JPS6132458B2 - - Google Patents

Info

Publication number
JPS6132458B2
JPS6132458B2 JP9628282A JP9628282A JPS6132458B2 JP S6132458 B2 JPS6132458 B2 JP S6132458B2 JP 9628282 A JP9628282 A JP 9628282A JP 9628282 A JP9628282 A JP 9628282A JP S6132458 B2 JPS6132458 B2 JP S6132458B2
Authority
JP
Japan
Prior art keywords
pressure
box
air
water
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9628282A
Other languages
Japanese (ja)
Other versions
JPS58213923A (en
Inventor
Akira Yamashita
Kazuo Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMOTO CONSTR CO Ltd
Original Assignee
OMOTO CONSTR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMOTO CONSTR CO Ltd filed Critical OMOTO CONSTR CO Ltd
Priority to JP9628282A priority Critical patent/JPS58213923A/en
Publication of JPS58213923A publication Critical patent/JPS58213923A/en
Publication of JPS6132458B2 publication Critical patent/JPS6132458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/04Pneumatic caissons

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 この発明は、地下構造物を沈設するにあたつ
て、空気潜函工法における潜函作業室の函内気圧
測定の方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the air pressure inside a box working room in the air submersible box construction method when submerging an underground structure.

従来、潜函作業室に供給される圧縮空気の圧力
設定は、あらかじめ調査された地盤内の地下水位
と、沈設中の潜函作業室の刃先の位置とを勘案し
て、潜函作業室の刃先における地下水の水圧を仮
定し、潜函作業室の函内気圧がこの仮定圧力にな
るように、圧縮空気を調圧弁によつて調圧し、こ
れを潜函作業室より連通する圧力計によつて確認
するという方法がとられていた。
Conventionally, the pressure of the compressed air supplied to the submersible box work chamber was set by taking into account the groundwater level in the ground surveyed in advance and the position of the cutting edge of the submersible box working chamber. Assuming a water pressure of was taken.

このような従来の方法では、地下水位が海水の
潮位と連動して変動したり、また、潜函の沈設位
置が深くなつて、水位低下工法を併用して沈設す
るような場合には、地下水位が不安定になり、適
当な潜函作業室の函内気圧の設定が困難であつ
た。
With these conventional methods, if the groundwater level fluctuates in conjunction with the tide level of the seawater, or if the submersible is buried at a deep location and a water level lowering method is used in combination, the groundwater level may change. became unstable, and it was difficult to set an appropriate pressure inside the box in the box working room.

もしも、函内気圧が地下水位に対して過圧であ
れば、作業室内の空気は、刃先より地中を経て陸
上ヘブローして、空気消費量が増大する。
If the pressure inside the box is higher than the groundwater level, the air inside the work chamber will blow from the cutting edge through the ground and overland, increasing air consumption.

また、函内気圧が地下水位よりも低圧である
と、作業室内に地下水が浸入し、掘削作業を困難
にし、ひいては、作業室の水没の危険性さえもつ
ていた。
Furthermore, if the pressure inside the box was lower than the groundwater level, groundwater would infiltrate into the work room, making excavation work difficult and even posing a risk of the work room being submerged in water.

この発明の目的は、このような従来の潜函作業
室の函内気圧測定方法の欠点を是正し、地下水位
の変動にも対応して、潜函作業室の函内気圧の適
正な補正を容易に行なうことができるようにする
ことにある。
The purpose of this invention is to rectify the shortcomings of the conventional method for measuring the air pressure inside a box in a submersible box working room, and to easily correct the air pressure inside a box in a submersible working room appropriately in response to fluctuations in the groundwater level. The goal is to enable people to do what they do.

以下、この発明の好適な実施例を、添付図面に
基づいて詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the accompanying drawings.

第1図は、空気潜函工法における従来の潜函作
業室の函内気圧の測定方法の概要を示したもので
ある。
FIG. 1 shows an outline of a conventional method for measuring the air pressure inside a box in a box working room in the air box construction method.

沈設中の潜函本体1の下部には、潜函作業室2
が設けられ、この潜函作業室2の天井3を貫通し
て、掘削土または材料、人員を昇降させるための
シヤフト4が立てられ、このシヤフト4の頂部に
は、掘削土または材料、人員を大気中に出入させ
るためのロツク装置5が取りつけられている。
At the bottom of the submerged case body 1, there is a submerged case work chamber 2.
A shaft 4 is erected through the ceiling 3 of this subbox work room 2 for raising and lowering the excavated soil, materials, and personnel. A locking device 5 is installed for access.

圧縮空気は、地上に設けられた空気圧縮機6よ
り調圧弁7を介した、主空気管8によつて、ロツ
ク装置5により、シヤフト4を経て潜函作業室2
へ供給される。
Compressed air is supplied from an air compressor 6 installed on the ground through a pressure regulating valve 7, a main air pipe 8, a lock device 5, a shaft 4, and a submersible work room 2.
supplied to

また、このロツク装置5には、潜函作業室2よ
り連通する空気圧力計9が取りつけられ、潜函作
業室2に供給される圧縮空気を調圧弁7によつて
調圧し、函内気圧を、空気圧力計9によつて確認
していた。
The locking device 5 is also equipped with an air pressure gauge 9 that communicates with the box working chamber 2, and the compressed air supplied to the box working chamber 2 is regulated by a pressure regulating valve 7, and the air pressure inside the box is adjusted to the air pressure. This was confirmed using a pressure gauge 9.

