JPH0669991B2 - Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine - Google Patents

Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine

Info

Publication number
JPH0669991B2
JPH0669991B2 JP60262564A JP26256485A JPH0669991B2 JP H0669991 B2 JPH0669991 B2 JP H0669991B2 JP 60262564 A JP60262564 A JP 60262564A JP 26256485 A JP26256485 A JP 26256485A JP H0669991 B2 JPH0669991 B2 JP H0669991B2
Authority
JP
Japan
Prior art keywords
aminomethyl
trimethylcyclohexylamine
reaction
ammonia
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60262564A
Other languages
Japanese (ja)
Other versions
JPS62123154A (en
Inventor
慶之 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP60262564A priority Critical patent/JPH0669991B2/en
Publication of JPS62123154A publication Critical patent/JPS62123154A/en
Publication of JPH0669991B2 publication Critical patent/JPH0669991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、3−シアノ−3,5,5−トリメチルシクロヘキ
サノンを、アンモニアの存在下で水素添加することによ
り、3−アミノメチル−3,5,5−トリメチルシクロヘキ
シルアミンを製造する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention provides 3-aminomethyl-3,3-aminomethyl-3,5,5-trimethylcyclohexanone by hydrogenating it in the presence of ammonia. The present invention relates to an improved method for producing 5,5-trimethylcyclohexylamine.

目的物は合成樹脂の原料として優れた性質を有する化合
物であり、例えば3−アミノメチル−3,5,5−トリメチ
ルシクロヘキシルアミンから合成されるポリウレタンは
耐候性が良く、無黄変樹脂として高い評価を受けてい
る。
The target product is a compound having excellent properties as a raw material for a synthetic resin. For example, polyurethane synthesized from 3-aminomethyl-3,5,5-trimethylcyclohexylamine has good weather resistance and is highly evaluated as a non-yellowing resin. Is receiving.

<従来技術及び問題点> 従来、3−アミノメチル−3,5,5−トリメチルシクロヘ
キシルアミンは特公昭39−10923等によって、その製造
法は公知である。しかし該特許によって開示された製造
法においては非常に高い水素圧力下で(ちなみに、実施
例では120〜150気圧を採用している)反応を行なってい
ること、触媒であるケイ酸担持のコバルト触媒を使用前
に還元粉砕しなければならないこと、又、目的物の収率
もMaX81.4%程度であること等、実際の製造上解決しな
ければならない点が少なからず存在していた。
<Prior Art and Problems> The production method of 3-aminomethyl-3,5,5-trimethylcyclohexylamine is conventionally known from JP-B-39-10923. However, in the production method disclosed by the patent, the reaction is carried out under a very high hydrogen pressure (by the way, 120 to 150 atm is adopted in the examples), and the catalyst is a silicic acid-supported cobalt catalyst. There was a considerable number of points that had to be solved in actual production, such as that the product had to be reduced and pulverized before use, and the yield of the target product was about 81.4% MaX.

<問題を解決するための手段> そこで、本発明者は上記課題を解決すべく長年に亘り鋭
意研究を行ない、遂にその解決策を見い出すに到った。
即ち、本発明は 1) ラネーコバルト触媒を用いて、3−シアノ−3,5,
5−トリメチルシクロヘキサノンを、アンモニアの存在
下で水素化することを特徴とする3−アミノメチル−3,
5,5−トリメチルシクロヘキシルアミンの製造法 2) ラネ−コバルト触媒として、Co−Al2元系合金を
展開したもの、あるいはCo−Al以外の第3成分としてマ
ンガンを含有した合金を展開したものを用いることを特
徴とする特許請求の範囲第1項記載の方法 である。
<Means for Solving Problems> Therefore, the present inventor has conducted earnest research for many years to solve the above problems, and finally found a solution thereof.
That is, the present invention is: 1) Using a Raney cobalt catalyst, 3-cyano-3,5,
3-Aminomethyl-3, characterized in that 5-trimethylcyclohexanone is hydrogenated in the presence of ammonia,
Method for producing 5,5-trimethylcyclohexylamine 2) As a Raney-cobalt catalyst, a developed Co-Al binary alloy or an expanded alloy containing manganese as a third component other than Co-Al is used. The method according to claim 1, characterized in that

以下、本発明の方法を詳細に説明する。Hereinafter, the method of the present invention will be described in detail.

