 15 and, when the difference of the oscillation frequency in this case and the oscillation frequency obtained by using the second moisture removing passage 18 becomes high in a definite limit or more, the first moisture removing passage 11 is changed oer to the second moisture removing passage 18. During this time, the moisture removing capacity of the first moisture removing passage 11 is restored by a method such as replacing a moisture removing device 13.

Description

【発明の詳細な説明】 この発明は水晶発振式水分計システムに関する。[Detailed description of the invention] The present invention relates to a crystal oscillation type moisture meter system.

詳しくは試料ガスまたは他の対照ガスの第1水分除去路
と試料ガス導入路とを水晶発振式水分計システムに連結
し、更に上記第1水分除去路と並列に第2水分除去路を
並列に連結してなる水晶発振式水分計システムに関する
Specifically, a first moisture removal path for the sample gas or other reference gas and a sample gas introduction path are connected to a crystal oscillation type moisture meter system, and a second moisture removal path is connected in parallel with the first moisture removal path. This invention relates to a crystal oscillation type moisture meter system that is connected to each other.

従来、水晶発振式水分計で試料ガスの水分を測定する場
合は、一般に第1図に示したようなシステムが用いられ
ておシ、以下に説明する。
Conventionally, when measuring the moisture content of a sample gas using a crystal oscillation type moisture meter, a system as shown in FIG. 1 is generally used, which will be explained below.

1ず試料ガスまたはその他の対照ガスがその導入路(1
)を通じて水分除去器(2)に送られて通過して水分が
除去され開かれた電磁弁(3)を通過して水晶発振式水
分計(4)に送られその発振周波数が測定さ2 − れる〔このとき電磁弁(5)は閉鎖〕、次いで、電磁弁
(3)を閉じて電磁弁(5)を開き、試料ガ、スを試料
ガス導入路(6)から電磁弁(5)を通過させて水分計
(4)に送りその発振周波数が測定される。このように
して得られたふたつの発振周波数データの差から試料ガ
スの水分が測定される。 また上記操作を連続的に繰返
すことによって連続的に試料ガスの水分含有量が測定さ
れる。 そして一般に水分除去器(2)にはモレキュラ
ーシーブ、シリカゲルなどの吸湿剤が充填されているが
その吸湿能力が低下すると水分の測定誤差の原因になる
という問題点がある。
1. The sample gas or other reference gas is
), the water is sent to a water remover (2), where the water is removed, and passed through an opened electromagnetic valve (3), where it is sent to a crystal oscillation moisture meter (4), where its oscillation frequency is measured. [At this time, the solenoid valve (5) is closed], then close the solenoid valve (3), open the solenoid valve (5), and let the sample gas pass through the solenoid valve (5) from the sample gas introduction path (6). It is passed through and sent to a moisture meter (4), where its oscillation frequency is measured. The moisture content of the sample gas is measured from the difference between the two oscillation frequency data obtained in this way. Further, by continuously repeating the above operation, the water content of the sample gas is continuously measured. Generally, the moisture remover (2) is filled with a moisture absorbent such as molecular sieve or silica gel, but there is a problem in that if the moisture absorption ability of the moisture absorbing agent decreases, it may cause an error in moisture measurement.

この発明は上記問題点を解消するためになされたもので
、試料ガスまたは他の対照ガスの導入路と、水分除去器
の前後にそれぞれ開閉弁を備えた第1水分除去路と、水
晶発振式水分計とをこの順に適宜連結すると共に、開閉
弁を備えた試料ガス導入路を前記水晶発振式水分計に連
結し、更にもうひとつの水分除去器の前後にそれぞれ開
閉弁を備えた第2水分除去路を前記第1水分除去路に並
列に連結してなる水晶発振式水分計システムを提供する
ものである。
This invention was made in order to solve the above problems, and includes an introduction path for sample gas or other reference gas, a first moisture removal path equipped with on-off valves before and after the moisture remover, and a crystal oscillation type A moisture meter is connected as appropriate in this order, a sample gas introduction path equipped with an on-off valve is connected to the crystal oscillation type moisture meter, and a second moisture remover is connected with an on-off valve before and after another moisture remover. The present invention provides a crystal oscillation type moisture meter system in which a removal path is connected in parallel to the first moisture removal path.