この発明の潜函における函内気圧測定の方法
は、第2図に示すように、沈設中の潜函本体1に
近接して、地盤11内にあらかじめ計画された潜
函作業室2の刃先10の到達深さ以上に、井戸用
ケーシング12を打ち込み、このケーシング12
の内部を掘削して、井戸13を形成し、その先端
にはフイルター材14を充填して、土砂の流入を
防ぐ構造である。これによつて、地下水は、当該
地盤11の地下水面15にほぼ等しい高さまで、
井戸13中を上昇することになる。
As shown in FIG. 2, the method for measuring the air pressure inside a subcase according to the present invention is as follows: Above that, drive the well casing 12, and this casing 12
The inside of the well 13 is excavated to form a well 13, and the tip of the well 13 is filled with a filter material 14 to prevent the inflow of earth and sand. As a result, the groundwater reaches a height approximately equal to the groundwater table 15 of the ground 11.
It will ascend through Well 13.

また、この発明の函内気圧測定の方法には、機
械的又は電気的差圧計を用いる。
Further, in the method of measuring the air pressure inside the box according to the present invention, a mechanical or electrical differential pressure gauge is used.

これ等の差圧計の構造自体は、従来の水深を測
る水位計に類似している。
The structure of these differential pressure gauges is similar to conventional water level gauges that measure water depth.

機械的差圧計は、第3図に示すように、受圧装
置16と地上の適宜な位置に設置でできるように
された指示装置17とに分離されている。
As shown in FIG. 3, the mechanical differential pressure gauge is separated into a pressure receiving device 16 and an indicating device 17 which can be installed at an appropriate position on the ground.

この受圧装置16は、外部に水密に形成された
ハウジング18によつて囲われ、ハウジング18
の内部は、隔壁19によつて空気室20と、水圧
室21とに仕切られている。
This pressure receiving device 16 is surrounded by a housing 18 that is formed watertight on the outside.
The interior thereof is partitioned into an air chamber 20 and a water pressure chamber 21 by a partition wall 19.

水圧室21を形成するハウジング18の水圧室
部分には、ハウジング18外の水を水圧室21に
導入するための導水孔22が設けられている。
A water introduction hole 22 for introducing water outside the housing 18 into the water pressure chamber 21 is provided in a water pressure chamber portion of the housing 18 that forms the water pressure chamber 21 .

隔壁19のほぼ中央には、開口部23が設けら
れ、水圧室21には、この開口部23を閉塞する
ように、受圧ベローズ24が隔壁19に取りつけ
られ、水圧室21に導入された水の水圧を、受圧
ベローズ24の外部に受圧するように配置されて
いる。
An opening 23 is provided approximately in the center of the partition wall 19, and a pressure receiving bellows 24 is attached to the partition wall 19 so as to close this opening 23 to the water pressure chamber 21. The pressure-receiving bellows 24 is arranged to receive water pressure outside the pressure-receiving bellows 24 .

また、空気室20には、空気管25が連通さ
れ、この空気管25によつて空気が空気室20に
導入され、空気室20に導入された空気の圧力
は、受圧ベローズ24の内部に受圧される。
Further, an air pipe 25 is communicated with the air chamber 20 , air is introduced into the air chamber 20 through the air pipe 25 , and the pressure of the air introduced into the air chamber 20 is transferred to the inside of the pressure receiving bellows 24 . be done.

この空気室20には、また、別の発信用ベロー
ズ26,26′が2個対向して配置され、空気室
20を形成するハウジング18の空気室部分の内
壁に固着された台座27,27′に取りつけられ
ている。
In this air chamber 20, two other transmitting bellows 26, 26' are arranged facing each other, and pedestals 27, 27' are fixed to the inner wall of the air chamber portion of the housing 18 forming the air chamber 20. is attached to.

この発信用ベローズ26,26′の可動端2
8,28′と、前記の受圧ベローズ24の可動端
29とは第1の連桿30及びこの連桿30に固定
されたアーム31,31′によつて連結されてい
る。
The movable end 2 of this transmitting bellows 26, 26'
8, 28' and the movable end 29 of the pressure receiving bellows 24 are connected by a first connecting rod 30 and arms 31, 31' fixed to this connecting rod 30.

また、発信用ベローズ26,26′には、それ
ぞれ、伝送管32,32′の一端が連通し、伝送
管32,32′の他端は、指示装置17に延長さ
れている。
Further, one end of the transmission pipe 32, 32' communicates with the transmission bellows 26, 26', respectively, and the other end of the transmission pipe 32, 32' extends to the indicating device 17.

指示装置17には、受信用ベローズ33,3
3′が2個対向して配置され、指示装置17のケ
ーシング34内に一端を固定して取りつけられて
いる。
The indicating device 17 includes receiving bellows 33, 3.
3' are arranged opposite to each other and are fixedly attached at one end within the casing 34 of the indicating device 17.

また、この受信用ベローズ33,33′の可動
端35,35′は第2の連桿36によつて連結さ
れ、指示装置17に延長された伝送管32,3
2′はそれぞれ、受信用ベローズ33,33′に連
通している。
Furthermore, the movable ends 35, 35' of the receiving bellows 33, 33' are connected by a second connecting rod 36, and the transmission pipes 32, 35' extended to the indicating device 17
2' communicate with receiving bellows 33, 33', respectively.

