JPS6133276B2 - - Google Patents

Info

Publication number
JPS6133276B2
JPS6133276B2 JP14843679A JP14843679A JPS6133276B2 JP S6133276 B2 JPS6133276 B2 JP S6133276B2 JP 14843679 A JP14843679 A JP 14843679A JP 14843679 A JP14843679 A JP 14843679A JP S6133276 B2 JPS6133276 B2 JP S6133276B2
Authority
JP
Japan
Prior art keywords
light
semiconductor
emitting diode
light emitting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14843679A
Other languages
Japanese (ja)
Other versions
JPS5671986A (en
Inventor
Junichi Nishizawa
Ken Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14843679A priority Critical patent/JPS5671986A/en
Publication of JPS5671986A publication Critical patent/JPS5671986A/en
Publication of JPS6133276B2 publication Critical patent/JPS6133276B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発光ダイオードに関し、特に屈折率の
高い半導体を用いた半導体発光ダイオードに関す
る。 第1図に、代表的な従来の発光ダイオードの構
造を示す。図中1は発光ダイオードの半導体部
分、2は樹脂、3,7は電極金属、4は一例とし
てn形半導体、5はp形半導体、6はp形結晶基
板である。8はpn接合である。第1図の例で
は、表面9から光を取り出すのであるが半導体1
の屈折率が大きいため9に半導体内部から入射角
度θc以上で入射した光は表面で全反射して外部
へはでてこない。通常用いられるエポキシ系など
の樹脂の屈折率n2は約1.5,それに対して−
族間化合物半導体の発光ダイオードすなわち
GaAlAs系,GaPAs系GaPなどではおよそn1=3.4
の屈折率を有する。臨界角θcはsinθc=n2
n1で与えられるから、n1=1.5の樹脂コーテイン
グしたときはθc≒25である。すなわち立体角Ω
=2π(1−cosθc)≒2π×0.09stradとな
り、一平面に入射した光の立体角2πに比べて9
%の光が樹脂側すなわち半導体外部へ取り出され
るにすぎない。残りは表面9で反射して内部にも
どる。GaAlAs系、GaPAs系などの直接遷移半導
体では、発光波長に対する吸収係数が大きいので
裏面から取り出したり多重反射させて外部へ取り
出すことはできないから、内部へ反射した部分は
ほとんど全て光として有効に取り出せない。表面
に垂直に入射した光の場合は透過率を高めるには
反射防止膜が適当であるが、反射防止膜は膜厚の
制御が必要であり、臨界角を大きくする役割はも
つていない。第2図のように半導体表面9′をド
ーム状に成形することが行なわれているが、一個
一個の発光ダイオードをレンズ状に成形するこは
非常に高価になり、とうてい安価で量産的という
わけにはいかないので一般の用途としては使用で
きないのである。レンズ状の多数の凹凸を表面に
形成する方法も知られているが(例えば特開昭51
−52792号公報)、マスクにより基板上に穴を形成
して結晶成長することは工程が複雑になり安価を
特徴とする発光ダイオードが高価になつてしまう
欠点を有し、さらに普通の結晶成長条件において
は、成長後の表面もレンズ状の凹凸を残しやす
く、平坦な面を得るために特殊な方法が更に付加
されることも問題である。本発明は比較的安価に
臨界角にかかわらず大きな光量を一表面から取り
出すことのできる明るい発光ダイオードを提供す
るものである。第3図に示すように表面の凹凸が
波長より多少あらい、いわゆる拡散面であるとど
の方向から表面にきた場合でも表面に到達した光
はごく粗くいえば等方向に第3図中の矢印のよう
に散乱される。(図では電極などは省略してあ
る)したがつてどの方向から表面に達した光もご
くおおよそのところその50%は前方に散乱する最
大50%の効率が得られ先の9%に比べて5倍以上
となりはなはだ大きくできる。しかしながら発光
ダイオードの半導体表面サンドブラス等により凹
凸を作り、傷つければ欠陥が多数発生し発光しな
くあることもあるから全く好ましくない。なお、
フオトダイオードにおいて表面を荒すことにより
実効反射率を下げるということが知られている
が、フオトダイオードの場合は外部から結晶内に
入射する光に対して結晶の屈折率の方が外部の空
気または、コーテイング物質の屈折率より大きい
ので前述の発光ダイオードで問題となるような全
反射現象は起こらない。したがつて表面を荒すの
は、実効的に表面近くの屈折率を結晶の屈折率よ
り小さくして反射率を小さくする役割をしている
にすぎない。フオトダイオードに比べてはるかに
欠陥による効率低下がはなはだしい発光ダイオー
ドでは表面を荒すことは極めて好ましくない。そ
こで半導体表面にできるだけ屈折率が半導体の屈
折率nに近い透明物質の光拡散層を形成すること
でこの問題は解決される。一般的に光拡散面自体
は光学において周知でありたとえば小形電球や発
光ダイオード列の上に拡散ガラスのフタをかぶせ
て電球や発光ダイオード自体は見えないようにし
た表示装置などが知られている。これに対して本
願発明の拡散面は発光ダイオードの光取り出し面
に直接または、光の波長以下の他の薄い膜を介し
て形成される。通常の樹脂コート半導体発光ダイ
オードでは、拡散面を構成する材料の屈折率は、
発光ダイオードの光取り出し面を被う透明樹脂の
屈折率より大きく選ぶ。第4図は一つの実施例で
ありGaAlAs発光ダイオードの出力面に多結晶
GaP10をCVD法(chemical vapor depositon)又
は真空蒸着で波長の数倍堆折する。すなわち発光
波長6700A,Gapの屈折率が約3.4とすると膜内の
波長は2000Aであるから1μ〜2μ程度の膜を折
出する。ただし折出膜は粒径があらく透明膜でな
く乳赤白色の光拡散膜となるようにしなければな
らない。通常CVD膜が形成される温度より低温
で折出させれば一般に粒径が粗いために不透明な
光拡散膜とすることができる。膜が乳白色である
ということは光が表面で第5図に示すように全方
向に散乱されるほど粒子の径が粗いということを
意見している。図で10は膜の粒径が粗いため光
拡散が生ずることを模式的に示す。蒸着法でも通
常より高速に蒸着して粗い粒径を得ることができ
る。光拡散面を堆折する温度や基板条件、CVD
の場合は流量などはそれぞれ物質によつて異なる
が、反射光を測定するか目で見れば透明膜か拡散
膜かは容易に明らかにわかるので実験的に条件を
設定することは容易である。 膜を形成するためにCVD法や蒸着でなく他の
方法として膜形成物質、たとえばGaPの微粉末を
有機溶剤に混ぜてスプレー法で半導体表面にふき
つけ被着させる方法も使える。もちろんCVD法
の方が密着性などが優れているが、スプレー法で
も実用上十分な密着性を得られることも多い。こ
うして作つた光拡散膜の上から通常の方法でエポ
キシコーテイングを行う。上記の例では膜形成物
質と半導体とはほぼ屈折率が一致しているので表
面に達した光は拡散膜中に入りそこで全方向に散
乱するから、そのうちの約50%は外部へ取り出せ
る。すなわち拡散膜を使わない場合の約5倍以上
の光が得られ、はなはだ明るい発光ダイオードと
なる。膜としては第6図のようにはじめ比較的高
温で透明な膜11を作り途中で折出温度を下げて
光拡散膜10を作ると境界部での反射損を少くす
ることができて非常に望ましい。この場合、粒径
の全く異なる層10,11の二層とするのでな
く、境界部で膜堆積条件を連続的に変えてやれば
屈折率の不連続な界面ができず、境界での反射を
妨げるのでさらに好ましい。 なお、堆積膜の屈折率は堆積条件や粒径によつ
て変り、たとえばSiO膜などを例にとると蒸着の
条件により、1.7〜1.9程度の違いがあることが知
られている。しかしながら、その変化は上例のご
とくあまり大きくないので光取り出し率の計算に
あたつてはおおよそ、結晶自体の屈折率を使つて
評価することができる。CVD法や蒸着法で堆積
させた光拡散膜は、第5図にも示すように微小な
粒子の集まりであると考えられ、この粒径が光波
長よりある程度大きいことにより光拡散効果を生
ずる。粒子のパツキングのされ方が粗であると屈
折率は低下するから、屈折率の低下の割合は密度
の低下の割合にほぼ近いといえるが、CVDや蒸
着膜では密度低下は数%以下である。 膜物質としてGaPの他の表1に示すような可視
光領域の屈折率の高く、かつ可視光に対して透明
な物質がある。
The present invention relates to a light emitting diode, and more particularly to a semiconductor light emitting diode using a semiconductor with a high refractive index. FIG. 1 shows the structure of a typical conventional light emitting diode. In the figure, 1 is a semiconductor portion of a light emitting diode, 2 is a resin, 3 and 7 are electrode metals, 4 is an n-type semiconductor, 5 is a p-type semiconductor, and 6 is a p-type crystal substrate. 8 is a pn junction. In the example shown in FIG. 1, light is extracted from the surface 9 of the semiconductor 1.