このシステムは、第1水分除去路の外にこれと並列に第
2水分除去路を設置したことを特徴とするものである。
This system is characterized in that a second moisture removal path is installed outside and in parallel with the first moisture removal path.

 試料ガス導入路からの試料ガスの該水分計への導入と
試料ガスまたは他の対照ガスの導入路から第1水分除去
器を経由した試料ガスまたは他の対照ガスの該水分針へ
の導入を交互に行い両者のガスによる発振周波数の差に
よって試料ガス水分が測定される。 そして時々、第1
水分除去路の代りに第2水分除去路を用いて第1水分除
去路の水分吸収能を検査しながら水分測定を行い、水分
吸収能が一定限度以下に低下した場合、第1水分除去路
の代シに第2水分除去路が用いられる。 従って水分測
定精度は極めて高いものである。 そして第2水分除去
路使用している間に、第1水分除去路の水分除去器を吸
湿能力の高いものと交換するとか、吸湿剤の吸湿能力を
復活させるなどの処置を行い、試料ガス中の水分測定を
連続して行うことができる。
Introducing the sample gas into the moisture meter from the sample gas introduction path, and introducing the sample gas or other control gas from the sample gas or other reference gas introduction path into the moisture needle via the first moisture remover. The water content of the sample gas is measured by alternating between the two gases and the difference in oscillation frequency between the two gases. And sometimes the first
The second moisture removal path is used instead of the moisture removal path to measure moisture while testing the moisture absorption capacity of the first moisture removal path, and if the moisture absorption capacity decreases below a certain limit, the first moisture removal path is A second moisture removal path is used instead. Therefore, the accuracy of moisture measurement is extremely high. Then, while the second moisture removal path is in use, measures such as replacing the moisture remover in the first moisture removal path with one with a higher moisture absorption capacity or restoring the moisture absorption ability of the moisture absorbent are taken to remove the moisture in the sample gas. water content can be measured continuously.

次に図面によってこの発明の詳細な説明する。Next, the present invention will be explained in detail with reference to the drawings.

第2図はこの発明のシステムの一実施例の構成説明図で
ある。
FIG. 2 is an explanatory diagram of the configuration of an embodiment of the system of the present invention.

試料ガスまたはその他の対照ガスの導入路QOと、電磁
弁(至)と水分除去器(至)と電磁弁α4を備えた第1
水分除去路fillと、水晶発振式水分計09とが連結
され、一方電磁弁171を有する試料ガス導入路α0が
水分計09に連結されている。 さらに電磁弁口と水分
除去器ωと電磁弁f211を備えた第2水分除去路(1
81が前記第1水分除去路(11)と並列に連結されて
いる。
The first one is equipped with an introduction path QO for the sample gas or other reference gas, a solenoid valve (to), a moisture remover (to), and a solenoid valve α4.
The moisture removal path fill and the crystal oscillation type moisture meter 09 are connected, while the sample gas introduction path α0 having the electromagnetic valve 171 is connected to the moisture meter 09. Furthermore, a second moisture removal path (1
81 is connected in parallel with the first moisture removal path (11).

試料ガスの水分含有量の測定は次のような操作によって
行われる。
The water content of the sample gas is measured by the following operation.