本発明の方法において用いられるラネーコバルト触媒と
しては、コバルト含量約50%のCo−Al2元系合金を展開
したもの、あるいはコバルト含量約30%、且つマンガン
含量約3.5%のCo−Al−Mn3元系合金を展開したものが好
適に採用される。尚、これ等の触媒は市販品があり、入
手が容易で前処理もなく、使用できる。その使用量は反
応混合物に対して5〜15重量%の範囲から選ばれる。
As the Raney cobalt catalyst used in the method of the present invention, a Co-Al binary alloy having a cobalt content of about 50% is developed, or a Co-Al-Mn ternary alloy having a cobalt content of about 30% and a manganese content of about 3.5% is used. A developed alloy is preferably used. Incidentally, these catalysts are commercially available products, which are easily available and can be used without pretreatment. The amount used is selected from the range of 5 to 15% by weight based on the reaction mixture.

出発原料である3−シアノ−3,5,5−トリメチルシクロ
ヘキサノンは既知の方法、例えば特開昭57−116038等に
よりイソホロンと青酸とから容易に合成することが可能
である。
The starting material 3-cyano-3,5,5-trimethylcyclohexanone can be easily synthesized from isophorone and hydrocyanic acid by a known method, for example, JP-A-57-116038.

アンモニアの使用量は3−シアノ−3,5,5−トリメチル
シクロヘキサノンに対して1〜20モル倍量の範囲、好ま
しくは5〜10モル倍量の範囲から選ばれる。このとき、
その数値以下では副生物である3−アミノメチル−3,5,
5−トリメチルシクロヘキサン−1−オールが増加し、
それ以上では反応系の圧力中、アンモニアの示す分圧が
高くなり過ぎ、又、アンモニアの回収、再使用が困難に
なるので、不都合である。
The amount of ammonia used is selected from the range of 1 to 20 molar times, preferably 5 to 10 molar times, relative to 3-cyano-3,5,5-trimethylcyclohexanone. At this time,
Below that value, 3-aminomethyl-3,5, a by-product,
5-trimethylcyclohexan-1-ol increased,
Above this, the partial pressure of ammonia in the pressure of the reaction system becomes too high, and it becomes difficult to recover and reuse ammonia, which is inconvenient.

反応圧力(水素分圧)は20〜150気圧の範囲で実施可能
であるが、好ましくは50〜100気圧の範囲で行なうのが
よい。又、反応温度は50〜150℃の範囲、好ましくは100
〜140℃の範囲で行なわれる。このとき、より低温側で
は反応速度の低下が著しく、より高温側では副生する高
沸点物質が増加するので不都合である。
The reaction pressure (hydrogen partial pressure) can be carried out in the range of 20 to 150 atm, preferably 50 to 100 atm. The reaction temperature is in the range of 50 to 150 ° C, preferably 100.
It is performed in the range of ~ 140 ℃. At this time, the reaction rate is remarkably decreased on the lower temperature side, and the high-boiling substance by-produced on the higher temperature side is increased, which is inconvenient.

反応触媒としては、例えばメタノール、エタノール、エ
チレングリコール等の炭素数1〜4のアルコール類、グ
リコール類が好適に使用される。その使用量は、3−シ
アノ−3,5,5−トリメチルシクロヘキサノンに対して、
1〜10重量倍の範囲、好ましくは3〜6重量倍の範囲で
行なわれる。
As the reaction catalyst, for example, alcohols and glycols having 1 to 4 carbon atoms such as methanol, ethanol and ethylene glycol are preferably used. The amount used is 3-cyano-3,5,5-trimethylcyclohexanone,
It is carried out in a range of 1 to 10 times by weight, preferably 3 to 6 times by weight.

かくして得られた3−アミノメチル−3,5,5−トリメチ
ルシクロヘキシルアミンの反応粗液は周知の精製手段、
例えば減圧蒸溜を利用すれば、純品の目的物を得ること
ができる。
The reaction crude liquid of 3-aminomethyl-3,5,5-trimethylcyclohexylamine thus obtained is a well-known purification means,
For example, if vacuum distillation is used, a pure target product can be obtained.

<発明の効果> 本発明の方法によれば、従来技術と比べて温和な反応条
件下、市販の触媒を前処理もなく使用できる等、設備的
あるいはエネルギー的に、より有利で優れ、同時に実施
例にも示すように目的物の収率も向上する。
<Effects of the Invention> According to the method of the present invention, it is possible to use a commercially available catalyst under mild reaction conditions as compared with the prior art without using any pretreatment. As shown in the examples, the yield of the desired product is also improved.