Because of its large refractive index, light that enters from inside the semiconductor at an angle of incidence θc or more is totally reflected at the surface and does not exit to the outside. The refractive index n2 of commonly used resins such as epoxy resins is approximately 1.5, whereas -
Intergroup compound semiconductor light emitting diode viz.
Approximately n 1 = 3.4 for GaAlAs, GaPAs, GaP, etc.
It has a refractive index of The critical angle θc is sinθc=n 2 /
Since it is given by n 1 , when resin coating is performed with n 1 =1.5, θc≈25. That is, the solid angle Ω
=2π(1-cosθc)≒2π×0.09strad, which is 9 compared to the solid angle of 2π of light incident on one plane.
Only % of the light is extracted to the resin side, that is, to the outside of the semiconductor. The rest is reflected by the surface 9 and returns to the interior. In direct transition semiconductors such as GaAlAs and GaPAs, the absorption coefficient for the emission wavelength is large, so it cannot be extracted from the back surface or reflected multiple times to the outside, so almost all of the portion reflected inward cannot be effectively extracted as light. . In the case of light incident perpendicularly to the surface, an antireflection film is appropriate to increase the transmittance, but the antireflection film requires control of the film thickness and does not have the role of increasing the critical angle. As shown in Figure 2, the semiconductor surface 9' is formed into a dome shape, but forming each light emitting diode into a lens shape is very expensive, and it is not possible to mass produce it at a very low cost. Therefore, it cannot be used for general purposes. A method of forming many lens-like irregularities on the surface is also known (for example, Japanese Patent Application Laid-Open No.
-52792 Publication), forming holes on a substrate using a mask to grow crystals has the disadvantage that the process is complicated and light emitting diodes, which are characterized by low cost, become expensive. Another problem is that the surface after growth tends to have lens-like irregularities, and a special method is required to obtain a flat surface. The present invention provides a bright light emitting diode that can extract a large amount of light from one surface regardless of the critical angle at a relatively low cost. As shown in Figure 3, the unevenness of the surface is somewhat larger than the wavelength, and if it is a so-called diffusing surface, no matter which direction the surface is coming from, the light reaching the surface will roughly speaking be in the same direction as shown by the arrows in Figure 3. It is scattered like this. (The diagram omits electrodes, etc.) Therefore, approximately 50% of the light that reaches the surface from any direction is scattered forward, giving a maximum efficiency of 50%, compared to the previous 9%. It can be made extremely large by more than 5 times. However, if the semiconductor surface of the light emitting diode is made uneven and damaged by sandblasting or the like, many defects may occur and the light may not emit light, which is completely undesirable. In addition,
It is known that roughening the surface of a photodiode lowers the effective reflectance, but in the case of a photodiode, the refractive index of the crystal is higher than that of the external air or light that enters the crystal from the outside. Since the refractive index is greater than that of the coating material, total internal reflection, which is a problem with the above-mentioned light emitting diode, does not occur. Therefore, roughening the surface merely serves to reduce the reflectance by effectively making the refractive index near the surface smaller than the refractive index of the crystal. It is extremely undesirable to roughen the surface of a light emitting diode, which suffers from a much greater reduction in efficiency due to defects than a photodiode. Therefore, this problem can be solved by forming a light-diffusing layer of a transparent material whose refractive index is as close as possible to the refractive index n of the semiconductor on the surface of the semiconductor. In general, the light diffusing surface itself is well known in optics, and for example, a display device is known in which a diffuser glass lid is placed over a small light bulb or an array of light emitting diodes so that the light bulbs or light emitting diodes themselves cannot be seen. In contrast, the diffusing surface of the present invention is formed directly on the light extraction surface of the light emitting diode or via another thin film having a wavelength smaller than the wavelength of light. In a typical resin-coated semiconductor light emitting diode, the refractive index of the material that makes up the diffusion surface is
