JPS6133169A - Preparation of 4-amino-2,2,6,6-tetramethylpiperidine - Google Patents

Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Info

Publication number
JPS6133169A
JPS6133169A JP59154916A JP15491684A JPS6133169A JP S6133169 A JPS6133169 A JP S6133169A JP 59154916 A JP59154916 A JP 59154916A JP 15491684 A JP15491684 A JP 15491684A JP S6133169 A JPS6133169 A JP S6133169A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
cobalt
pressure
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59154916A
Other languages
Japanese (ja)
Other versions
JPH0522700B2 (en
Inventor
Masakatsu Yoshimura
吉村 正克
Tatsumi Nuno
布 辰己
Hiroki Yamamoto
山本 浩喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59154916A priority Critical patent/JPS6133169A/en
Publication of JPS6133169A publication Critical patent/JPS6133169A/en
Publication of JPH0522700B2 publication Critical patent/JPH0522700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound useful as an important intermediate of a hindered piperidine stabilizer, economically, in an industrial scale, at a low cost, by reducing and aminating triacetoneamine with ammonia and hydrogen in the presence of a cobalt-based catalyst at specific temperature and pressure. CONSTITUTION:4-Amino-2,2,6,6-tetramethylpiperidine of formula II is produced by the reductive amination of triacetoneamine of formula I with ammonia and hydrogen. The reaction is carried out at 80-200 deg.C, preferably 100-150 deg.C under a pressure of <150kg/cm<2>G, usually 50-180kg/cm<2>G, in the presence of a cobalt- based catalyst (especially Raney-cobalt).

Description

【発明の詳細な説明】 本発明は4−アミノ−2,2,6,6−テトラメチルピ
ペリジンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 4-amino-2,2,6,6-tetramethylpiperidine.

4−アミノ−2,2,6,6−テトラメチルビベリジン
(以下、TAMと略記する)はプラスチック、ゴムなど
に使用されるヒンダードピペリジン系安定剤の重要な中
間体である。
4-Amino-2,2,6,6-tetramethylbiveridine (hereinafter abbreviated as TAM) is an important intermediate for hindered piperidine stabilizers used in plastics, rubber, and the like.

本発明の目的はかかるTAMを安価にかつ工業的に有利
に製造する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing such TAM at low cost and industrially advantageously.

TAMの製造法としては下式に従って製造することは公
知である。すなわちLiebigs Ann。
As a method for producing TAM, it is known that it is produced according to the following formula. Namely Liebigs Ann.

d、 Chemie、 417巻118−119頁オヨ
ヒIzv、 Akad、 Nauk、 5SSRSer
、 Khim、 1966年1477]にはホロン(I
)とアンモニアとを反応させてトリアセトンアミン(m
を得、次いでヒドロキシルアミンを反応させオキシム体
(m)とした後、亜鉛もしくは金属ナトリウムなどで還
元して約80%の収率でT A M (rv)を得る方
法が記載されている。
d, Chemie, Vol. 417, pp. 118-119 Oyohi Izv, Akad, Nauk, 5SSRSer
, Khim, 1966, 1477] has a holon (I
) and ammonia to form triacetonamine (m
A method is described in which the oxime (m) is obtained by reacting with hydroxylamine and then reduced with zinc or metallic sodium to obtain T A M (rv) with a yield of about 80%.

また特開昭50−126674号公報には、ホ゛ロンを
還元アミノ化してTAMを71%の収率で得る方法が開
示されている。
Furthermore, JP-A-50-126674 discloses a method for obtaining TAM at a yield of 71% by reductive amination of folon.

しかしながら、上記方法はいずれもホロンを出発原料と
しており、ホロン自体の収率が7(Fトンから約80%
と極めて低0ため、工業的には原料面で大きな問題があ
った。
However, all of the above methods use holon as a starting material, and the yield of holon itself is 7 (approximately 80% from F ton).
Because of the extremely low 0, there was a big problem in terms of raw materials industrially.