<実施例> 次に、実施例を挙げて本発明の方法をより具体的に説明
する。
<Example> Next, the method of the present invention will be described more specifically with reference to Examples.

実施例1. 電磁撹拌式オートワレーブ(容量1)に3−シアノ−
3,5,5−トリメチルシクロヘキサノン80g、メタノール35
7g、アンモニア58g及びMnを含まないラネーコバルト
(市販品)52gを仕込み、120℃に昇温させた後、水素分
圧70kg/cm2で反応を行なった(撹拌機回転数800〜900rp
m)。
Example 1. 3-cyano-in an electromagnetic stirring auto-wave (capacity 1)
3,5,5-Trimethylcyclohexanone 80g, methanol 35
7 g of ammonia, 58 g of ammonia and 52 g of Raney cobalt (commercially available product) containing no Mn were charged and heated to 120 ° C., and then the reaction was carried out at a hydrogen partial pressure of 70 kg / cm 2 (agitator rotation speed 800 to 900 rp
m).

水素の吸収は約1Hrで終了した。Absorption of hydrogen was completed at about 1 hr.

オートワレーブを冷却し、放圧した後、反応粗液を取出
し、ガスクロマトグラフィーで分析したところ、3−ア
ミノメチル−3,5,5−トリメチルシクロヘキシルアミン8
9.6%、3−アミノメチル−3,5,5−トリメチルシクロヘ
キサノール3.9%(いずれもメタノールを除いた面積百
分率。以下同じ)であった。
After cooling the autoclave and releasing the pressure, the reaction crude liquid was taken out and analyzed by gas chromatography to find that 3-aminomethyl-3,5,5-trimethylcyclohexylamine 8
It was 9.6% and 3-aminomethyl-3,5,5-trimethylcyclohexanol 3.9% (both are area percentages excluding methanol. The same applies hereinafter).

反応粗液より触媒を別し、液457gを得た。The catalyst was separated from the crude reaction liquid to obtain 457 g of a liquid.

次いで、常圧でメタノールを留去した後、30段の多孔板
塔を利用して、10Torrの減圧下で精留し(還流比5)、
112〜114℃/10Torrの主留分74.2gを得た(純度99.7
%)。
Then, after distilling off methanol under normal pressure, rectification was carried out under a reduced pressure of 10 Torr (reflux ratio 5) using a 30-stage perforated plate column.
74.2 g of a main fraction of 112 to 114 ° C / 10 Torr was obtained (purity 99.7
%).

目的物の収率は89.7%であった。The yield of the desired product was 89.7%.

実施例2. 実施例1と同様にして、Mn含量3.5%のラネーコバルト
(市販品)52gを仕込み、反応を行なった。水素の吸収
は約1Hrで完了した。反応粗液の段階で、3−アミノメ
チル−3,5,5−トリメチルシクロヘキシルアミン83.3
%、3−アミノメチル−3,5,5−トリメチルシクロヘキ
サノール5.6%の結果が得られた。
Example 2. In the same manner as in Example 1, 52 g of Raney cobalt (commercially available) having an Mn content of 3.5% was charged and the reaction was carried out. Absorption of hydrogen was completed in about 1 hour. At the reaction crude liquid stage, 3-aminomethyl-3,5,5-trimethylcyclohexylamine 83.3
%, 3-aminomethyl-3,5,5-trimethylcyclohexanol 5.6%.

実施例3. 実施例1と同様にして、3−シアノ−3,5,5−トリメチ
ルシクロヘキサノン101g、メタノール134g、アンモニア
89g及びMnを含まないラネーコバルト(市販品)22gを仕
込み、さらに水素分圧100kg/cm2で反応を行なった。水
素の吸収は約1.5Hrで終了した。
Example 3. In the same manner as in Example 1, 101 g of 3-cyano-3,5,5-trimethylcyclohexanone, 134 g of methanol and ammonia.
89 g and 22 g of Raney cobalt (commercially available product) containing no Mn were charged, and the reaction was further performed at a hydrogen partial pressure of 100 kg / cm 2 . Absorption of hydrogen was completed at about 1.5 hours.