Choose a refractive index that is larger than the refractive index of the transparent resin that covers the light extraction surface of the light emitting diode. Figure 4 is an example of a GaAlAs light emitting diode with a polycrystalline structure on the output surface.
GaP10 is deposited several times the wavelength by CVD (chemical vapor deposition) or vacuum evaporation. That is, if the emission wavelength is 6700 A and the refractive index of the gap is about 3.4, the wavelength within the film is 2000 A, so a film of about 1 μm to 2 μm is precipitated. However, the deposited film must have a large particle size so that it becomes a milky red-white light diffusing film rather than a transparent film. If it is precipitated at a temperature lower than the temperature at which a CVD film is normally formed, an opaque light-diffusing film can be obtained because the grain size is generally coarse. The fact that the film is milky white indicates that the diameter of the particles is so coarse that light is scattered on the surface in all directions as shown in FIG. In the figure, 10 schematically shows that light diffusion occurs because the grain size of the film is coarse. Even with the vapor deposition method, it is possible to vaporize at a higher speed than usual and obtain a coarse particle size. Temperature, substrate conditions, and CVD for diffusing light diffusing surfaces
In the case of , the flow rate etc. differ depending on the substance, but it is easy to determine the conditions experimentally because it is easy to clearly determine whether the film is a transparent film or a diffused film by measuring the reflected light or visually observing it. In order to form a film, instead of CVD or vapor deposition, another method that can be used is to mix a film-forming substance, such as GaP fine powder, with an organic solvent and spray it onto the semiconductor surface. Of course, the CVD method has better adhesion, but the spray method often provides adhesion that is sufficient for practical use. Epoxy coating is applied on the light diffusing film thus produced using a conventional method. In the above example, the refractive index of the film-forming material and the semiconductor are almost the same, so the light that reaches the surface enters the diffusion film and is scattered in all directions, so about 50% of it can be extracted to the outside. In other words, approximately five times more light can be obtained than when no diffusion film is used, resulting in an extremely bright light emitting diode. As for the film, as shown in Figure 6, if a transparent film 11 is first formed at a relatively high temperature and the light diffusing film 10 is formed by lowering the extraction temperature in the middle, reflection loss at the boundary can be greatly reduced. desirable. In this case, instead of forming two layers 10 and 11 with completely different grain sizes, by continuously changing the film deposition conditions at the boundary, an interface with discontinuous refractive index will not be created, and reflection at the boundary will be reduced. It is more preferable because it prevents Note that the refractive index of a deposited film changes depending on the deposition conditions and particle size, and it is known that, for example, in the case of a SiO film, there is a difference of about 1.7 to 1.9 depending on the deposition conditions. However, since the change is not so large as in the above example, the light extraction rate can be roughly evaluated using the refractive index of the crystal itself. The light diffusing film deposited by the CVD method or the vapor deposition method is considered to be a collection of minute particles, as shown in FIG. 5, and the light diffusing effect is produced because the particle size is larger than the wavelength of light to some extent. If the packing of particles is rough, the refractive index decreases, so it can be said that the rate of decrease in refractive index is almost the same as the rate of decrease in density, but in CVD or vapor deposited films, the decrease in density is less than a few percent. . In addition to GaP, other film materials include materials that have a high refractive index in the visible light region and are transparent to visible light, as shown in Table 1.