試料ガスまたは他の対照ガスが一定時間、その導入路α
Oから導入され、第1水分除去路tillの電磁弁@と
水分除去器α3と電磁弁α4とを経由してその水分が実
質的に除去され水分計(イ)に送られる〔この際第2水
分除去路叩の電磁弁ul121試料ガス導入路α0の電
磁弁[171は閉鎖〕。 次いで試料ガスが一定時間、
その導入路αGから導入され、電磁弁117+を通過さ
せて水分計(5)に送られる〔この際他の電磁弁は閉鎖
〕。 そしてこの2つの操作によって水分計(2)から
発振される2つの周波数の差から試料ガスの水分含有量
が測定される。 この操作を連続して繰返し、試料ガス
の水分含有量が連続的に測定される。 そして適宜時間
間隔をおいて、第1水分除去路11)の代りに第2水分
除去路叩を用いて(すなわち電磁弁(2)と0を閉鎖し
て電磁弁+1!iと(社)を開いて)試料ガスまたは他
の対照ガスを水度以上高くなれば(例えば水分量として
1 ppm以上に相当)、第1水分除去路fullから
第2水分除去路(181に切換えられる。 そしてその
間に水分除去器0を取替えるなどの方法で第1水分除去
路[111の水分除去性能を復活させる。 このような
操作を繰返して試料ガスの水分量の連続測定がなされる
Sample gas or other reference gas is introduced into its introduction path α for a certain period of time.
O, the moisture is substantially removed via the solenoid valve @ of the first moisture removal path till, the moisture remover α3, and the solenoid valve α4, and sent to the moisture meter (A). Solenoid valve ul121 for moisture removal path solenoid valve for sample gas introduction path α0 [171 is closed]. Then, the sample gas is
It is introduced from the introduction path αG, passes through the solenoid valve 117+, and is sent to the moisture meter (5) (at this time, the other solenoid valves are closed). Through these two operations, the moisture content of the sample gas is measured from the difference between the two frequencies oscillated by the moisture meter (2). This operation is continuously repeated to continuously measure the water content of the sample gas. Then, at appropriate time intervals, the second moisture removal path is used instead of the first moisture removal path (11) (that is, the solenoid valves (2) and 0 are closed, and the solenoid valves +1!i and (company) are closed. When the sample gas or other reference gas becomes higher than the water level (e.g., equivalent to 1 ppm or more in terms of water content), the first water removal path full is switched to the second water removal path (181). The moisture removal performance of the first moisture removal path [111] is restored by replacing the moisture remover 0, etc. By repeating this operation, the moisture content of the sample gas is continuously measured.

なおこれらの操作は手動で行うことができるが、電子式
制御系を用いて自動的に行うこともできる。
Note that these operations can be performed manually, but they can also be performed automatically using an electronic control system.

自動的に行って得られた発振周波数のチャートの一例を
第8図に示した。 すなわちB、D、?、■、Kおよび
Mのレベルは、電磁弁υ、(ロ)、止、QDを閉じ電磁
弁[171を開いて試料ガスを試料ガス導入路面から導
入して水分計(2)に送って得られた発振周波数である
。 ま7’jA、(3,EおよびGのレベルは第1水分
除去路(Illに試料ガスを通過させてその水分を実質
的に除去して水分計(社)に送って得られた発振周波数
である。 そしてHのレベルは水分除去路を第1から第
2に切換えて得た発振周波数であシ、GとHとのレベル
の差がi ppm以上の水分量に相当する差であったの
でH以後は第1水分除去路111の代シに第2水分除去
路止が用いられ、J%LおよびNの発振周波数が得られ
た。
An example of an oscillation frequency chart automatically obtained is shown in FIG. That is, B, D,? , ■, K and M levels are determined by closing the solenoid valve υ, (b), stopping, and opening the solenoid valve [171] to introduce the sample gas from the sample gas introduction road surface and send it to the moisture meter (2). is the oscillation frequency. 7'jA, (3, E and G levels are the oscillation frequencies obtained by passing the sample gas through the first moisture removal path (Ill) to substantially remove the moisture and sending it to the moisture analyzer Co., Ltd. The H level was the oscillation frequency obtained by switching the water removal path from the first to the second, and the difference between the levels of G and H was a difference corresponding to a water content of i ppm or more. Therefore, after H, the second moisture removal path stop was used in place of the first moisture removal path 111, and the oscillation frequencies of J%L and N were obtained.

さらに、この発明のシステムの別の実施例の構成説明図
を第4図と第5図とに示した。
Furthermore, diagrams illustrating the configuration of another embodiment of the system of the present invention are shown in FIGS. 4 and 5.