かかる問題点の他に前者の方法は三段階の複雑な工程を
必要とし、しかも収率が極めて低いという点でも問題で
あり、また後者の方法においては収率面でも満足し得る
ものではなく、さらにホロンに対し20 W t%と多
量の触媒を必要とし、加えてアルコール体の生成を防止
するために酢酸を必要とするなどの点で問題であり、し
かもホロンを高温高圧のオートクレーブ中に順次圧入す
る必要があり、特殊な設備を必要とするなどの点でも問
題であった。
In addition to these problems, the former method requires a three-step complicated process and has an extremely low yield, while the latter method is not satisfactory in terms of yield. Furthermore, there are problems in that it requires a large amount of catalyst, 20 W t% based on holon, and in addition, acetic acid is required to prevent the formation of alcohol. There were also problems in that it needed to be press-fitted and special equipment was required.

一方、出発原料として、アセトンとアンモニアから好収
率で得られるトリアセトンアミンを用いる方法が、特開
昭56−122852号公報に開示されている。
On the other hand, a method using triacetonamine obtained in good yield from acetone and ammonia as a starting material is disclosed in JP-A-56-122852.

しかしながらこの方法は特殊な触媒(RCH< 45/
2o >をトリアセトンアミンに対し10wt%も使用
し、しかも180〜200°C1宇 800Kf/CIAという高温高圧下で実施する方法で
あり、触媒、設備の面で工業的に好ましからざる方法で
あった。またこの方法について、追試を行った結果、T
AMの反応収率は高々70%でありこの点でも改良が要
望される方法であった。
However, this method requires special catalysts (RCH < 45/
This method uses as much as 10 wt% of 2o> based on triacetone amine, and is carried out at high temperatures and pressures of 180 to 200° C1 and 800 Kf/CIA, which is an industrially unfavorable method in terms of catalysts and equipment. . In addition, as a result of conducting additional tests on this method, T
The reaction yield of AM was at most 70%, and the method required improvement in this respect as well.

以上のように公知方法はいずれも欠点を有し工業的tl
模での製法とは言い難かった。
As mentioned above, all the known methods have drawbacks and are not suitable for industrial use.
It was hard to say that it was manufactured using a model.

このような現状に鑑み本発明者らはトリアセトンアミン
の還元アミノ化によるTAMの工業的製造方法について
鋭意検討を重ねた結果、特定の触媒、特定の反応条件下
で還元アミノ化を実施すれば、はぼ定量的にTAMが得
られることを見い出し本発明を完成した。
In view of this current situation, the present inventors have conducted intensive studies on an industrial method for producing TAM by reductive amination of triacetonamine, and have found that if reductive amination is carried out using a specific catalyst and under specific reaction conditions They discovered that TAM can be obtained almost quantitatively and completed the present invention.

すなわち本発明は、トリアセトンアミンを還元アミノ化
せしめるにあたり、コバルト系触媒の裔在下、反応温度
80〜200℃、圧力150Kt/dG未満の条件下で
実施することを特徴とする工業的に優れたTAMの製造
方法を提供するものである。
That is, the present invention provides an industrially superior method characterized in that the reductive amination of triacetonamine is carried out in the presence of a cobalt-based catalyst at a reaction temperature of 80 to 200°C and a pressure of less than 150 Kt/dG. A method for manufacturing TAM is provided.

本発明は下記の反応式によって表わされる。The present invention is represented by the following reaction formula.

本発明におけるアンモニアの使用はトリアセトンアミン
に対し、化学量的には1モル倍であるが1.過剰使用す
ることが好ましく、通常1〜80モル倍の範囲、特に5
〜10モル倍が好ましし)。
In the present invention, ammonia is used in a stoichiometrically 1-fold molar amount relative to triacetonamine, but 1. It is preferable to use excess amount, usually in the range of 1 to 80 moles, especially 5
(preferably 10 moles).