【表】 膜物質がZnSeの場合、屈折率2.9だから−
族間半導体発光ダイオードの屈折率を約3.4とす
ると半導体の表面は光学的に平担であるから膜に
全ての光が入るわけでなく、臨界角θcが存在す
る。すなわち、Sinθc=n3/n1で与えられるか
ら(n3は膜物質の屈折率である)θc=59゜とな
り、立体角Ω=2π(1−cosθc)=2π×0.5
となる。膜は光拡散面であるが膜の屈折率として
は単結晶などの屈折率を使つておよその評価がで
きる臨界角以内の光は膜内に入射するとともに膜
と半導体表面の間で反射もするが、その反射損は R=(n−n/n+n で与えられ、上記の例では反射損は0.6%だが無
視してよい。このようにして膜内に入つた光は拡
散し、その50%は前方に散乱し残り50%は再び結
晶内に入つて失われるから、結局外部への光の取
り出し効率は50%の1/2,すなわち約2.5%とな
る。膜と樹脂との間は光学的に平担ではないから
ほぼ光拡散膜から前方に散乱した光が樹脂内に入
ると考えてよい。 光拡散膜がないときは光取り出し率は、先に述
べたように9%だから、光拡散膜を使用したこと
により約2.8倍の明るさになる。 表中最も屈折率の小さいn=2.4のGaNを使う
と−族間半導体発光ダイオードでは同様な計
算をするとθc≒45゜となり約15%の光を外部へ
取り出せるので膜のないときの約1.5倍の明るさ
になる。したがつて、GaNを使うよりはGaPを使
つた方がはるかに明るいが、GaNは絶縁性がGaP
より良いので目的によつてGaNの方が望ましい。 このように−族間半導体発光ダイオードの
場合は、表1に示される物質、それらの混合物等
の屈折率が約2.4以上の材料から適切なものを選
び、光拡散層を形成することで、発光ダイオード
かりの光取り出し率をほぼ1.5倍以上にすること
ができる。 光拡散膜を作る条件は比較的低温なので発光ダ
イオードの電極を形成してから被着することがで
きるのも利点である。もちろん膜を形成してから
フオトマスクで電極部穴あけをしてから電極金属
とつけることもできる。 なお、半導体表面に不活性化膜としてGaOxNy
やSiO2などの屈折率の異るうすい膜があつても
膜厚が波長より充分うすければたとえば波長の1/
2〜1/3以下なら本願の光拡散膜をその上から被着
することにより充分効果が得られる。GaOxNyの
製法、構造、特性は本願発明者による特許出願
(特公昭53−38580号、特公昭53−86573号など)
に記載されている。なお、GaOxNy自身を本願の
光拡散膜として使うこと、あるいは、第一層コー
テイング膜として使い、その上にたとえば表1に
記載した他の膜を折出させて2層膜として使うこ
とも効果的である。GaOxNyは酸素OのNに対す
る比が大きくなると屈折率がGaNに比して小さく
なるので光取り出し率が低下してしまうから、O
の比率を小さくするか、2層膜として使い、光取
り出し率を高くする効果と、不活性膜としての効
果と両方の効果をもたせるのがよい。また、
GaAlAs発光ダイオードを例にとると、被着膜と
してGaPを使つてもよいが、またGaAlAsをCVD
法で被着してもよい。その場合は禁制帯巾が発光
波長に近いので吸収損失が大きくならないように
するためには、被着膜の組成の一様性が得られる
ようCVD条件を注意深くコントロールする必要
がある。この場合被着膜に層4と同じ導電性の不
純物を添加し導電性膜として膜形成後電極を形成
することもできる。イオン注入等で膜内に選択的
に不純物添加領域を形成してもよい。 以上は−族間化合物半導体発光ダイオード
について具体例を示したが、−族間化合物半
導体発光ダイオードについても適用できることは
もちろんである。例えば、青色発光ダイオードと
してZnSeのni接合であるが、青色領域でZnSeの
屈折率は2.9であり、しかも直接遷移半導体だか
ら光拡散膜を形成することが有効である。光拡散
膜としてはZnSe自体でもよいが多少吸収効果が
加わつてしまうのでGaN膜を使うことがさらに有
効である。即ち、GaNはZnSeの青色発光に対し
ても透明であるという利点を有する。なお、−
族間化合物の屈折率は3.2〜3.4であるが、−
族間化合物の屈折率は2.4〜2.9だから、−
族間化合物の方が内部臨界角がかるかに小さく、
従つて光拡散膜を形成することの効果も著しい。 −族間化合物の場合、半導体の屈折率が
2.9、樹脂の屈折率を1.5とすると臨界角θcは31
゜、立体角Ω=2π×0.14stradまた屈折率2.4の
ときは臨界角θc=39゜,Ω=2π×0.22strad
となる。すなわち光拡散膜を使わない場合屈折率
2.9の発光ダイオードでは内部から表面に向つた
光の14%また屈折率2.4の場合は22%が外部にと
り出される。樹脂を用いなければ更に小さい割合
になることはいうまでもない。半導体の屈折率
が、2.4のときは22%の光取り出し率を約1.5倍の
30%にするには、前述第2の実施例と同じ計算方
法により臨界角を約66゜以上にする必要があるこ
とがわかる。すなわち、この場合、屈折率はおよ
そ2.2以上の物質で光拡散膜を形成することが必
要である。つまり明るさが50%増加するわけだか
ら屈折率2.2の膜でも相当効果的であるといえ
る。 本願発明を要約すると、半導体発光ダイオード
から外部に放出される光が、半導体の屈折率が空
気や、コーテイング用の樹脂の屈折率よりはなは
だしく大きいため、半導体の表面に対して臨界角
以上の角度を持つて到達した光は全反射し結局再
吸収されてしまい有効に外部に取り出せないとい
う欠点を取り除いた明るい発光ダイオードを提供
するものであり、半導体表面に直接または光の波
長より薄い膜を介して屈折率の高い透明物質の光
拡散膜を含む膜を堆積したことを特徴とする発光
ダイオードである。光拡散層は発光ダイオードよ
り発光する光を拡散するものであればよく、粒状
物質の堆積膜に限らない。本発明の発光ダイオー
ドは、半導体表面をレンズ状またはドーム状にし
た発光ダイオードに比べて極めて製造が容易でか
つ、光の取り出し率を約50%にすることができ
る。
[Table] If the film material is ZnSe, the refractive index is 2.9, so −
When the refractive index of an intergroup semiconductor light emitting diode is approximately 3.4, the surface of the semiconductor is optically flat, so not all light enters the film, and a critical angle θc exists. That is, since Sinθc=n 3 /n 1 (n 3 is the refractive index of the film material), θc=59°, and the solid angle Ω=2π(1−cosθc)=2π×0.5
becomes. The film is a light diffusing surface, but the refractive index of the film can be approximately estimated using the refractive index of a single crystal, etc. Light within a critical angle not only enters the film but also reflects between the film and the semiconductor surface. However, the reflection loss is given by R=(n 1 -n 3 /n 1 +n 3 ) 2 , and although the reflection loss is 0.6% in the above example, it can be ignored. In this way, the light that enters the film is diffused; 50% of it is scattered forward, and the remaining 50% enters the crystal again and is lost, so the efficiency of light extraction to the outside is 1/1/2 of 50%. 