JPS6132479A - Manufacture of nonvolatile semiconductor memory device - Google Patents

Manufacture of nonvolatile semiconductor memory device

Info

Publication number
JPS6132479A
JPS6132479A JP15601584A JP15601584A JPS6132479A JP S6132479 A JPS6132479 A JP S6132479A JP 15601584 A JP15601584 A JP 15601584A JP 15601584 A JP15601584 A JP 15601584A JP S6132479 A JPS6132479 A JP S6132479A
Authority
JP
Japan
Prior art keywords
film
gate
sio2 film
memory device
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15601584A
Other languages
Japanese (ja)
Inventor
Kazuaki Miyata
和明 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15601584A priority Critical patent/JPS6132479A/en
Publication of JPS6132479A publication Critical patent/JPS6132479A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable the titled device of good memory holding characteristic to be produced safely and easily at room temperature by a method wherein the surface level is reduced by hydrogen ion implantation without using high-temperature hydrogen annealing for reducing the surface level of the interface between an Si substrate and an SiO2 film. CONSTITUTION:A field SiO2 film 2 is formed by surrounding the active region on selective oxidation of the Si substrate 1, and an extremely thin SiO2 film 3 is formed on the surface of the active region; thereafter, an Si3N4 film 4 is deposited on the SiO2 film 2 and the SiO2 film 3 by CVD. Further, a polycrystalline Si layer 5 is formed by deposition likewise by CVD and changed into N type by phosphorus deposition. Successively, unnecessitated photo resist is removed by leaving a polycrystalline Si gate electrode 5a, a gate Si3N4 film 4a, and a gate SiO2 film 3a by plasma etching through the photo engraving technique, using a mask of a photo resist pattern for gate electrode formation; thereafter, phosphrous ions are implanted to form an n<+> type source region 6 and an n<+> type drain region 7, and then activated by annealing. Then, the surface level in the interface is reduced by hydrogen ion implantation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は不揮発性半導体記憶装置の製造方法に係り、
特にシリコンゲートの窒化膜および酸化膜絶縁のいわゆ
る5NO8形不揮発形記憶装置の製造方法の改良に関す
るものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a nonvolatile semiconductor memory device,
In particular, the present invention relates to an improvement in a method of manufacturing a so-called 5NO8 type nonvolatile memory device in which a silicon gate is insulated with a nitride film and an oxide film.

〔従来技術〕[Prior art]

従来、金属ゲート−窒化シリコン(St 、N4)膜−
酸化シリコン(Sin2)膜−半導体構造のいわゆる罠
形不揮発性記憶装置では、アルミニウム(Ae)ゲート
のものが大部分であった。そして、この種の記憶装置ノ
重要な特性である記憶保持特性を良好に保つために、高
温処理工程はSi sNa膜−8i02膜構造を1形成
する前に行われている。
Conventionally, metal gates - silicon nitride (St, N4) films -
Most of the so-called trap-type nonvolatile memory devices having a silicon oxide (Sin2) film-semiconductor structure have an aluminum (Ae) gate. In order to maintain good memory retention characteristics, which are important characteristics of this type of memory device, a high temperature treatment step is performed before forming the Si sNa film-8i02 film structure.

ところが、これを多結晶シリコンをゲート電極として用
いる5NO8形不揮発性記憶装置に適用する場合を考え
ると、多くの特徴を活かすためには、必ず高温の熱処理
工性がSt、N4膜−8i02膜構造形成後に必要とな
り、記憶保持特性に悪影響を与える。
However, when considering the case where this is applied to a 5NO8 type nonvolatile memory device that uses polycrystalline silicon as a gate electrode, in order to take advantage of many of the features, high temperature heat treatment must be performed to create a St, N4 film-8i02 film structure. Required after formation and adversely affects memory retention properties.

そして、その原因は、半導体(シリコン)とSi02膜
との界面の表面準位密度の増大および5i−4膜の伝導
度であシ、種々の検討の結果、特に界面の表面準位が記
憶保持特性に大きく影響していることが判った。
The cause of this is an increase in the density of surface states at the interface between the semiconductor (silicon) and the SiO2 film and the conductivity of the 5i-4 film.As a result of various studies, it was found that the surface states at the interface in particular are It was found that the characteristics were greatly affected.