また水素は理論量で良いが、過剰量でも何ら反応に悪影
響を与えるものではな(、通常水素量は反応のために選
択された圧力範囲に合わせるように決める。
Furthermore, hydrogen may be used in a theoretical amount, but an excess amount will not adversely affect the reaction (usually the amount of hydrogen is determined to match the pressure range selected for the reaction.

また本発明に使用される還元アミノ化触媒としてはコバ
ルN媒に限定される。他の触媒、例えばニッケル、パラ
ジウム、白金、ロジュム系触媒などを使用した場合は目
的物の収率が著つ土、アルミナ、シリカゲル、活性炭な
どの担体に担持したものでもよく、あるいは担体を使用
してないものでもよい。なかでもラネーコバルトが最も
好ましい。
Further, the reductive amination catalyst used in the present invention is limited to Kobal N medium. When other catalysts such as nickel, palladium, platinum, rhodium catalysts, etc. are used, they may be supported on a carrier such as earth, alumina, silica gel, or activated carbon, which provide a remarkable yield of the target product, or they may be supported on a carrier such as earth, alumina, silica gel, or activated carbon. Even if you don't have one. Among them, Raney cobalt is most preferred.

触媒の使用量は通常トリアセトンアミンに対し0.2〜
10重量%、好ましくは0.5〜2重量%である。
The amount of catalyst used is usually 0.2 to triacetonamine.
10% by weight, preferably 0.5-2% by weight.

反応温度は80〜200℃、好ましくは100〜150
℃で実施する。反応圧力は150 Kp/ff1G未満
の圧力が選定されるが、通常50〜180Kf/dGで
ある。
The reaction temperature is 80-200°C, preferably 100-150°C.
Perform at °C. The reaction pressure is selected to be less than 150 Kp/ff1G, but is usually 50 to 180 Kf/dG.

これ以外の温度および圧力範囲では、長い反応時間を必
要とする、あるいは収率が低い、または、副生物を多く
生成するなどの結果となり好ましくない。
Temperature and pressure ranges other than these are undesirable because they require a long reaction time, the yield is low, or a large amount of by-products are produced.

本発明の方法は上記のようにコバルト触媒という特定の
触媒を使用し、特定の反応条件下に実施するものである
が、反応溶媒については使用しても良いし、使用しなく
ても良い。
As mentioned above, the method of the present invention uses a specific cobalt catalyst and is carried out under specific reaction conditions, but the reaction solvent may or may not be used.

溶媒を使用する場合は、ヘキサン、イソオクタン、シク
ロペンタン、シクロヘキサンなどの環状または非環状脂
肪族炭化水素、プロピルエーテル、ブチルエーテル、ア
ミルエーテル、テトラヒドロフラン、ジオキサンなどの
環状または非環状脂肪族エーテル、ベンゼン、トルエン
、キシレン、プロピルベンゼンなどの芳香族炭化水素、
メタノール、エタノール、プロパツール、イソプロパツ
ール、ブタノール、イソブタノールなどの低級アルコー
ル等が使用できるが、中でもメタノールが好ましい。
If a solvent is used, cyclic or acyclic aliphatic hydrocarbons such as hexane, isooctane, cyclopentane, cyclohexane, cyclic or acyclic aliphatic ethers such as propyl ether, butyl ether, amyl ether, tetrahydrofuran, dioxane, benzene, toluene, etc. , aromatic hydrocarbons such as xylene, propylbenzene,
Lower alcohols such as methanol, ethanol, propatool, isopropanol, butanol, and isobutanol can be used, and among them, methanol is preferred.

また、本発明の方法は、回分式、連続式いずれの方法で
も実施できる。回分式の場合はオートクレーブ中にトリ
アセトンアミン、触媒、アンモニア、場合によっては溶
媒を加え一最後に水素を所定の圧力まで圧入した後、所
定の温度まで加熱する。反応は通常1〜5時間で終了し
、終点は水素吸収がなくなることにより示される。
Further, the method of the present invention can be carried out in either a batch method or a continuous method. In the case of a batch method, triacetone amine, a catalyst, ammonia, and in some cases a solvent are added to the autoclave, and finally hydrogen is injected to a predetermined pressure, and then heated to a predetermined temperature. The reaction is usually complete in 1 to 5 hours, with the end point indicated by the absence of hydrogen absorption.