2, or approximately 2.5%. Since the space between the film and the resin is not optically flat, it can be considered that almost all the light scattered forward from the light diffusing film enters the resin. Without the light diffusion film, the light extraction rate is 9% as mentioned earlier, so using the light diffusion film increases the brightness by about 2.8 times. If we use GaN with n=2.4, which has the lowest refractive index in the table, a similar calculation for an intergroup semiconductor light emitting diode will yield θc≒45°, which means that about 15% of the light can be extracted to the outside, which is about 1.5 times as much as when there is no film. The brightness will be . Therefore, it is much brighter to use GaP than GaN, but GaN has better insulating properties than GaP.
GaN is better, so depending on the purpose, GaN is preferable. In this way, in the case of an intergroup semiconductor light emitting diode, by selecting an appropriate material with a refractive index of about 2.4 or more from the substances shown in Table 1, mixtures thereof, etc., and forming a light diffusion layer, light emission can be achieved. The light extraction rate of a diode can be increased by approximately 1.5 times or more. Since the conditions for forming the light-diffusing film are relatively low temperatures, it is also advantageous that the light-diffusing film can be deposited after forming the electrodes of the light-emitting diode. Of course, it is also possible to form a film, then use a photomask to make holes for the electrode portion, and then attach the electrode metal. Note that GaOxNy is used as a passivation film on the semiconductor surface.
Even if there is a thin film with a different refractive index, such as SiO 2 or SiO 2, if the film thickness is sufficiently thinner than the wavelength,
If it is less than 2 to 1/3, a sufficient effect can be obtained by depositing the light diffusing film of the present invention thereon. The manufacturing method, structure, and characteristics of GaOxNy have been patented by the inventor (Japanese Patent Publication No. 53-38580, Japanese Patent Publication No. 53-86573, etc.)
It is described in. It is also effective to use GaOxNy itself as the light diffusion film of the present application, or to use it as a first layer coating film and then deposit other films listed in Table 1 on top of it to form a two-layer film. It is. In GaOxNy, when the ratio of oxygen O to N increases, the refractive index becomes smaller than that of GaN, and the light extraction rate decreases.
It is better to reduce the ratio of , or use it as a two-layer film, so that it has both the effect of increasing the light extraction rate and the effect of acting as an inert film. Also,
Taking GaAlAs light emitting diodes as an example, GaP can be used as the deposited film, but GaAlAs can also be coated by CVD.
It may be coated by law. In this case, the forbidden band is close to the emission wavelength, so in order to prevent absorption loss from increasing, it is necessary to carefully control the CVD conditions so as to obtain a uniform composition of the deposited film. In this case, it is also possible to add the same conductive impurity as layer 4 to the deposited film to form a conductive film and then form an electrode. An impurity doped region may be selectively formed in the film by ion implantation or the like. Although specific examples have been shown above regarding intergroup compound semiconductor light emitting diodes, it goes without saying that the present invention can also be applied to intergroup compound semiconductor light emitting diodes. For example, a ZnSe ni junction is used as a blue light emitting diode, but the refractive index of ZnSe is 2.9 in the blue region, and since it is a direct transition semiconductor, it is effective to form a light diffusing film. ZnSe itself may be used as the light diffusing film, but since some absorption effect will be added, it is more effective to use a GaN film. That is, GaN has the advantage of being transparent even to the blue light emitted by ZnSe. In addition, -