そして、この表面準位の発生原因としては、Si0g膜
の膜厚、この膜厚の薄い(代表的数値として数原子層に
相当する20A)ことによって発生するストレス、5i
02膜の形成条件、S i 、N4膜の形成条件など種
々のものが挙げられ、この界面の表面単位を少なくする
方法として、高温での水素ア、ニールが提案されている
The causes of this surface state are the thickness of the Si0g film, the stress caused by the thinness of this film (20A, which corresponds to several atomic layers as a typical value), and the 5i
There are various conditions for forming the 02 film, S i , and N4 film, and hydrogen anneal at high temperature has been proposed as a method for reducing the surface unit of this interface.

しかし、この水素アニールはこの場合特に高温(800
℃以上)で扱うので非常に危険を伴うおそれがある。
However, this hydrogen annealing is performed at a particularly high temperature (800
(°C or higher), it can be extremely dangerous.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたもので、シ
リコン基板とSiO□膜との界面の表面準位の減少に高
温水素アニールを用いることなく、水素イオンの注入に
よって表面準位を減少させることによって記憶保持特性
の良好な5NO8形不揮発性牛導体記憶装置を安全に製
造できる方法を提供するものである。
This invention was made in view of the above points, and it reduces the surface states at the interface between the silicon substrate and the SiO□ film by implanting hydrogen ions without using high-temperature hydrogen annealing. The present invention provides a method for safely manufacturing a 5NO8 type non-volatile conductor memory device with good memory retention characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、nチャネルS、NO8O8形見揮発性記憶装置造
方法を例にとって説明する。まずSt基板(1)に選択
酸化を施して活性領域を囲んでフィールド5i02膜(
2)を形成し、活性領域表面には厚さ約20Aの極薄イ
SiO,,膜(3)を形成後、CVD法テア イk )
” 5i02膜(2)および極薄い5i02膜(3)の
上に5t3N、膜(4)を堆積させる。その後、更にそ
の上に同じ< CVD法で多結晶St層(4)を堆積形
成し、す/をデポジションして多結晶Si層(4)をn
形化するっこの段階を第1図に示すっ つついて、4菓、・双成技術によってグー11形成用ボ
トレジストパターン(図示ぜず)をマスクとしてグラズ
マエツチ/グを施して多結晶SIゲート電極(5a)、
ケートSi、N4膜(4a)、ゲートS i02膜C3
a)を残し、不要となったホトレジストを除去した後n
十形ソース領域(6)及びn十形ドレイ/領域(7)を
形成するためリンイオンを注入し、アニールを行って活
性化しておく。その後水素イオンを例えば、注入エネル
ギー30〜50 keV 、 (f−人i 1 xlO
” 〜i xlO”cm−2程度で注入して前述の界面
における表面準位を減少させる。この状態を第2図に示
す。
Hereinafter, a method for manufacturing an n-channel S, NO8O8 memento volatile memory device will be explained as an example. First, selective oxidation is performed on the St substrate (1), and a field 5i02 film (
2), and after forming an ultra-thin SiO film (3) with a thickness of about 20A on the surface of the active region, a CVD method is applied.
” A 5t3N film (4) is deposited on the 5i02 film (2) and the extremely thin 5i02 film (3). Then, a polycrystalline St layer (4) is further deposited thereon by the same CVD method, Polycrystalline Si layer (4) is formed by depositing
This step of forming is shown in Figure 1.Following the process, a polycrystalline SI gate electrode is formed by performing glazma etching using the bottom resist pattern (not shown) for forming the goo 11 as a mask using the double formation technique. (5a),
Gate Si, N4 film (4a), gate Si02 film C3
After removing unnecessary photoresist, leaving a) n
Phosphorus ions are implanted to form a 10-type source region (6) and an n-10 drain/region (7), and activated by annealing. Thereafter, hydrogen ions are implanted, for example, at an implantation energy of 30 to 50 keV, (f-person i 1 xlO
The surface level at the aforementioned interface is reduced by implanting at a dose of about 100 cm -2. This state is shown in FIG.