連続法の場合には、あらかじめ触媒が充填され、所定の
反応温度および圧力に調整された反応器へ原料を導入し
て反応させる。この場合の触媒床は固定床、流動床のい
ずれでも良い。
In the case of a continuous method, raw materials are introduced into a reactor filled with a catalyst in advance and adjusted to a predetermined reaction temperature and pressure, and reacted. The catalyst bed in this case may be either a fixed bed or a fluidized bed.

かくして本発明の方法によれば公知の方法よりもはるか
に緩和な条件下でしかも98%以上という高い反応収率
でTAMが得られる。
Thus, according to the method of the present invention, TAM can be obtained under much milder conditions than in known methods and with a high reaction yield of 98% or more.

以下実施例により本発明を具体的に説明するが、本発明
は何らこれらに限定されるものではない。
The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these in any way.

実施例1 800−オートクレーブに、トリアセトンアミン46.
7(f)、メタノール98.1 (IF)50%含水ラ
ネうコバルトx、o(lを仕込み、液体アンモニア40
.9(f)を封入する。
Example 1 In an 800-autoclave, 46% of triacetonamine was added.
7(f), methanol 98.1 (IF) 50% hydrated cobalt x, o (l), liquid ammonia 40
.. Enclose 9(f).

その後で水素をgQKp/dGまで圧入し、180℃ま
で昇温し、この温度を保持した。
Thereafter, hydrogen was injected to gQKp/dG, the temperature was raised to 180°C, and this temperature was maintained.

圧力は最高1s oKf/dlGまで上昇したが、時間
とともに減少し、昇温してから約2時間後に一定値85
Kf/−Gとなったので冷却した。
The pressure rose to a maximum of 1soKf/dlG, but decreased over time and reached a constant value of 85 about 2 hours after the temperature was raised.
Since it became Kf/-G, it was cooled.

冷却後、N2にて釜内液をバブリングし、過剰のアンモ
ニアを除去したのち、沖過することにより反応触媒を除
去後反応マスを得た。
After cooling, the liquid in the pot was bubbled with N2 to remove excess ammonia, and then filtered to remove the reaction catalyst and obtain a reaction mass.

ガスクロにより反応マスを分析した所、トリアセトンア
ミン転化率1oO(%)、TAM選択率99(%)であ
った。
Analysis of the reaction mass by gas chromatography revealed that the triacetonamine conversion rate was 100 (%) and the TAM selectivity was 99 (%).

反応マスからTAMの取出しは、溶媒を単蒸留で回収し
たのち精溜を行ない、98%TAM45.4Fを得た(
収率95%)。
To remove TAM from the reaction mass, the solvent was recovered by simple distillation and then rectified to obtain 98% TAM45.4F (
yield 95%).

B、P  114℃150Torr 実施例−2 オートクレーブに、トリアセトンアミンas、7(f)
、メタノール74(f)、60%含水ラネーコバルト0
.98(f)を仕込み。
B, P 114°C 150 Torr Example-2 In an autoclave, triacetonamine as, 7(f)
, methanol 74(f), 60% hydrated Raney cobalt 0
.. Prepare 98(f).

液体アンモニア4o、9(f)を封入する。、その後で
水素を80Kr/cdGまで圧入し、昇温して180°
Cとした。反応は2時間で終了した。取出しは、実験例
−1と同じように行ない反応マスを分析した所、トリア
セトンアミン藪#、嘉11111仏−TAM偕榊本QQ
仏で本った。
Liquid ammonia 4o and 9(f) are sealed. After that, hydrogen was injected to 80Kr/cdG, and the temperature was raised to 180°.
It was set as C. The reaction was completed in 2 hours. The extraction was carried out in the same manner as in Experimental Example-1, and the reaction mass was analyzed and found to be triacetone amine Yabu #, Ka11111 France-TAM Kaisakakimoto QQ.
I wrote it in Buddha.