The refractive index of intergroup compounds is 3.2 to 3.4, but −
Since the refractive index of intergroup compounds is 2.4 to 2.9, −
Intergroup compounds have much smaller internal critical angles,
Therefore, the effect of forming a light diffusing film is also significant. -In the case of intergroup compounds, the refractive index of the semiconductor is
2.9, if the refractive index of the resin is 1.5, the critical angle θc is 31
°, solid angle Ω = 2π × 0.14strad, and when the refractive index is 2.4, the critical angle θc = 39°, Ω = 2π × 0.22strad
becomes. In other words, if a light diffusing film is not used, the refractive index
In a light-emitting diode with a refractive index of 2.9, 14% of the light directed from the inside toward the surface is extracted, and in the case of a refractive index of 2.4, 22% is extracted to the outside. Needless to say, if no resin is used, the ratio will be even smaller. When the refractive index of the semiconductor is 2.4, the light extraction rate of 22% is increased by approximately 1.5 times.
It can be seen that in order to achieve 30%, the critical angle needs to be approximately 66° or more using the same calculation method as in the second embodiment. That is, in this case, it is necessary to form the light diffusing film with a substance having a refractive index of approximately 2.2 or more. In other words, the brightness increases by 50%, so even a film with a refractive index of 2.2 can be said to be quite effective. To summarize the present invention, the light emitted to the outside from a semiconductor light emitting diode has an angle greater than the critical angle with respect to the surface of the semiconductor because the refractive index of the semiconductor is much higher than that of air or coating resin. The purpose is to provide a bright light emitting diode that eliminates the disadvantage that the light that reaches the semiconductor surface is totally reflected and ultimately reabsorbed and cannot be effectively extracted to the outside. This is a light emitting diode characterized by depositing a film including a light diffusing film made of a transparent material with a high refractive index. The light diffusion layer may be any layer that can diffuse light emitted from a light emitting diode, and is not limited to a deposited film of particulate matter. The light-emitting diode of the present invention is much easier to manufacture than a light-emitting diode having a lens-shaped or dome-shaped semiconductor surface, and can have a light extraction rate of about 50%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の半導体発光ダイオードの概略
の断面図、第2図は改良された従来の半導体発光
ダイオードの概略の断面図、第3図は表面を粗し
た半導体発光ダイオードの光散乱を示す模式図、
第4図は本願発明の発光ダイオードの一例を示す
概略の断面図、第5図は第4図における光拡散膜
10の拡大された膜式図、第6図は第4図におけ
る光拡散膜10の他の例を示す模式図である。 1……発光ダイオードの半導体部分、10……
光拡散膜、11……透明層。
Fig. 1 is a schematic cross-sectional view of a conventional semiconductor light-emitting diode, Fig. 2 is a schematic cross-sectional view of an improved conventional semiconductor light-emitting diode, and Fig. 3 shows light scattering of a semiconductor light-emitting diode with a roughened surface. Pattern diagram,
4 is a schematic cross-sectional view showing an example of a light emitting diode of the present invention, FIG. 5 is an enlarged film diagram of the light diffusion film 10 in FIG. 4, and FIG. 6 is a diagram showing the light diffusion film 10 in FIG. 4. It is a schematic diagram which shows another example. 1... Semiconductor part of light emitting diode, 10...
Light diffusion film, 11...transparent layer.

