JPH0522700B2 - - Google Patents

Info

Publication number
JPH0522700B2
JPH0522700B2 JP59154916A JP15491684A JPH0522700B2 JP H0522700 B2 JPH0522700 B2 JP H0522700B2 JP 59154916 A JP59154916 A JP 59154916A JP 15491684 A JP15491684 A JP 15491684A JP H0522700 B2 JPH0522700 B2 JP H0522700B2
Authority
JP
Japan
Prior art keywords
reaction
tam
catalyst
pressure
triacetonamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59154916A
Other languages
Japanese (ja)
Other versions
JPS6133169A (en
Inventor
Masakatsu Yoshimura
Tatsumi Nuno
Hiroki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59154916A priority Critical patent/JPS6133169A/en
Publication of JPS6133169A publication Critical patent/JPS6133169A/en
Publication of JPH0522700B2 publication Critical patent/JPH0522700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は4−アミノ−2,2,6,6−テトラ
メチルピペリジンの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 4-amino-2,2,6,6-tetramethylpiperidine.

4−アミノ−2,2,6,6−テトラメチルピ
ペリジン(以下、TAMと略記する)はプラスチ
ツク、ゴムなどに使用されるヒンダードピペリジ
ン系安定剤の重要な中間体である。
4-Amino-2,2,6,6-tetramethylpiperidine (hereinafter abbreviated as TAM) is an important intermediate for hindered piperidine stabilizers used in plastics, rubber, etc.

本発明の目的はかかるTAMを安価にかつ工業
的に有利に製造する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing such TAM at low cost and industrially advantageously.

TAMの製造法としては下式に従つて製造する
ことは公知である。すなわちLiebigs Ann.d.
Chemie、417巻118−119頁およびIzv.Akad.
Nauk.SSSR Ser.Khim.1966年1477頁にはホロン
()とアンモニア とを反応させてトリアセトンアミン()を得、
次いでヒドロキシルアミンを反応させオキシム体
()とした後、亜鉛もしくは金属ナトリウムな
どで還元して約80%の収率でTAM()を得る
方法が記載されている。
As a method for producing TAM, it is known that it is produced according to the following formula. i.e. Liebigs Ann.d.
Chemie, vol. 417, pp. 118-119 and Izv.Akad.
Nauk.SSSR Ser.Khim.1966, p. 1477 contains holon () and ammonia. to obtain triacetonamine (),
A method is described in which hydroxylamine is then reacted to form an oxime (), which is then reduced with zinc or sodium metal to obtain TAM () with a yield of about 80%.

また特開昭50−126674号公報には、ホロンを還
元アミノ化してTAMを71%の収率で得る方法が
開示されている。
Furthermore, JP-A-50-126674 discloses a method for obtaining TAM at a yield of 71% by reductive amination of holon.

しかしながら、上記方法はいずれもホロンを出
発原料としており、ホロン自体の収率がアセトン
から約30%と極めて低いため、工業的には原料面
で大きな問題があつた。
However, all of the above methods use holon as a starting material, and the yield of holon itself is extremely low at about 30% from acetone, which poses a major problem in terms of raw materials from an industrial perspective.

かかる問題点の他に前者の方法は三段階の複雑
な工程を必要とし、しかも収率が極めて低いとい
う点でも問題であり、また後者の方法においては
収率面でも満足し得るものではなく、さらにホロ
ンに対し20wt%と多量の触媒を必要とし、加え
てアルコール体の生成を防止するために酢酸を必
要とするなどの点で問題であり、しかもホロンを
高温高圧のオートクレーブ中に順次圧入する必要
があり、特殊な設備を必要とするなどの点でも問
題であつた。
In addition to these problems, the former method requires a three-step complicated process and has an extremely low yield, while the latter method is not satisfactory in terms of yield. Furthermore, there are problems in that it requires a large amount of catalyst (20wt% based on holon), and in addition, acetic acid is required to prevent the formation of alcohol, and furthermore, holon is sequentially pressurized into an autoclave at high temperature and high pressure. There were also problems in that it required special equipment.

一方、出発原料として、アセトンとアンモニア
から好収率で得られるトリアセトンアミンを用い
る方法が、特開昭56−122352号公報に開示されて
いる。
On the other hand, a method using triacetonamine obtained in good yield from acetone and ammonia as a starting material is disclosed in JP-A-56-122352.