比較例−1 実施例−1と同じ仕込み組成にて、反応温度を190℃
に昇温した。この時の圧力は180Kf/dGであり、
その後も190℃に保温したにもかかわらず徐々に圧力
が上昇し保温4時間後に200Kt/cIAGとなった
Comparative Example-1 Same charge composition as Example-1, reaction temperature 190℃
The temperature rose to . The pressure at this time was 180Kf/dG,
Although the temperature was maintained at 190° C. thereafter, the pressure gradually increased and reached 200 Kt/cIAG after 4 hours of incubation.

この時点で冷却し実施例iと同様な方法で反応マスを取
出し分析した。トリアセトンアミン転化率100(%)
、TAM選択率60(%)であった。
At this point it was cooled and the reaction mass was removed and analyzed in the same manner as in Example i. Triacetonamine conversion rate 100 (%)
, the TAM selectivity was 60 (%).

比較例−2 トリアセトンアミン49.7(g)、メタノール74.
5(f)、50%含水pt−C0,5(f)、アンモニ
ア40.9(f)をオートクレーブに仕込み、水素を8
0Kt/dGまで圧入した。180(”0)まで加熱し
て反応させた所、最大圧力150Kt/cdGを示した
、その後4時間で水素吸収が終った。
Comparative Example-2 Triacetonamine 49.7 (g), methanol 74.
5 (f), 50% water-containing pt-C0,5 (f), and ammonia 40.9 (f) were charged into an autoclave, and hydrogen was added to 8
It was press-fitted to 0Kt/dG. When the reactor was heated to 180 ("0)" and reacted, a maximum pressure of 150 Kt/cdG was exhibited, and hydrogen absorption was completed within 4 hours.

冷却後実施例1と同様な方法で反応マスを取出し分析し
た所、トリアセトン転化率100(%)、TAM選択率
44(%)であり、数多くの副反応生成物があった。
After cooling, the reaction mass was taken out and analyzed in the same manner as in Example 1, and it was found that the triacetone conversion rate was 100 (%), the TAM selectivity was 44 (%), and there were many side reaction products.

比較例−8 オートクレーブに、トリアセトンアミン49.7(g)
、市販名RCH45/20触媒(ヘキスト社製)51’
)、液体アンモニア109(f)を仕込み、水素を10
0−/jGまで圧入した。190(’C)まで加熱しさ
らに水素を800Kf/cjGまで圧入し、H2吸収な
くなるまで反応を行なった。実施例1と同様にして反応
マスを取出し分析した所、トリアセトンアミン転化率1
00(%)、TAM選択率70(%)であった。
Comparative Example-8 49.7 (g) of triacetonamine in an autoclave
, commercial name: RCH45/20 catalyst (manufactured by Hoechst) 51'
), liquid ammonia 109(f) was charged, and hydrogen was charged 109(f).
It was press-fitted to 0-/jG. The reactor was heated to 190 ('C) and further hydrogen was injected under pressure to 800 Kf/cjG, and the reaction was carried out until no more H2 was absorbed. When the reaction mass was taken out and analyzed in the same manner as in Example 1, the triacetone amine conversion rate was 1.
00 (%), and TAM selectivity was 70 (%).