その後は、通常の方法で、眉間絶縁膜(8)の形成1形
ソース領域(6)、n十形ドレイ/領域(7)及びゲー
ト電極(3a)へのコンタクト孔の形成(ゲート電極に
関しては図示しなかったので以下説明を省略する) M
−8sからなるソース配m (9)、ドレイン配a四の
形成、ソース配線(9)およびドレイン配線αQとそれ
ぞれソース領域(6)お・よびドレイン領域(7)との
焼結工程、表面保護膜(図示せr)形成工程を経て第3
図に示す不揮発性記憶装置の製造は冗rする。
After that, the glabella insulating film (8) is formed, contact holes are formed for the 1-type source region (6), the nx-type drain/region (7), and the gate electrode (3a) using the usual method (for the gate electrode, Since it is not shown, the explanation is omitted below) M
- Formation of source wiring m (9) and drain wiring A4 consisting of -8s, sintering process of source wiring (9) and drain wiring αQ with source region (6) and drain region (7), respectively, surface protection After the film (r not shown) forming step, the third
The manufacturing of the nonvolatile memory device shown in the figure is redundant.

以上実施例ではn十形ソース領域(6)、ドレイ/領域
(7)形成後に水素イオン注入を実施したが゛、Si、
、N。
In the above embodiments, hydrogen ions were implanted after forming the nx type source region (6) and the drain/region (7).
,N.

膜(4)堆積直後、または多結晶Si層(5)堆積直後
、更にまた、゛多結晶Stゲート電極(5a)、ゲート
5tSN4膜(4a)およびゲートSiO2膜(3a)
のエツチング形成直後であってもよい。
Immediately after the film (4) is deposited, or immediately after the polycrystalline Si layer (5) is deposited, the polycrystalline St gate electrode (5a), the gate 5tSN4 film (4a), and the gate SiO2 film (3a)
It may be immediately after etching formation.

また、この発明はnチャネルSiゲートプロセスのみな
らず、pチャネル81ゲートプロセス、0MO8(相補
形NDS)−8iゲートプロセス等にも勿論適用できる
Further, the present invention is of course applicable not only to the n-channel Si gate process but also to the p-channel 81 gate process, the 0MO8 (complementary NDS)-8i gate process, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では5NO8形不揮発性
記憶装置の製造に当ってシリコン基板と5i02膜との
界面の表面単位を減少させるために高温水素アニールを
用いることすく、水素イオン注入で達成するようにした
ので、記憶保持特性のよい不揮発性記憶装置が安全に容
易に室温で製造できる。
As explained above, in the present invention, high-temperature hydrogen annealing is used to reduce the surface unit at the interface between the silicon substrate and the 5i02 film when manufacturing a 5NO8 type nonvolatile memory device, and this can be achieved by hydrogen ion implantation. As a result, a nonvolatile memory device with good memory retention characteristics can be safely and easily manufactured at room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜! 3図はこの発明の一実施例を説明するため
にその主要段階における状態を示す断面図である。 図において、(1)はシリコン基板、(3)はSiO□
膜、(3a)はゲート5i02膜、(4)は5fsN<
膜、(4a)はゲート5ilN4膜、(5)は多結晶シ
リコン層、(5a)は多結晶層シリコンゲート電極、(
9) 、 00は金底配線層である。 なお、図中同一符号は同一または和尚部分を示す0
Figure 1~! FIG. 3 is a sectional view showing an embodiment of the present invention at its main stages. In the figure, (1) is a silicon substrate, (3) is a SiO□
film, (3a) is gate 5i02 film, (4) is 5fsN<
(4a) is a gate 5ilN4 film, (5) is a polycrystalline silicon layer, (5a) is a polycrystalline silicon gate electrode, (
9) and 00 are gold-bottom wiring layers. In addition, the same reference numerals in the figures indicate the same or Buddhist priest parts.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上に二酸化シリコン膜、窒化シリコ
ン膜及び多結晶シリコン層を順次形成し、これらに所要
のパターンにエッチングを施してそれぞれゲート二酸化
シリコン膜、ゲート窒化シリコン膜および多結晶シリコ
ンゲート電極とした後、所要の金属配線層を形成する工
程を含む不揮発性半導体記憶装置の製造方法において、
上記窒化シリコン膜の形成後上記金属配線層の形成以前
の段階で水素イオンを注入して上記シリコン基板と上記
二酸化シリコン膜との界面の表面準位を減少させる工程
を備えたことを特徴とする不揮発性半導体記憶装置の製
造方法。
(1) A silicon dioxide film, a silicon nitride film, and a polycrystalline silicon layer are sequentially formed on a silicon substrate, and the required patterns are etched to form a gate silicon dioxide film, a gate silicon nitride film, and a polycrystalline silicon gate electrode, respectively. In a method for manufacturing a non-volatile semiconductor memory device, the method includes the step of forming a required metal wiring layer after
The method is characterized by comprising a step of implanting hydrogen ions at a stage after the formation of the silicon nitride film and before the formation of the metal wiring layer to reduce the surface state at the interface between the silicon substrate and the silicon dioxide film. A method for manufacturing a nonvolatile semiconductor memory device.
(2)水素イオンは注入エネルギー30〜50keVで
注入量1×10^1^1〜1×10^1^3cm^−^
2程度に注入することを特徴とする特許請求の範囲第1
項記載の不揮発性半導体記憶装置の製造方法。
(2) Hydrogen ions are implanted at an implantation energy of 30 to 50 keV and an implantation amount of 1 x 10^1^1 to 1 x 10^1^3 cm^-^
Claim 1 characterized in that the injection is carried out to the extent of 2.
A method of manufacturing a non-volatile semiconductor memory device according to section 1.
JP15601584A 1984-07-24 1984-07-24 Manufacture of nonvolatile semiconductor memory device Pending JPS6132479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15601584A JPS6132479A (en) 1984-07-24 1984-07-24 Manufacture of nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15601584A JPS6132479A (en) 1984-07-24 1984-07-24 Manufacture of nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6132479A true JPS6132479A (en) 1986-02-15