しかしながらこの方法は特殊な触媒
(RCH45/20)をトリアセトンアミンに対し
10wt%も使用し、しかも180〜200℃、300Kg/cm2
Gという高温高圧下で実施する方法であり、触
媒、設備の面で工業的に好ましからざる方法であ
つた。またこの方法について、追試を行つた結
果、TAMの反応収率は高々70%でありこの点で
も改良が要望される方法であつた。
However, this method uses a special catalyst (RCH45/20) for triacetonamine.
10wt% is used, and 180-200℃, 300Kg/cm 2
This is a method called G, which is carried out at high temperature and high pressure, and is not industrially preferred in terms of catalysts and equipment. Further, as a result of conducting additional tests on this method, the reaction yield of TAM was at most 70%, and the method required improvement in this respect as well.

以上のように公知方法はいずれも欠点を有し工
業的規模での製法とは言い難かつた。
As mentioned above, all the known methods have drawbacks and cannot be said to be production methods on an industrial scale.

このような現状に鑑み本発明者らはトリアセト
ンアミンの還元アミノ化によるTAMの工業的製
造方法について鋭意検討を重ねた結果、特定の触
媒、特定の反応条件下で還元アミノ化を実施すれ
ば、ほぼ定量的にTAMが得られることを見い出
し本発明を完成した。
In view of this current situation, the present inventors have conducted intensive studies on an industrial method for producing TAM by reductive amination of triacetone amine, and have found that if reductive amination is carried out using a specific catalyst and under specific reaction conditions, The present invention was completed by discovering that TAM can be obtained almost quantitatively.

すなわち本発明は、トリアセトンアミンを還元
アミノ化せしめるにあたり、コバルト系触媒の存
在下、反応温度80〜200℃、圧力150Kg/cm2G未満
の条件下で実施することを特徴とする工業的に優
れたTAMの製造方法を提供するものである。
That is, the present invention is an industrial method characterized in that the reductive amination of triacetonamine is carried out in the presence of a cobalt-based catalyst at a reaction temperature of 80 to 200°C and a pressure of less than 150 kg/cm 2 G. This provides an excellent method for manufacturing TAM.

本発明は下記の反応式によつて表わされる。 The present invention is represented by the following reaction formula.

本発明におけるアンモニアの使用量はトリアセ
トンアミンに対し、化学量的には1モル倍である
が、過剰使用することが好ましく、通常1〜30モ
ル倍の範囲、特に5〜10モル倍が好ましい。
The amount of ammonia used in the present invention is stoichiometrically 1 times the mole of triacetone amine, but it is preferably used in excess, usually in the range of 1 to 30 times, particularly preferably 5 to 10 times by mole. .

また水素は理論量で良いが、過剰量でも何ら反
応に悪影響を与えるものでなく、通常、水素量は
反応のために選択された圧力範囲に合わせるよう
に決める。
Further, hydrogen may be used in a theoretical amount, but an excess amount does not adversely affect the reaction, and the amount of hydrogen is usually determined to match the pressure range selected for the reaction.

また本発明に使用される還元アミノ化触媒とし
てはコバルト系触媒に限定される。他の触媒、例
えばニツケル、パラジウム、白金、ロジウム系触
媒などを使用した場合は目的物の収率が著しく低
くなるので好ましくない。
Furthermore, the reductive amination catalyst used in the present invention is limited to cobalt-based catalysts. Use of other catalysts, such as nickel, palladium, platinum, or rhodium catalysts, is not preferred because the yield of the target product will be extremely low.

コバルト系触媒としては担体、例えば、ケイソ
ウ土、アルミナ、シリカゲル、活性炭などの担体
に担持したものでもよく、あるいは担体を使用し
てないものでもよい。なかでもラネーコバルトが
最も好ましい。
The cobalt-based catalyst may be supported on a carrier such as diatomaceous earth, alumina, silica gel, or activated carbon, or may be one without a carrier. Among them, Raney cobalt is most preferred.

触媒の使用量は通常トリアセトンアミンに対し
0.2〜10重量%、好ましくは0.5〜2重量%であ
る。
The amount of catalyst used is usually relative to triacetonamine.
0.2-10% by weight, preferably 0.5-2% by weight.

反応温度は80〜200℃好ましくは100〜150℃で
実施する。反応圧力は150Kg/cm2G未満の圧力が
選定されるが、通常50〜130Kg/cm2Gである。
The reaction temperature is 80-200°C, preferably 100-150°C. The reaction pressure is selected to be less than 150 Kg/cm 2 G, but is usually 50 to 130 Kg/cm 2 G.