第4図に示したこの発明のシステムの実施例は、第1お
よび第2水分除去路齢および醸の電磁弁を8方弁とし、
各除去路の一方の弁(32e19)に各除去器内の吸湿
剤乾燥用の乾燥ガス導入路に2f44)を連結し、各除
去路の他方の弁(財)←1)に該ガスの排出路(431
(4fQを連結したものである。 そして例えば第1水
分除去路(3+1を用いて水分測定を行っていた場合に
その水分除去器−1の吸湿能力が低下したことが判明し
た際、電磁弁@と(財)を閉じ一方電磁弁睡と11)と
を開いて試料ガスまたは他の対照ガスをその導入路側か
ら第2水分除去路酩を通過させて、第1水分除去路01
)を第2水分除去路(381に切換えて試料ガス水分の
測定を続ける。 その間に三方電磁弁の(ハ)と(支)
を切替え、乾燥ガスが乾燥ガス導入路(4i6から電磁
弁(ハ)を経て送られ水分除去器031内を通過し電磁
弁の41を経て乾燥ガス排出路(へ)から排出され、水
分除去器齢内に充填されたモレキュラーシーブ、シリカ
ゲルなどの吸湿剤が乾燥される。 このようにして吸湿
剤の水分吸収能が再生され、第2水分除去路(財)中の
水分除去器顛の吸湿能力が一定限度以下に低下したとき
の切替えにそなえられる。
The embodiment of the system of the present invention shown in FIG.
Connect 2f44) to one valve (32e19) of each removal path to the dry gas introduction path for drying the moisture absorbent in each remover, and discharge the gas to the other valve (32e19) of each removal path. Road (431
(4fQ are connected. For example, when measuring moisture using the first moisture removal path (3+1), when it is found that the moisture absorption capacity of the moisture remover-1 has decreased, the electromagnetic valve @ Close the solenoid valve and open the solenoid valve 11) to allow the sample gas or other control gas to pass through the second moisture removal path from the introduction path side, and then open the first moisture removal path 01.
) to the second moisture removal path (381) and continue measuring the sample gas moisture. Meanwhile, the three-way solenoid valves (c) and (support)
, the drying gas is sent from the drying gas introduction path (4i6) through the solenoid valve (c), passes through the moisture remover 031, passes through the solenoid valve 41, and is discharged from the drying gas discharge path (to). Moisture absorbing agents such as molecular sieves and silica gel are dried during the drying process.In this way, the moisture absorption capacity of the moisture absorption agents is regenerated, and the moisture absorption capacity of the moisture removal device in the second moisture removal path is increased. It is provided for switching when the voltage drops below a certain limit.

この実施例のシステムは特別の場合を除いて水分除去器
を取外さずにその吸湿能力を再生することができる。 
更にこれらの水分除去器にその加熱器を設けたシステム
もこの発明に含まれ、水分除去器の吸湿能力再生時にこ
の加熱器で水分除去器を加熱することによってよシ速や
かに水分除去器の吸湿能力を再生できるものである。
The system of this embodiment can regenerate its moisture absorption capacity without removing the moisture remover except in special cases.
Furthermore, a system in which these moisture removers are equipped with a heater is also included in the present invention, and by heating the moisture remover with this heater when regenerating the moisture absorption capacity of the moisture remover, the moisture absorption of the moisture remover can be quickly reduced. It is something that can regenerate abilities.

第5図に示したこの発明のシステムの実施例は、もので
ある。
The embodiment of the system of the invention shown in FIG.

例えば第2水分除去路−を用いて試料ガス水分を測定中
で一方第1水分除去路151)の三方電磁弁1g(財)
を切替えて乾燥ガスをその導入路線から導入して水分除
去器岐内を通過させて充填されている吸湿剤を乾燥させ
、乾燥ガス排出路−から排出して 。
For example, while measuring the moisture content of the sample gas using the second moisture removal path, the three-way solenoid valve 1g of the first moisture removal path 151)
The dry gas is introduced from the introduction line, passed through the moisture remover branch to dry the filled moisture absorbent, and then discharged from the dry gas discharge line.