Family

ID=15618447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15601584A Pending JPS6132479A (en) 1984-07-24 1984-07-24 Manufacture of nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6132479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943837A (en) * 1987-03-11 1990-07-24 Hitachi, Ltd. Thin film semiconductor device and method of fabricating the same
JP2005045012A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943837A (en) * 1987-03-11 1990-07-24 Hitachi, Ltd. Thin film semiconductor device and method of fabricating the same
JP2005045012A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP4545401B2 (en) * 2003-07-22 2010-09-15 パナソニック株式会社 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP2004134753A (en) Process for forming gate insulator layer having multiple dielectric constant and multiple thickness
JP2008028403A (en) Method for forming first oxide layer, and second oxide layer
JP2001156276A (en) Forming method of gate oxide layer of different thickness
JP3102223B2 (en) Oxidation method of silicon substrate
JPS61214446A (en) Manufacture of semiconductor device
JPS6132479A (en) Manufacture of nonvolatile semiconductor memory device
JP2538830B2 (en) A method for partial oxidation of silicon using a ceramic barrier layer.
JPH0897202A (en) Manufacture of semiconductor device
KR20030089082A (en) Method for fabricating semiconductor device
JP3436315B2 (en) Method of manufacturing MONOS type semiconductor nonvolatile memory device and method of manufacturing semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
KR100336567B1 (en) Isolation method of semiconductor device
JP2001015754A (en) Method for forming conductive line of semiconductor device
JPH097967A (en) Fabrication method of semiconductor device
KR20020010971A (en) Method for forming isolation in semiconductor
JPH0529343A (en) Manufacture of fine semiconductor device
JPH08250717A (en) Manufacture of semiconductor device
KR20000003475A (en) Production method for memory device
JPS6098640A (en) Manufacture of semiconductor device
KR20030050680A (en) Method of fabricating semiconductor device with dual gate oxide
JPS60127741A (en) Manufacture of semiconductor device
JPH0582514A (en) Manufacture of semiconductor device
JP2003133304A (en) Method of manufacturing semiconductor device
JPS59103357A (en) Manufacture of semiconductor device
JPH06163533A (en) Fabrication of semiconductor device