これ以外の温度および圧力範囲では、長い反応
時間を必要とする、あるいは収率が低い、または
副生物を多く生成するなどの結果となり好ましく
ない。
Temperature and pressure ranges other than these are undesirable because they require a long reaction time, the yield is low, or a large amount of by-products are produced.

本発明の方法は上記のようにコバルト触媒とい
う特定の触媒を使用し、特定の反応条件下に実施
するものであるが、反応溶媒については使用して
も良いし、使用しなくても良い。
As mentioned above, the method of the present invention uses a specific cobalt catalyst and is carried out under specific reaction conditions, but the reaction solvent may or may not be used.

溶媒を使用する場合は、ヘキサン、イソオクタ
ン、シクロペンタン、シクロヘキサンなどの環状
または非環状脂肪族炭化水素、プロピルエーテ
ル、ブチルエーテル、アミルエーテル、テトラヒ
ドロフラン、ジオキサンなどの環状または非環状
脂肪族エーテル、ベンゼン、トルエン、キシレ
ン、プロピルベンゼンなどの芳香族炭化水素、メ
タノール、エタノール、プロパノール、イソプロ
パノール、ブタノール、イソブタノールなどの低
級アルコール等が使用できるが、中でもメタノー
ルが好ましい。
If a solvent is used, cyclic or acyclic aliphatic hydrocarbons such as hexane, isooctane, cyclopentane, cyclohexane, cyclic or acyclic aliphatic ethers such as propyl ether, butyl ether, amyl ether, tetrahydrofuran, dioxane, benzene, toluene, etc. , aromatic hydrocarbons such as xylene and propylbenzene, and lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, and isobutanol, among which methanol is preferred.

また、本発明の方法は、回分式、連続式いずれ
の方法でも実施できる。回分式の場合はオートク
レーブ中にトリアセトンアミン、触媒、アンモニ
ア、場合によつては溶媒を加え、最後に水素を所
定の圧力まで圧入した後、所定の温度まで加熱す
る。反応は通常1〜5時間で終了し、終点は水素
吸収がなくなることにより示される。連続法の場
合には、あらかじめ触媒が充填され、所定の反応
温度および圧力に調整された反応器へ原料を導入
して反応させる。この場合の触媒床は固定床、流
動床のいずれでも良い。
Further, the method of the present invention can be carried out in either a batch method or a continuous method. In the case of a batch method, triacetone amine, catalyst, ammonia, and in some cases a solvent are added to the autoclave, and finally hydrogen is pressurized to a predetermined pressure, and then heated to a predetermined temperature. The reaction is usually complete in 1 to 5 hours, with the end point indicated by the absence of hydrogen absorption. In the case of a continuous method, raw materials are introduced into a reactor filled with a catalyst in advance and adjusted to a predetermined reaction temperature and pressure, and reacted. The catalyst bed in this case may be either a fixed bed or a fluidized bed.

かくして本発明の方法によれば公知の方法より
もはるかに緩和な条件下でしかも98%以上という
高い反応収率でTAMが得られる。
Thus, according to the method of the present invention, TAM can be obtained under much milder conditions than in known methods and with a high reaction yield of 98% or more.

以下実施例により本発明を具体的に説明する
が、本発明は何らこれらに限定されるものではな
い。
The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these in any way.

実施例 1 300mlオートクレーブに、トリアセトンアミン
46.7(g)、メタノール93.1(g)50%含水ラネー
コバルト1.0(g)を仕込み、液体アンモニア40.9
(g)を封入する。その後で水素を80Kg/cm2Gま
で圧入し、130℃まで昇温し、この温度を保持し
た。圧力は最高130Kg/cm2Gまで上昇したが、時
間とともに減少し、昇温してから約2時間後に一
定値35Kg/cm2Gとなつたので冷却した。
Example 1 In a 300ml autoclave, add triacetonamine.
46.7 (g), methanol 93.1 (g), 50% hydrated Raney cobalt 1.0 (g), liquid ammonia 40.9
Enclose (g). Thereafter, hydrogen was pressurized to 80 kg/cm 2 G, the temperature was raised to 130° C., and this temperature was maintained. The pressure rose to a maximum of 130 Kg/cm 2 G, but decreased with time and reached a constant value of 35 Kg/cm 2 G about 2 hours after the temperature was raised, so it was cooled.