この発信用ベローズ26,26′と伝送管3
2,32′及び受信用ベローズ33,33′のそれ
ぞれの系内には、非圧縮性媒体として液体、主と
して水が封入され、水圧室21に導入された水の
水圧と、空気室20に導入された空気の気圧とに
差がある場合には、受圧ベローズ24の可動端2
9が上、または下に変位し、第1の連桿30及び
アーム31,31′によつて、発信用ベローズ2
6,26′の一方を短縮し、他方を伸長させる。
These transmitting bellows 26, 26' and transmission pipe 3
2, 32' and the receiving bellows 33, 33' are filled with liquid as an incompressible medium, mainly water. If there is a difference in the pressure of the air, the movable end 2 of the pressure receiving bellows 24
9 is displaced upward or downward, and the transmission bellows 2 is moved by the first connecting rod 30 and arms 31, 31'.
6, 26' is shortened and the other is lengthened.

この動作によつて、それぞれ系内に封入された
非圧縮性媒体は、伝送管32,32′を通して、
受信用ベローズ33,33′の一方を伸長し、他
方を短縮させる。
By this operation, the incompressible medium enclosed in the respective systems passes through the transmission pipes 32, 32',
One of the receiving bellows 33, 33' is extended and the other is shortened.

したがつて、この受信用ベローズ33,33′
の可動端35,35′に連結された第2の連桿3
6は、左または右に作動することになる。
Therefore, this receiving bellows 33, 33'
The second connecting rod 3 connected to the movable ends 35, 35' of
6 will operate left or right.

この第2の連桿36にはリンク装置37が連結
され、この作動は、更にリンク装置37と連動す
る歯車38と、この歯車38にかみ合うピニオン
39に伝えられ、ピニオン39を回転させる。
A link device 37 is connected to this second linking rod 36, and this operation is further transmitted to a gear 38 that interlocks with the link device 37 and a pinion 39 that meshes with this gear 38, causing the pinion 39 to rotate.

ピニオン39には、指針40が一体に取りつけ
られ、ピニオン39の回転によつて、指針40
は、左または右に回動する。
A pointer 40 is integrally attached to the pinion 39, and rotation of the pinion 39 causes the pointer 40 to
rotates to the left or right.

このようにして、この差圧計は受圧装置16で
受圧ベローズ24の内外に生じた差圧を、指針4
0に伝え、指針40の回転位置を目盛41で読み
取ることによつて、差圧を測定する。
In this way, this differential pressure gauge uses the pressure receiving device 16 to detect the differential pressure generated between the inside and outside of the pressure receiving bellows 24 through the pointer 4.
0 and read the rotational position of the pointer 40 on the scale 41 to measure the differential pressure.

例えば、水圧の方が大きく、気圧が小さい場合
には、指針40は右(+側)に回動し、気圧の方
が大きく、水圧が小さい場合には、指針40は左
(−側)に回動し、また、水圧と気圧とがつり合
う場合には、指針40が零点を示すように調整す
る。
For example, when the water pressure is higher and the atmospheric pressure is lower, the pointer 40 rotates to the right (+ side), and when the atmospheric pressure is higher and the water pressure is lower, the pointer 40 moves to the left (- side). When the pointer 40 rotates and the water pressure and atmospheric pressure are balanced, the pointer 40 is adjusted to indicate the zero point.

また、差圧計としては、電気的に測定する電気
的差圧計を用いることもできる。
Further, as the differential pressure gauge, an electrical differential pressure gauge that measures electrically can also be used.

この電気的差圧計もまた、第4図に示すよう
に、受圧装置16と指示装置17とに分離されて
いる。
This electrical differential pressure gauge is also separated into a pressure receiving device 16 and an indicating device 17, as shown in FIG.

この受圧装置16は、外部に水密に形成された
ハウジング18によつて囲われ、ハウジング18
の内部は、上部隔壁42と下部隔壁43とによつ
て、空気室20、空所44及び水圧室21とに仕
切られている。
This pressure receiving device 16 is surrounded by a housing 18 that is formed watertight on the outside.
The interior thereof is partitioned into an air chamber 20, a cavity 44, and a water pressure chamber 21 by an upper partition wall 42 and a lower partition wall 43.

水圧室21を形成するハウジング18の水圧室
部分には、ハウジング18外の水を水圧室21に
導入するための導水孔22が設けられている。
A water introduction hole 22 for introducing water outside the housing 18 into the water pressure chamber 21 is provided in a water pressure chamber portion of the housing 18 that forms the water pressure chamber 21 .

また、空気室20には空気管25が連通され、
この空気管25によつて空気室20に空気が導入
できる。
Further, an air pipe 25 is communicated with the air chamber 20,
Air can be introduced into the air chamber 20 through the air pipe 25.

下部隔壁43のほぼ中央には、開口部45が設
けられ、水圧室21には、この開口部45を閉塞
するように、受圧ベローズ46が下部隔壁43に
取りつけられ、水圧室21に導入された水の圧力
を、受圧ベローズ46の外部に受圧するように配
置されている。
An opening 45 is provided approximately in the center of the lower partition wall 43, and a pressure receiving bellows 46 is attached to the lower partition wall 43 so as to close this opening 45, and is introduced into the water pressure chamber 21. The pressure receiving bellows 46 is arranged so as to receive the pressure of the water on the outside of the pressure receiving bellows 46.