Claims (1)

【特許請求の範囲】 1 屈折率の高い半導体を用いて構成した半導体
発光ダイオードにおいて、光を取り出す単結晶半
導体表面上に該発光ダイオードの発光波長領域に
おいて吸収のない物質の多結晶粒子によつて形成
された層を設け、前記層の多結晶粒子の平均径を
発光波長より大として光散乱を生ずる光拡散層と
なしたことを特徴とする半導体発光ダイオード。 2 前記層を形成する物質の屈折率が約2.4以上
であり、前記発光ダイオードを構成する半導体は
−族間化合物半導体であることを特徴とする
前記特許請求の範囲第1項記載の半導体発光ダイ
オード。 3 前記層を形成する物質の屈折率が約2.2以上
であり、前記発光ダイオードは−族間化合物
半導体で形成されていることを特徴とする前記特
許請求の範囲第1項記載の半導体発光ダイオー
ド。 4 前記層が光を拡散する光拡散層と前記半導体
表面との間に設けられ光を透過する補助層とを含
むことを特徴とする前記特許請求の範囲第1項乃
至第3項のいずれか1項に記載の半導体発光ダイ
オード。 5 前記層が光を拡散する光拡散層と光を透過す
る補助層が、厚さ方向で粒径が変わる一体の膜で
構成されていることを特徴とする前記特許請求の
範囲第4項記載の半導体発光ダイオード。 6 前記層の主成分がGaPであることを特徴とす
る前記特許請求の範囲第1項乃至第5項のいずれ
か1項に記載の半導体発光ダイオード。
[Scope of Claims] 1. In a semiconductor light emitting diode constructed using a semiconductor with a high refractive index, polycrystalline particles of a substance that has no absorption in the light emission wavelength region of the light emitting diode are formed on the surface of a single crystal semiconductor from which light is extracted. 1. A semiconductor light-emitting diode, characterized in that a layer is provided, and the average diameter of polycrystalline particles in the layer is larger than the emission wavelength to serve as a light diffusion layer that causes light scattering. 2. The semiconductor light emitting diode according to claim 1, wherein the material forming the layer has a refractive index of about 2.4 or more, and the semiconductor forming the light emitting diode is an intergroup compound semiconductor. . 3. The semiconductor light emitting diode according to claim 1, wherein the material forming the layer has a refractive index of about 2.2 or more, and the light emitting diode is formed of an intergroup compound semiconductor. 4. Any one of claims 1 to 3, wherein the layer includes a light diffusion layer that diffuses light and an auxiliary layer that transmits light and is provided between the semiconductor surface and the semiconductor surface. The semiconductor light emitting diode according to item 1. 5. The light diffusing layer that diffuses light and the auxiliary layer that transmits light are composed of an integral film whose grain size changes in the thickness direction. semiconductor light emitting diode. 6. The semiconductor light emitting diode according to any one of claims 1 to 5, wherein the main component of the layer is GaP.
JP14843679A 1979-11-16 1979-11-16 Light emanating diode Granted JPS5671986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14843679A JPS5671986A (en) 1979-11-16 1979-11-16 Light emanating diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14843679A JPS5671986A (en) 1979-11-16 1979-11-16 Light emanating diode