冷却後、N2にて釜内液をバブリングし過剰の
アンモニアを除去したのち、過することにより
反応触媒を除去後反応マスを得た。
After cooling, the solution in the pot was bubbled with N 2 to remove excess ammonia, and then filtered to remove the reaction catalyst and obtain a reaction mass.

ガスクロにより反応マスを分析した所、トリア
セトンアミン転化率100(%)、TAM選択率99
(%)であつた。
Analysis of the reaction mass by gas chromatography showed that the triacetonamine conversion rate was 100 (%) and the TAM selectivity was 99.
(%).

反応マスからTAMの取出しは、溶媒を単蒸留
で回収したのち精留を行ない、98%TAM45.4g
を得た(収率95%)。B.P 114℃/50Torr 実施例 2 オートクレーブに、トリアセトンアミン46.7
(g)、メタノール74(g)、50%含水ラネーコバル
ト0.93(g)を仕込み、液体アンモニア40.9(g)
を封入する。その後で水素を80Kg/cm2Gまで圧入
し、昇温して130℃とした。反応は2時間で終了
した。取出しは、実験例1と同じように行ない反
応マスを分析した所、トリアセトンアミン転化率
100%、TAM選択率98%であつた。
To remove TAM from the reaction mass, the solvent was recovered by simple distillation and then rectified, yielding 45.4 g of 98% TAM.
was obtained (yield 95%). BP 114℃/50Torr Example 2 In an autoclave, add triacetonamine 46.7
(g), methanol 74 (g), 50% hydrated Raney cobalt 0.93 (g), liquid ammonia 40.9 (g)
Enclose. Thereafter, hydrogen was injected to a pressure of 80 kg/cm 2 G, and the temperature was raised to 130°C. The reaction was completed in 2 hours. Removal was carried out in the same manner as in Experimental Example 1, and analysis of the reaction mass revealed that the triacetone amine conversion rate was
The TAM selection rate was 100% and 98%.

比較例 1 実施例1と同じ仕込み組成にて、反応温度を
190℃に昇温した。この時の圧力は180Kg/cm2Gで
あり、その後も190℃に保温したにもかかわらず
徐々に圧力が上昇し保温4時間後に200Kg/cm2
となつた。この時点で冷却し実施例1と同様な方
法で反応マスを取出し分析した。トリアセトンア
ミン転化率100(%)、TAM選択率60(%)であつ
た。
Comparative Example 1 Using the same charging composition as Example 1, the reaction temperature was changed to
The temperature was raised to 190℃. The pressure at this time was 180Kg/cm 2 G, and even though the temperature was maintained at 190℃, the pressure gradually increased to 200Kg/cm 2 G after 4 hours of keeping it warm.
It became. At this point, it was cooled and the reaction mass was taken out and analyzed in the same manner as in Example 1. The triacetone amine conversion rate was 100 (%) and the TAM selectivity was 60 (%).

比較例 2 トリアセトンアミン49.7(g)、メタノール74.5
(g)、50%含水pt−c0.5(g)、アンモニア40.9
(g)をオートクレーブに仕込み、水素を80Kg/
cm2Gまで圧入した。130(℃)まで加熱して反応さ
せた所、最大圧力150Kg/cm2Gを示した、その後
4時間で水素吸収が終つた。
Comparative example 2 Triacetonamine 49.7 (g), methanol 74.5
(g), 50% water content pt-c0.5 (g), ammonia 40.9
Charge (g) into an autoclave and add 80 kg/h of hydrogen.
It was press-fitted up to cm 2 G. When the mixture was heated to 130 (°C) and reacted, a maximum pressure of 150 Kg/cm 2 G was exhibited, and hydrogen absorption was completed within 4 hours.

冷却後実施例1と同様な方法で反応マスを取出
し分析した所、トリアセトン転化率100(%)、
TAM選択率44(%)であり、数多くの副反応生
成物があつた。
After cooling, the reaction mass was taken out and analyzed in the same manner as in Example 1, and the triacetone conversion rate was 100 (%).
The TAM selectivity was 44 (%), and many side reaction products were produced.