また、上部隔壁42のほぼ中央にも、開口部4
7が設けられ、空気室20には、この開口部47
を閉塞するように、別の受圧ベローズ48が上部
隔壁42に取りつけられ、空気室20に供給され
た空気の圧力を、この受圧ベローズ48の外部に
受圧するように配置されている。
Further, an opening 4 is also provided at approximately the center of the upper partition wall 42.
7 is provided in the air chamber 20, and this opening 47
Another pressure-receiving bellows 48 is attached to the upper partition wall 42 so as to close the air chamber 20, and is arranged to receive the pressure of the air supplied to the air chamber 20 on the outside of this pressure-receiving bellows 48.

それぞれの受圧ベローズ46,48のそれぞれ
の可動端49,50は、非磁性物質で構成される
第3の連桿51によつて連結されている。
The respective movable ends 49 and 50 of the respective pressure receiving bellows 46 and 48 are connected by a third connecting rod 51 made of a non-magnetic material.

また、空所44には差動トランス52のコイル
部53が固定され、前記第3の連桿51がコイル
部53内を貫通し、またこの第3の連桿51には
鉄心54が取りつけられ、この鉄心54はコイル
部53内に止まり、受圧ベローズ46,48の伸
縮によつて、第3の連桿51が変位し、鉄心54
は上下に移動できる構造である。
Further, a coil portion 53 of a differential transformer 52 is fixed in the space 44, the third connecting rod 51 passes through the inside of the coil portion 53, and an iron core 54 is attached to the third connecting rod 51. , this iron core 54 stays in the coil part 53, and the third connecting rod 51 is displaced by the expansion and contraction of the pressure receiving bellows 46, 48, and the iron core 54
is a structure that can be moved up and down.

差動トランス52のコイル部53の1次側及び
2次側からそれぞれケーブル55が引き出され、
指示装置17に延長されて下記の機器に配線さ
れ、1次側回路及び2次側回路が形成されてい
る。
Cables 55 are pulled out from the primary and secondary sides of the coil portion 53 of the differential transformer 52, respectively.
It is extended to the indicating device 17 and wired to the following equipment to form a primary side circuit and a secondary side circuit.

1次側回路には、交流電源接続端子56、直流
安定化装置57及び高周波発振器58が組み込ま
れている。
The primary side circuit includes an AC power supply connection terminal 56, a DC stabilizer 57, and a high frequency oscillator 58.

また、2次側回路には、差動トランス52の零
点調整や、差動トランス52と指示装置17間の
ケーブル55の線間容量による誤差を補正する入
力回路59、出力増大とインピーダンス交換機能
をもつ交流増幅回路60、交流出力を位相弁別し
て整流するAC/DC変換器61、リツプルを除去
するフイルタ回路62及び指示計63が組み込ま
れている。
The secondary circuit also includes an input circuit 59 that adjusts the zero point of the differential transformer 52, corrects errors due to line capacitance of the cable 55 between the differential transformer 52 and the indicating device 17, and has an output increase and impedance exchange function. An AC amplifying circuit 60 with an AC output, an AC/DC converter 61 for phase-discriminating and rectifying an AC output, a filter circuit 62 for removing ripples, and an indicator 63 are incorporated.

この電気的差圧計の水圧室21に水を導入し、
空気室20に空気を導入するとともに、指示装置
17の交流電源接続端子56に交流電源64を接
続する。
Introducing water into the water pressure chamber 21 of this electrical differential pressure gauge,
While introducing air into the air chamber 20, an AC power source 64 is connected to the AC power connection terminal 56 of the indicating device 17.

この場合、水圧室21に導入された水の水圧
と、空気室20に導入された空気の気圧とに差が
ある場合には、各受圧ベローズ46,48は第3
の連桿51によつて連結されているので、それぞ
れの受圧ベローズ46,48の一方が短縮し、他
方は伸長して、第3の連桿51が変位することに
なる。
In this case, if there is a difference between the water pressure of the water introduced into the water pressure chamber 21 and the air pressure of the air introduced into the air chamber 20, each pressure receiving bellows 46, 48
Since they are connected by a connecting rod 51, one of the respective pressure receiving bellows 46, 48 is shortened, the other is expanded, and the third connecting rod 51 is displaced.

したがつて、この第3の連桿51に取りつけら
れた鉄心54は、コイル部53内を上または下に
変位する。
Therefore, the iron core 54 attached to the third connecting rod 51 is displaced upward or downward within the coil portion 53.

一方、指示装置17に接続された交流電源64
を、指示装置17の1次側回路によつて高周波一
定電圧に変換し、コイル部53の1次側を励磁と
すると、鉄心54を磁気回路の主体とした交流磁
束が発生し、コイル部53の2次側には、交流電
圧が誘導される。この場合、コイル部53内での
鉄心54の変位によつて、誘導交流電圧が変す
る。これが出力としてケーブル55によつて指示
装置17に伝えられ、指示装置17の2次側回路
によつて、増幅、整流されて指示計63に示され
る。これを読み取ることによつて、差圧を測定す
る。
On the other hand, an AC power supply 64 connected to the instruction device 17
is converted into a high frequency constant voltage by the primary side circuit of the indicating device 17, and the primary side of the coil section 53 is excited, an alternating current magnetic flux with the iron core 54 as the main part of the magnetic circuit is generated, and the coil section 53 An alternating current voltage is induced on the secondary side of. In this case, the induced AC voltage changes due to the displacement of the iron core 54 within the coil portion 53. This is transmitted as an output to the indicator 17 via the cable 55, amplified and rectified by the secondary side circuit of the indicator 17, and shown on the indicator 63. By reading this, the differential pressure is measured.