Publications (2)

Publication Number Publication Date
JPS5671986A JPS5671986A (en) 1981-06-15
JPS6133276B2 true JPS6133276B2 (en) 1986-08-01

Family

ID=15452743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14843679A Granted JPS5671986A (en) 1979-11-16 1979-11-16 Light emanating diode

Country Status (1)

Country Link
JP (1) JPS5671986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109372U (en) * 1986-12-30 1988-07-14

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368263A (en) 2001-06-06 2002-12-20 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting device
JP4590905B2 (en) * 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
EP1766701A2 (en) * 2004-06-25 2007-03-28 Philips Intellectual Property & Standards GmbH Led with improved light emittance profile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109372U (en) * 1986-12-30 1988-07-14

Also Published As

Publication number Publication date
JPS5671986A (en) 1981-06-15

Similar Documents

Publication Publication Date Title
US11127887B2 (en) Semiconductor light emitting device with reflective side coating
CN101103438B (en) Method of making a vertical light emitting diode
US8354682B2 (en) Radiation emitting element
US7483212B2 (en) Optical thin film, semiconductor light emitting device having the same and methods of fabricating the same
US8148890B2 (en) Light-emitting device and method for manufacturing the same
US7276737B2 (en) Light emitting devices with improved light extraction efficiency
CN111146321B (en) LED chip with DBR insulation protection and uniform light emitting performance and manufacturing method thereof
KR20080010458A (en) Electroluminescence light source
WO2007119633A1 (en) Light emitting element
US20060097271A1 (en) Gan-based radiation-emitting thin-layered semiconductor component
JP2000503163A (en) Electroluminescent lighting system
CN102456791A (en) Nitride semiconductor light-emitting device
WO2014134980A1 (en) Light-emitting diode and manufacturing method therefor
JP2011505057A (en) Lighting equipment
CN211320133U (en) Even LED chip of light-emitting with DBR insulation protection
KR100697829B1 (en) Manufacturing method of light emitting element and light emitting element manufactured by this method
CN102138231B (en) Inverted led structure with improved light extraction
WO2017049685A1 (en) Oled luminescent device and display device
JPS6133276B2 (en)
US8723199B2 (en) Radiation emitting body and method for producing a radiation-emitting body
US5194922A (en) Luminescent semiconductor element
TWI415297B (en) Optoelectronic semiconductor chip
TWI224762B (en) Organic LED display structure and manufacturing method thereof
JP2006032333A (en) Photoelectron device and manufacturing method of photoelectron device
US11233223B2 (en) Structure for extracting light and organic electroluminescent lighting device