比較例 3 オートクレーブに、トリアセトンアミン49.7
(g)、市販名RCH45/20触媒(ヘキスト社製)
5(g)、液体アンモニア109(g)を仕込み、水素
を100Kg/cm2Gまで圧入した。190(℃)まで加熱
しさらに水素を300Kg/cm2Gまで圧入し、H2吸収
なくなるまで反応を行なつた。実施例1と同様に
して反応マスを取出し分析した所、トリアセトン
アミン転化率100(%)、TAM選択率70(%)であ
つた。
Comparative Example 3 In an autoclave, triacetonamine 49.7
(g), commercial name RCH45/20 catalyst (manufactured by Hoechst)
5 (g) and liquid ammonia (109 g) were charged, and hydrogen was pressurized to 100 Kg/cm 2 G. The reactor was heated to 190 (°C), hydrogen was then pressurized to 300 Kg/cm 2 G, and the reaction was continued until no more H 2 was absorbed. When the reaction mass was taken out and analyzed in the same manner as in Example 1, it was found that the triacetone amine conversion rate was 100 (%) and the TAM selectivity was 70 (%).

Claims (1)

【特許請求の範囲】[Claims] 1 トリアセトンアミンをアンモニアおよび水素
とで還元アミノ化せしめるにあたり、コバルト系
触媒と存在下、反応温度80〜200℃、圧力150Kg/
cm2G未満の条件下で実施することを特徴とする4
−アミノ−2,2,6,6−テトラメチルピペリ
ジンの製造方法。
1 In reductively aminating triacetonamine with ammonia and hydrogen, in the presence of a cobalt-based catalyst, the reaction temperature was 80 to 200°C, and the pressure was 150 kg/kg.
4 characterized in that it is carried out under conditions of less than cm 2 G.
-A method for producing amino-2,2,6,6-tetramethylpiperidine.
JP59154916A 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine Granted JPS6133169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154916A JPS6133169A (en) 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154916A JPS6133169A (en) 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Publications (2)

Publication Number Publication Date
JPS6133169A JPS6133169A (en) 1986-02-17
JPH0522700B2 true JPH0522700B2 (en) 1993-03-30

Family

ID=15594760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154916A Granted JPS6133169A (en) 1984-07-25 1984-07-25 Preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Country Status (1)

Country Link
JP (1) JPS6133169A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191219A (en) * 1988-01-26 1989-08-01 Mutoh Ind Ltd Drawing coordinate input device for cad
DE4442990A1 (en) 1994-12-02 1996-06-05 Huels Chemische Werke Ag Process for the preparation of 4-amino-2,2,6,6-tetramethylpiperidine
DE19544599A1 (en) * 1995-11-30 1997-06-05 Huels Chemische Werke Ag Continuous process for the preparation of 4-amino-2,2,6,6-tetramethylpiperidine

Also Published As

Publication number Publication date
JPS6133169A (en) 1986-02-17

Similar Documents

Publication Publication Date Title
CA2015251A1 (en) Amination of carbonyls
US3976697A (en) Preparation of tertiary amines
CA1319707C (en) Process for the preparation of serinol
JPH10511371A (en) Process for producing aliphatic alpha, omega-aminonitrile
JPH0522700B2 (en)
JPH04221325A (en) Cyanobutylation of amines using 2-pentene- nitrile
US4036836A (en) Process for producing 2-pyrrolidone
JPS6011694B2 (en) 2-Pyrrolidone manufacturing method
US4001250A (en) Process for preparing 4-amino-2,2,6,6-tetramethyl piperidine
US4539403A (en) Process for the preparation of a 2-alkyl-4-amino-5-aminomethylpyrimidine
US3268524A (en) Process for the preparation of amines of the acetylenic series
JPS6216461A (en) Production of 4-amino-2,2,6,6-tetramethylpiperidine
US2952688A (en) Synthesis of pyrrolidine
JPH0798803B2 (en) Process for producing 2,2,6,6-tetraalkylpiperidine derivative
JPS60181058A (en) Cyanomethyl-(2-cyano-ethyl)- (3-hydroxy-propyl)-amine and manufacture, 1-(3-hydroxy-propyl)-1,4-diazpam and manufacture of 1,4-bis-(3-(3,4,5-trimethoxy- benzoyloxy)-propyl)-diazepam
US2762813A (en) Process of producing piperidine compounds
JPH07116146B2 (en) Process for producing 4-piperidinopiperidines
CA2076917A1 (en) Preparation of pentane-1,5-diamines
US3187051A (en) Process for the preparation of unsymmetrical dialkyl hydrazines
JPH029013B2 (en)
JPH07116145B2 (en) Process for producing 1-benzyl-4-piperidinopiperidines
JP2795492B2 (en) Method for producing indole or indole derivative
JPH06271511A (en) Production of 1,3-diaminopropane
JPH059427B2 (en)
JP3959178B2 (en) Method for producing hydrazine derivative, intermediate thereof and method for producing intermediate