これ等の機械的又は電気的差圧計は、以上のよ
うな構造と機能をもち、これ等の機械的又は電気
的差圧計の受圧装置16の空気室20に一端が連
通された空気管25の他端を、沈設中の潜函作業
室2に連通させる。
These mechanical or electrical differential pressure gauges have the structure and function as described above, and have an air pipe 25 whose one end communicates with the air chamber 20 of the pressure receiving device 16 of these mechanical or electrical differential pressure gauges. The other end is communicated with the submersible box work chamber 2 which is being submerged.

この連通の方法は、第2図に示すように、空気
管25の他端を、作業室天井3を貫通して取りつ
けてもよく、またシヤフト4またはロツク装置5
に空気管25の他端を取りつけても、作業室2と
の連通は可能である。
As shown in FIG.
Even if the other end of the air pipe 25 is attached to the air pipe 25, communication with the work chamber 2 is possible.

また、差圧計の受圧装置16と伝送管32,3
2′またはケーブル55によつて連結された指示
装置17を、陸上の適宜な置に配置する。
In addition, the pressure receiving device 16 of the differential pressure gauge and the transmission pipes 32, 3
The indicating device 17 connected by 2' or cable 55 is placed at an appropriate location on land.

一方、潜函作業においては、測量によつて潜函
作業室2の刃先10の深さは、常に確認されてい
る。
On the other hand, in the case work, the depth of the cutting edge 10 in the case work chamber 2 is always confirmed by surveying.

次に、受圧装置16のハウジング18の上端に
一端に取りつけた吊り索65によつて、受圧装置
16を井戸13内の地下水中に吊り下げ、潜函作
業室2の刃先10の深さと、受圧装置16の水圧
室21の受圧ベローズ24,46の可動端29,
49とが等しい深さになるように吊り索65の他
端を地上に設けた止め具68に固定して止める。
Next, the pressure receiving device 16 is suspended in the groundwater in the well 13 by a hanging cable 65 attached at one end to the upper end of the housing 18 of the pressure receiving device 16. The movable ends 29 of the pressure receiving bellows 24, 46 of the 16 water pressure chambers 21,
The other end of the hanging rope 65 is fixed to a stopper 68 provided on the ground so that the lengths of the ropes 49 and 49 are the same depth.

この場合、受圧ベローズ24,46の可動端2
9,49の深さの検定は、吊り索65に検尺目盛
を付す等によつて、可能である。
In this case, the movable end 2 of the pressure receiving bellows 24, 46
Verification of the depth of 9 and 49 is possible by attaching measuring scales to the hanging cable 65, etc.

以上の方法によつて、作業室2の空気は、空気
管25によつて受圧装置16の空気室20に導入
され、受圧ベローズ24〔第4図の場合は受圧ベ
ローズ48〕を下向きに押出している。
By the above method, the air in the working chamber 2 is introduced into the air chamber 20 of the pressure receiving device 16 through the air pipe 25, and pushes the pressure receiving bellows 24 (the pressure receiving bellows 48 in the case of FIG. 4) downward. There is.

また、一方井戸13内の地下水中に吊り下げら
れた受圧装置16の水圧室21には、潜函作業室
2の刃先10における地下水の水位と等しい水圧
の地下水が導入され、受圧ベローズ24〔第4図
の場合は受圧ベローズ46〕を上向きに押圧して
いる。
On the other hand, groundwater having a water pressure equal to the water level of the groundwater at the cutting edge 10 of the submersible work chamber 2 is introduced into the water pressure chamber 21 of the pressure receiving device 16 suspended in the groundwater in the well 13, and the pressure receiving bellows 24 [fourth In the case of the figure, the pressure receiving bellows 46] is pressed upward.

なお受圧ベローズ24,46,48の代りり、
開口部23,45,47に取り付けたダイアフラ
ムを使用してもよいことは明らかである。
In addition, instead of the pressure receiving bellows 24, 46, 48,
It is clear that diaphragms fitted in openings 23, 45, 47 may also be used.

この空気室20に導入された函内気圧の気圧
と、水圧室21に導入された井戸13内の地下水
の水圧とに差がある場合には、この差圧は、伝送
管32,32′またはケーブル55を通して、受
圧装置16より指示装置17に伝えられ、指示計
41〔第4図の場合は指示計63〕に表示され
る。
If there is a difference between the pressure inside the box introduced into the air chamber 20 and the water pressure of the groundwater in the well 13 introduced into the water pressure chamber 21, this pressure difference will be The pressure is transmitted from the pressure receiving device 16 to the indicating device 17 through the cable 55, and is displayed on the indicator 41 (indicator 63 in the case of FIG. 4).