いる場合についてその作動を説明する。 この場合、サ
ーモモジュール旬に直流電流を通して水分除去器−と接
している側の面一で発熱させて水分除去器131を加熱
することによって水分除去器−の吸湿能力再生を速める
とともに水分除去器−と接している側の面ので吸熱させ
て水分除去器■を冷却してその吸湿能力を高めることが
できる。 まfct流を逆方向に通すことによって逆の
加熱、冷却を行うこともできる。
We will explain its operation in the case where it is. In this case, direct current is passed through the thermo module to generate heat flush with the side that is in contact with the moisture remover, thereby heating the moisture remover 131, thereby speeding up regeneration of the moisture absorbing ability of the moisture remover, and at the same time The surface in contact with the water absorbs heat and cools the moisture remover (2), increasing its moisture absorption capacity. Reverse heating and cooling can also be performed by passing the fct flow in the opposite direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水晶発振式水分計システムの従来例の構成説明
図、第2図、第4図および第5図はこの発明の水晶発振
式水分計システムの実施例の構成説明図、第8図は第2
図の水晶発振式水分計システムによって得られた発振周
波数のチャートである。 (1)、αυ、■、10)・・・試料ガスまたは他の対
照ガス導入路、(2)、a3、■、姉、顛、−5輸・・
・水分除去器、(4)、(2)、(社)、−・・−水晶
発振式水分計、(6)、αG、−1鏡均・・・試料ガス
導入路、(3)、(5)、(2)、α4、[191=・
3ト・・電磁弁、3z、−1@9)、圓、姉、(財)、
■、翻・・・三方電磁弁、(ハ)、(財)、口、―・・
・乾燥ガス導入路、(43、nfil、a、霞・・・乾
燥ガス排出路、−・・・サーモモジュール、@霞・・・
サーモモジュールの発熱または吸熱面。  lO−
FIG. 1 is an explanatory diagram of the configuration of a conventional example of a crystal oscillation type moisture meter system, FIGS. 2, 4, and 5 are configuration explanatory diagrams of an embodiment of the crystal oscillation type moisture meter system of the present invention, and FIG. is the second
2 is a chart of oscillation frequencies obtained by the crystal oscillation type moisture meter system shown in the figure. (1), αυ, ■, 10)...sample gas or other control gas introduction path, (2), a3, ■, older sister, second, -5 transport...
・Moisture remover, (4), (2), (Company), -... -Crystal oscillation type moisture meter, (6), αG, -1 mirror...Sample gas introduction path, (3), ( 5), (2), α4, [191=・
3t...Solenoid valve, 3z, -1@9), En, Nee, (foundation),
■, translation...three-way solenoid valve, (c), (foundation), mouth, ---
・Dry gas introduction path, (43, nfil, a, Kasumi...Dry gas discharge path, -...Thermo module, @Kasumi...
Exothermic or endothermic surface of a thermo module. lO-

Claims (1)

【特許請求の範囲】 !、試料ガスまたは他の対照ガスの導入路と、水分除去
器の前後にそれぞれ開閉弁を備えた第1水分除去路と、
水晶発振式水分針とをこの順に適宜連結すると共に、開
閉弁を備えた試料ガス導入路を前記水晶発振式水分計に
連結し、更にもうひとつの水分除去器の前後にそれぞれ
開閉弁を備えた第2水分除去路を前記第1水分除去路に
並列に連結してなる水晶発振式水分計システム。 2、第4および第2水分除去路の一対づつの開閉弁が三
方弁で、各一対の開閉弁の一方に乾燥ガス導入路と他方
に該ガスの排出路を連結した特許請求の範囲第1項記載
のシステム。 8、各水分除去器が加熱器を有する特許請求の範囲第1
項まfcは第2項に記載のシステム。 4、ふたつの水分除去器間にサーモモジう−ルを設置し
fC特許請求の範囲第1項または第2項に記載のシステ
ム。
[Claims]! , an introduction path for the sample gas or other control gas, and a first moisture removal path provided with on-off valves before and after the moisture remover, respectively;
A crystal oscillation type moisture needle was appropriately connected in this order, a sample gas introduction path equipped with an on-off valve was connected to the crystal oscillation type moisture meter, and further on-off valves were provided before and after another moisture remover, respectively. A crystal oscillation type moisture meter system comprising a second moisture removal path connected in parallel to the first moisture removal path. 2. The pair of opening/closing valves for each of the fourth and second water removal passages are three-way valves, and one of the pair of opening/closing valves is connected to a dry gas introduction passage and the other is connected to a discharge passage for the gas. System described in section. 8. Claim 1 in which each moisture remover has a heater
The term fc is the system described in the second term. 4. The system according to claim 1 or 2, in which a thermomodule is installed between two moisture removers.
JP13414082A 1982-07-30 1982-07-30 Quartz oscillation type moisture meter Granted JPS5924252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13414082A JPS5924252A (en) 1982-07-30 1982-07-30 Quartz oscillation type moisture meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13414082A JPS5924252A (en) 1982-07-30 1982-07-30 Quartz oscillation type moisture meter

Publications (2)