Claims (1)

【特許請求の範囲】[Claims] トリアセトンアミンをアンモニアおよび水素とで還元ア
ミノ化せしめるにあたり、コバルト系触媒の存在下、反
応温度80〜200℃、圧力150Kg/cm^2G未
満の条件下で実施することを特徴とする4−アミノ−2
,2,6,6−テトラメチルピペリジンの製造方法。
A 4-amino amine characterized in that the reductive amination of triacetonamine with ammonia and hydrogen is carried out in the presence of a cobalt-based catalyst at a reaction temperature of 80 to 200°C and a pressure of less than 150 kg/cm^2G. -2
, 2,6,6-tetramethylpiperidine manufacturing method.
JP59154916A 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine Granted JPS6133169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154916A JPS6133169A (en) 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154916A JPS6133169A (en) 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Publications (2)

Publication Number Publication Date
JPS6133169A true JPS6133169A (en) 1986-02-17
JPH0522700B2 JPH0522700B2 (en) 1993-03-30

Family

ID=15594760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154916A Granted JPS6133169A (en) 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Country Status (1)

Country Link
JP (1) JPS6133169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191219A (en) * 1988-01-26 1989-08-01 Mutoh Ind Ltd Drawing coordinate input device for cad
EP0714890A2 (en) 1994-12-02 1996-06-05 Hüls Aktiengesellschaft Process and the preparation of 4-amino-2,2,6,6-tetra-methyl piperidine
EP0776887A1 (en) * 1995-11-30 1997-06-04 Hüls Aktiengesellschaft Continuous process for the production of 4-amino-2,2,6,6-tetramethylpiperidine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191219A (en) * 1988-01-26 1989-08-01 Mutoh Ind Ltd Drawing coordinate input device for cad
EP0714890A2 (en) 1994-12-02 1996-06-05 Hüls Aktiengesellschaft Process and the preparation of 4-amino-2,2,6,6-tetra-methyl piperidine
EP0714890A3 (en) * 1994-12-02 1997-01-22 Huels Chemische Werke Ag Process and the preparation of 4-amino-2,2,6,6-tetra-methyl piperidine
EP0776887A1 (en) * 1995-11-30 1997-06-04 Hüls Aktiengesellschaft Continuous process for the production of 4-amino-2,2,6,6-tetramethylpiperidine
US5773622A (en) * 1995-11-30 1998-06-30 Huels Aktiengesellschaft Continuous process for the preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Also Published As

Publication number Publication date
JPH0522700B2 (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US3347926A (en) Ammonolysis process for producing aliphatic amines
EP0202001B1 (en) Process for the production of 2,2,6,6,-tetraalkyl 4 piperidylamines
JPH031305B2 (en)
US2519560A (en) Preparation of propylenediamine
JPH10218860A (en) Production of n-monosubstituted 4-aminopiperidine
CA1065343A (en) Preparation of tertiary amines
US5395972A (en) Process for producing amines
US5693817A (en) Solvent-free process for preparing 4-amino-2,2,6,6-tetramethylpiperidine
JPS6133169A (en) Preparation of 4-amino-2,2,6,6-tetramethylpiperidine
CA1319707C (en) Process for the preparation of serinol
JPH04221325A (en) Cyanobutylation of amines using 2-pentene- nitrile
US2606927A (en) Catalytic reduction of dicarbo-cyclic diamines
US4001250A (en) Process for preparing 4-amino-2,2,6,6-tetramethyl piperidine
JPS6011694B2 (en) 2-Pyrrolidone manufacturing method
US3268524A (en) Process for the preparation of amines of the acetylenic series
US4539403A (en) Process for the preparation of a 2-alkyl-4-amino-5-aminomethylpyrimidine
US4326063A (en) High molecular weight piperidine derivatives as UV stabilizers
CA1249590A (en) Bicyclic amide acetal production
JPS6216461A (en) Production of 4-amino-2,2,6,6-tetramethylpiperidine
US6096891A (en) Process for the production of cyclic N,N&#39;-dialkylureas
JPH0669991B2 (en) Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine
JPH0798803B2 (en) Process for producing 2,2,6,6-tetraalkylpiperidine derivative
US5639890A (en) Preparation of N-akenylcarbamic esters
JPH07116145B2 (en) Process for producing 1-benzyl-4-piperidinopiperidines
JPH10291976A (en) Production of 4-amino-2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidine imine