この差圧表示が等圧表示(零点)になるよう
に、ゲージマンが常に監視して主空気管8に設け
た調圧弁7を操作して、空気圧縮機6より潜函作
業室2に供給されている圧縮空気を制御して、函
内気圧を調圧する。
A gauge man constantly monitors and operates the pressure regulating valve 7 installed in the main air pipe 8 so that this differential pressure display becomes an equal pressure display (zero point). The air pressure inside the box is regulated by controlling the compressed air inside the box.

例えば、函内気圧が低いと(+側に)表示され
ている場合には、調圧弁7を操作して、函内気圧
を上げると、指示計41,63の表示は等圧表示
(零点)に移行する。
For example, if the pressure inside the box is displayed as low (on the + side), if you operate the pressure regulating valve 7 to increase the pressure inside the box, the indicators 41 and 63 will display equal pressure (zero point). to move to.

この場合は、潜函作業室2より空気室20に導
入された空気の気圧と、水圧室21に導入された
地下水の水圧とは等しいことを示している。
In this case, the pressure of the air introduced into the air chamber 20 from the subcase work chamber 2 and the water pressure of the groundwater introduced into the water pressure chamber 21 are shown to be equal.

即ち、水圧室21に導入された井戸13中の地
下水の水圧と、潜函作業室2の刃先10における
地下水の水圧とはほぼ等しいことから、調圧弁7
を操作して指示計41,63の表示を、等圧表示
(零点)に移行させると、函内気圧はより正確に
刃先10における地下水位につり合つたことにな
る。
That is, since the water pressure of the groundwater in the well 13 introduced into the water pressure chamber 21 and the water pressure of the groundwater at the cutting edge 10 of the submersible work chamber 2 are almost equal, the pressure regulating valve 7
When the indicators 41 and 63 are operated to shift the display to the equal pressure display (zero point), the air pressure inside the box is more accurately balanced with the groundwater level at the cutting edge 10.

このようにして、潜函本体1の沈下とともに、
井戸13内の受圧装置16も刃先10の深さに合
せて沈下させることによつて、その位置における
適正な函内気圧設定のための指標が得られること
になり、同様な操作を行つて、函内気圧を調圧す
ることができる。
In this way, as the subcase body 1 sinks,
By lowering the pressure receiving device 16 in the well 13 according to the depth of the cutting edge 10, an index for setting the appropriate pressure inside the box at that position can be obtained, and by performing the same operation, The air pressure inside the box can be regulated.

また、函内気圧を刃先10以外の任意の位置の
地下水位につり合せる場合には、その深さに井戸
13内の受圧装置16を位置させ、同様の操作を
行う。
Moreover, when the air pressure inside the box is to be balanced with the groundwater level at any position other than the cutting edge 10, the pressure receiving device 16 in the well 13 is positioned at that depth and the same operation is performed.

また、この方法によれば、作業室2に供給され
る圧縮空気の調圧弁7を、他の動力によつて操作
するようにし、受圧装置16から指示装置17に
伝えられる非圧縮性媒体の圧力または誘導電力を
出力として取り出し、従来から知られている電
気・油圧サーボ機構のような伝達装置66によつ
て調圧弁7を制御し、函内気圧を自動的に設定す
ることも可能である。
Further, according to this method, the pressure regulating valve 7 for compressed air supplied to the work chamber 2 is operated by other power, and the pressure of the incompressible medium transmitted from the pressure receiving device 16 to the indicating device 17 is Alternatively, it is also possible to extract the induced power as an output and control the pressure regulating valve 7 by a transmission device 66 such as a conventionally known electric/hydraulic servo mechanism to automatically set the air pressure inside the box.

また、潜函作業室2より受圧装置16の空気室
20に導通する空気管25系内にフイルタ装置6
7を設けることによつて、潜函作業における潜函
作業室内での急激な気圧変動が除去されて、受圧
装置16に伝えられ、安定した差圧測定が可能で
ある。
In addition, a filter device 6 is installed in the air pipe 25 system that leads from the box work chamber 2 to the air chamber 20 of the pressure receiving device 16.
By providing 7, rapid pressure fluctuations within the subcase work chamber during subcase work are removed and transmitted to the pressure receiving device 16, allowing stable differential pressure measurement.

従来の潜函内気圧の測定は、地下水位を人為的
に計算または測定して、これに対応する気圧を仮
定し、函内気圧がこの気圧になつているかどうか
を確認するものであつた。
Conventional methods of measuring the atmospheric pressure inside the can include artificially calculating or measuring the groundwater level, assuming a corresponding atmospheric pressure, and then checking whether the internal pressure of the submersible has reached this atmospheric pressure.

したがつて、潮位等による地下水位の変動に対
して、指標となるべきものがなく、改めて計算ま
たは測定しなおす必要があり、地下水位の変動に
即応して函内気圧を対応させることができなかつ
た。
Therefore, there is no indicator that can be used as an indicator for changes in the groundwater level due to tide levels, etc., and it is necessary to recalculate or measure it again. Nakatsuta.