反応粗液の段階で、3−アミノメチル−3,5,5−トリメ
チルシクロヘキシルアミン87.5%、3−アミノメチル−
3,5,5−トリメチルシクロヘキサノール4.2%の結果が得
られた。
At the stage of crude reaction liquid, 3-aminomethyl-3,5,5-trimethylcyclohexylamine 87.5%, 3-aminomethyl-
The result of 3,5,5-trimethylcyclohexanol 4.2% was obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ラネーコバルト触媒を用いて、3−シアノ
−3,5,5−トリメチルシクロヘキサノンを、アンモニア
の存在下で水素化することを特徴とする3−アミノメチ
ル−3,5,5−トリメチルシクロヘキシルアミンの製造法
1. A method of hydrogenating 3-cyano-3,5,5-trimethylcyclohexanone in the presence of ammonia using a Raney cobalt catalyst. 3-Aminomethyl-3,5,5- Method for producing trimethylcyclohexylamine
【請求項2】ラネーコバルト触媒として、Co−Al2元系
合金を展開したもの、あるいはCo−Al以外の第3成分と
してマンガンを含有した合金を展開したものを用いるこ
とを特徴とする特許請求範囲第1項記載の方法
2. A Raney cobalt catalyst comprising a developed Co--Al binary alloy or an expanded alloy containing manganese as a third component other than Co--Al. Method described in paragraph 1
JP60262564A 1985-11-25 1985-11-25 Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine Expired - Lifetime JPH0669991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262564A JPH0669991B2 (en) 1985-11-25 1985-11-25 Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262564A JPH0669991B2 (en) 1985-11-25 1985-11-25 Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine

Publications (2)

Publication Number Publication Date
JPS62123154A JPS62123154A (en) 1987-06-04
JPH0669991B2 true JPH0669991B2 (en) 1994-09-07

Family

ID=17377555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262564A Expired - Lifetime JPH0669991B2 (en) 1985-11-25 1985-11-25 Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine

Country Status (1)

Country Link
JP (1) JPH0669991B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106882C2 (en) * 1991-03-05 1994-02-03 Degussa Process for the preparation of 3-aminomethyl-3,5,5-trimethylcyclohexylamine by reductive amination of 1,3,3-trimethyl-5-oxocyclohexane-carbonitrile
US5283366A (en) * 1991-03-05 1994-02-01 Degussa Ag Method of preparing 3-aminomethyl-3,5,5-trimethyl cyclohexyl amine
US5286906A (en) * 1991-09-25 1994-02-15 Mitsubishi Kasei Corporation Process for the preparation of 3-aminomethyl-3,5,5-trialkylcyclohexylamine
CA2115025A1 (en) * 1993-02-08 1994-08-09 Atsushi Furutani Process for producing amines
CN107857704B (en) * 2017-11-21 2020-04-10 万华化学集团股份有限公司 Method for preparing 3-aminomethyl-3, 5, 5-trimethylcyclohexylamine and catalyst used in method

Also Published As

Publication number Publication date
JPS62123154A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US4739051A (en) Preparation of morpholine
JPH0669991B2 (en) Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine
JPS646183B2 (en)
JP4117424B2 (en) Method for producing trans-type 1,4-bis (aminomethyl) cyclohexane
CA1099291A (en) Process for the production of diamines
JPH10259167A (en) Isomerization of bis(aminomethyl)cyclohexane
JP4743960B2 (en) Method for producing 3-amino-1-propanol
US3948900A (en) Preparation of 1-methylpiperazine and 1,4-dimethylpiperazine as co-products
US3875235A (en) Process for the preparation of tertiary amines of high purity
JPH0250101B2 (en)
JP3443583B2 (en) Method for producing cis-2,6-dimethylpiperazine
JPH0749385B2 (en) Method for producing 3,3,5-trimethylcyclohexanone
JP2639496B2 (en) Method for producing dimorpholino diethyl ether compound
JPH10310559A (en) Production of diamine
JP2727359B2 (en) 4,4&#39;-Difluorodibenzylamine and process for producing the same
JPH0528225B2 (en)
JP3950423B2 (en) Process for producing cis-2,6-dimethylpiperazine
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JPS62129257A (en) Production of benzylamine
JPH075503B2 (en) Method for producing 3,3,5-trimethylcyclohexanone
JPH0625111A (en) Production of 3-aminomethyl-3,5,5-trialkylcyclohexylamine
JPH02131449A (en) Preparation of 6-hydroxycaprate
JPS58194843A (en) Preparation of n-alkyl-n&#39;-phenyl-p-phenylenediamine
JPH06279339A (en) Hydrogenation of bisphenol a
SU1133271A1 (en) Process for preparing 1,5-dipiperidylpentane