Publication Number Publication Date
JPS5924252A true JPS5924252A (en) 1984-02-07
JPH0342419B2 JPH0342419B2 (en) 1991-06-27

Family

ID=15121403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13414082A Granted JPS5924252A (en) 1982-07-30 1982-07-30 Quartz oscillation type moisture meter

Country Status (1)

Country Link
JP (1) JPS5924252A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100847A (en) * 1982-12-02 1984-06-11 Seikosha Co Ltd Detecting device of humidity
JPS60201233A (en) * 1984-03-26 1985-10-11 Shimadzu Corp Measuring method of component concentration
JPS61196134A (en) * 1985-02-27 1986-08-30 Shimadzu Corp Moisture measuring cell
JPS6357564U (en) * 1986-09-30 1988-04-16
JPS63111441A (en) * 1986-10-30 1988-05-16 Shimadzu Corp Moisture meter
JPS63317743A (en) * 1987-06-19 1988-12-26 Shimadzu Corp Crystal oscillator type moisture meter
JP2003065926A (en) * 2001-08-27 2003-03-05 Mitsubishi Electric Corp Detection apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644826A (en) * 1979-09-21 1981-04-24 Toshiba Corp Measuring method and system of tritium concentration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644826A (en) * 1979-09-21 1981-04-24 Toshiba Corp Measuring method and system of tritium concentration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100847A (en) * 1982-12-02 1984-06-11 Seikosha Co Ltd Detecting device of humidity
JPS60201233A (en) * 1984-03-26 1985-10-11 Shimadzu Corp Measuring method of component concentration
JPS61196134A (en) * 1985-02-27 1986-08-30 Shimadzu Corp Moisture measuring cell
JPH0582542B2 (en) * 1985-02-27 1993-11-19 Shimadzu Corp
JPS6357564U (en) * 1986-09-30 1988-04-16
JPH0446203Y2 (en) * 1986-09-30 1992-10-29
JPS63111441A (en) * 1986-10-30 1988-05-16 Shimadzu Corp Moisture meter
JPS63317743A (en) * 1987-06-19 1988-12-26 Shimadzu Corp Crystal oscillator type moisture meter
JP2003065926A (en) * 2001-08-27 2003-03-05 Mitsubishi Electric Corp Detection apparatus and method

Also Published As

Publication number Publication date
JPH0342419B2 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
Ruthven Diffusion in type A zeolites: New insights from old data
JPS5924252A (en) Quartz oscillation type moisture meter
JPH04318453A (en) Column for capillary tube electrophoresis, capillary tube electrophoresis apparatus, sample preparing method and capillary tube electrophoresis method
JPS6270731A (en) Apparatus for measuring impurities in pure water
JP2661854B2 (en) Supercritical fluid contamination monitor
Van Enckevort et al. Impurity blocking of growth steps: experiments and theory
JPS5979810A (en) Measuring device for difference between two flow in two separate duct
JP4032573B2 (en) Gas measuring device
JP6963160B2 (en) Standard moisture generator, system using standard moisture generator, standard moisture abnormality detection method and computer program product for abnormality detection
JP2021058832A (en) Pure water manufacturing control system and pure water manufacturing management method
JP3618083B2 (en) A method and program for estimating the adsorption performance of a predetermined substance on a carbonaceous adsorbent.
Kushida et al. Glass transition of deoxymyoglobin probed by optical absorption spectroscopy
JP3601635B2 (en) Switching device for gas analyzer
JP3745529B2 (en) Method for removing sulfur compound and method for regenerating adsorbent used therefor
CN114965892B (en) Renewable adsorption material evaluation device and evaluation method thereof
JPH07159313A (en) Ultraviolet-absorption type ozone meter
JPH07148418A (en) Method for testing leakage in iodine filter and apparatus for the same
Riegler et al. Light induced drift of CH3F
JPH10272370A (en) Softening device of parallel installation capable of detecting abnormality in early stage, and method for operation thereof
JP3830788B2 (en) Odor management device and odor management method
JP3039238B2 (en) How to check hardness sensor
JPH04334505A (en) Moisture removing apparatus
JPH0127769B2 (en)
Bogar et al. Leucocyte motion during gravity sedimentation of whole blood
JP2022100713A (en) Carbon dioxide gas collection device and carbon dioxide gas collection method