しかし、この発明の方法では、地下水位の変動
によつて井戸13内の地下水位も同に変動するた
め、差圧計の井戸13内の受圧装置16に作用す
る水圧が変化して、直ちに差圧計の指示計41,
63に差圧表示〔(+)または(−)〕に表われる
ので、これを指標にして空気調圧弁7を操作し
て、等圧表示(零点)に復帰させるだけで、地下
水の変動の途中においても、直ちにこれに対応す
る函内気圧に設定することができる。
However, in the method of the present invention, as the groundwater level in the well 13 changes as the groundwater level changes, the water pressure acting on the pressure receiving device 16 in the well 13 of the differential pressure gauge changes, and the differential pressure gauge immediately changes. indicator 41,
63 is displayed as a differential pressure display [(+) or (-)]. Using this as an indicator, simply operate the air pressure regulating valve 7 to return to the equal pressure display (zero point), and the groundwater will be detected midway through fluctuations. , the pressure inside the box can be immediately set to correspond to this.

また、従来の函内気圧測定の方法では、函内気
圧を大気圧と比較して、この差圧を測定してい
た。このため、その圧力計には、比較的耐高圧用
の構造のものが使われ、その特性として感度の高
い測定は不可能であつた。
Furthermore, in the conventional method of measuring the air pressure inside the box, the air pressure inside the box is compared with the atmospheric pressure, and the differential pressure is measured. For this reason, the pressure gauge used has a structure that is relatively resistant to high pressure, and its characteristics make it impossible to measure with high sensitivity.

したがつて、函内気圧は、安全側をとつて、該
当する地下水位よりも高めに設定していた。その
結果として、函内気圧が刃先10を回り込んで地
表ヘブローすることが多かつた。
Therefore, to be on the safe side, the pressure inside the box was set higher than the relevant groundwater level. As a result, the air pressure inside the box often goes around the cutting edge 10 and blows to the ground surface.

しかし、この発明の方法では、差圧計は受圧装
置16に函内気圧とほぼ同圧の地下水を平衡させ
ながら用いるので、その差圧が比較的小さく差圧
計の受圧装置16、指示装置17共その構造を感
度の高い差圧測定が可能なものにすることができ
る。
However, in the method of the present invention, the differential pressure gauge is used while the pressure receiving device 16 is balanced with groundwater having approximately the same pressure as the pressure inside the box, so the differential pressure is relatively small and both the pressure receiving device 16 and the indicating device 17 of the differential pressure gauge are used. The structure can be made to allow sensitive differential pressure measurements.

例えば、水柱で10cm〜20cmという従来の潜函に
用いた空気圧力計9では得られなかつた。数値も
測定でき、潜函の刃先10における地下水位と完
全に等しい函内圧力に設定することもできる。
For example, the air pressure gauge 9 used in conventional submersibles could not obtain a water column of 10 cm to 20 cm. Numerical values can also be measured, and the pressure inside the box can be set to be completely equal to the groundwater level at the cutting edge 10 of the subcase.

この結果として、刃先10を回り込んで地表ヘ
ブローする函内空気が減少し、潜函作業における
全体の空気消費量を減少させることになる。
As a result, the amount of air inside the box that goes around the cutting edge 10 and blows to the ground surface is reduced, thereby reducing the overall air consumption in the box work.

また、函内気圧と井戸13内地下水の水圧を、
それぞれ異なる気圧計、水位計によつて測定し
て、その差圧、等圧を読みとることも可能である
が、計器の特性の相違から、2つの計器による微
細な差圧または等圧の測定は誤差が多く、信頼度
が薄いものとなる。
In addition, the air pressure inside the box and the water pressure of the groundwater in well 13 are
It is possible to read the differential pressure and equal pressure by measuring with different barometers and water level gauges, but due to the differences in the characteristics of the instruments, it is difficult to measure minute differential pressures or equal pressures using two instruments. There are many errors and the reliability is low.

この函内気圧の測定方法はまた、地盤内地下水
中をほぼ水平に掘削するトンネル工事、例えば圧
気式シールド工法における坑内気圧の測定にも適
用できるのは明らかである。
It is clear that this method for measuring the pressure inside the box can also be applied to measuring the pressure inside the tunnel in tunnel construction in which subterranean water is excavated almost horizontally in the ground, for example, in the pressurized air shield method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空気潜函工法における従来の潜函作業
室の函内気圧の測定方法の概要を示す説明図、第
2図は本発明方法の概要を示す説明図、第3図は
本発明方法に使用する機械的差圧計を一部を断面
にして示す説明図、第4図は本発明方法に使用す
る電気的差圧計を一部を断面にして示す説明図で
ある。 1……潜函本体、2……潜函作業室、10……
刃先、11……地盤、13……井戸、15……地
下水面、16……受圧装置、17……指示装置。
Fig. 1 is an explanatory diagram showing an overview of the conventional method for measuring the air pressure inside a box work room in the air submersible box construction method, Fig. 2 is an explanatory diagram showing an outline of the method of the present invention, and Fig. 3 is an explanatory diagram showing the outline of the method of the present invention. FIG. 4 is an explanatory diagram showing a partial cross-section of a mechanical differential pressure gauge used in the method of the present invention, and FIG. 1... Subbox body, 2... Subbox work room, 10...
Blade edge, 11... Ground, 13... Well, 15... Groundwater table, 16... Pressure receiving device, 17... Indicating device.

Claims (1)

【特許請求の範囲】 1 (イ) 地盤に沈設中の潜函本体の外部におい
て、前記地盤の地下水面にほぼ等しい高さまで
地下水を上昇させることができる井戸を、前記
沈設中の潜函本体の潜函作業室の所定箇所の位
置より深く形成し、 (ロ) 差圧計の受圧装置を、前記潜函本体の潜函作
業室の所定箇所と同じ深さ位置を前記井戸の中
において占めるように、この井戸の中を移動さ
せ、 (ハ) 前記潜函作業室の所定箇所における地盤の地
下水位の変動によつて変化する水圧に相当する
井戸内の水圧と、前記所定箇所における函内気
圧とを、前記受圧装置に加え、 (ニ) 前記井戸内の水圧と、前記函内気圧との差圧
により前記受圧装置を作動させ、 (ホ) この受圧装置の作動により、前記差圧計の指
示装置を作動させて前記差圧を指示する、 ことから成る、潜函作業室の函内気圧の測定方
法。 2 前記潜函作業室の所定箇所として刃先を選定
し、前記差圧計として機械的差圧計又は電気的差
圧計を使用する特許請求の範囲第1項記載の潜函
作業室の函内気圧の測定方法。
[Scope of Claims] 1 (a) Outside of the main body of the submerged case that is being sunk in the ground, a well capable of raising groundwater to a height approximately equal to the groundwater level of the ground is constructed during submergence work of the main body of the submerged case that is being sunk. (b) The pressure receiving device of the differential pressure gauge is formed in the well so that the pressure receiving device of the differential pressure gauge occupies the same depth position in the well as the predetermined position of the subcase working chamber of the subcase main body. (c) transmitting to the pressure receiving device the water pressure in the well corresponding to the water pressure that changes due to fluctuations in the underground water level at a predetermined location in the box work chamber and the air pressure inside the box at the predetermined location; In addition, (d) the pressure receiving device is actuated by the pressure difference between the water pressure in the well and the pressure inside the box, and (e) the pressure receiving device is actuated to actuate the indicating device of the differential pressure gauge and the pressure difference is A method for measuring the air pressure inside a box in a submersible box working room, which consists of: indicating the pressure; 2. The method for measuring the air pressure inside a box in a box working chamber according to claim 1, wherein a cutting edge is selected as a predetermined location in the box working chamber, and a mechanical differential pressure gauge or an electrical differential pressure gauge is used as the differential pressure gauge.
JP9628282A 1982-06-07 1982-06-07 Measurement of internal atmospheric pressure of caisson working chamber Granted JPS58213923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9628282A JPS58213923A (en) 1982-06-07 1982-06-07 Measurement of internal atmospheric pressure of caisson working chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9628282A JPS58213923A (en) 1982-06-07 1982-06-07 Measurement of internal atmospheric pressure of caisson working chamber

Publications (2)

Publication Number Publication Date
JPS58213923A JPS58213923A (en) 1983-12-13
JPS6132458B2 true JPS6132458B2 (en) 1986-07-26

Family

ID=14160753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9628282A Granted JPS58213923A (en) 1982-06-07 1982-06-07 Measurement of internal atmospheric pressure of caisson working chamber

Country Status (1)

Country Link
JP (1) JPS58213923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158499A (en) * 1995-12-01 1997-06-17 Shinko Kigyo Kk Support stand for temporary supporting support

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078200A (en) * 2004-09-07 2006-03-23 Kayaba Ind Co Ltd Differential pressure sensor
JP2006078199A (en) * 2004-09-07 2006-03-23 Kayaba Ind Co Ltd Differential pressure sensor
JP5815316B2 (en) * 2011-07-19 2015-11-17 株式会社安藤・間 Muddy water density measuring device
JP6348002B2 (en) * 2014-06-30 2018-06-27 前田建設工業株式会社 Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158499A (en) * 1995-12-01 1997-06-17 Shinko Kigyo Kk Support stand for temporary supporting support

Also Published As

Publication number Publication date
JPS58213923A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
CN100564705C (en) Packaged technology for underwater in situ automatically monitoring
US4265110A (en) Downhole cable tension measuring apparatus
US3103976A (en) Pipe joint locator for underwater wells
Bennett et al. Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi Delta
CN108180938A (en) A kind of deep basal pit real-time system for monitoring and pre-warning
EP0858583B1 (en) Strain-sensing device
US5900545A (en) Strain monitoring system
JPS6132458B2 (en)
GB2254430A (en) Drilling apparatus
JP3271751B2 (en) Settlement measuring device
CA2894656C (en) Drilling data visualization method
US5553034A (en) Differential pressure fluid density instrument
JPS58118902A (en) Method for measuring vertical displacement quantity and deflection quantity of structure
Garber et al. Methods of measuring water levels in deep wells
Ding et al. Geotechnical instruments in structural monitoring
CN112195903A (en) Device and method for measuring rock-soil layer settlement and application
JPH1123265A (en) Insertion type inclinometer
SA113340950B1 (en) Method and apparatus for well-bore proximity measurement while drilling
CN218496147U (en) Underground water level and well platform height integrated measuring device
US3857281A (en) Method and apparatus for detecting potentially dangerous conditions in a well bore during trips of the well string in and out of the well bore
CN1256410A (en) Vibrating-string type single-coil current sensor and exciter
SU863758A1 (en) Method of measuring layer-wise deformation of soil
CN115127614A (en) Underground water level and well platform height integrated measuring device
JPH05126506A (en) Vertical displacement measuring device in underground foundation
RU2271447C2 (en) Drilling pressure measurement method