JP5815316B2 - Muddy water density measuring device - Google Patents
Muddy water density measuring device Download PDFInfo
- Publication number
- JP5815316B2 JP5815316B2 JP2011157712A JP2011157712A JP5815316B2 JP 5815316 B2 JP5815316 B2 JP 5815316B2 JP 2011157712 A JP2011157712 A JP 2011157712A JP 2011157712 A JP2011157712 A JP 2011157712A JP 5815316 B2 JP5815316 B2 JP 5815316B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- muddy water
- liquid
- bellows
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Description
本発明は、例えば、掘削水を使って地盤を削孔する工法において掘削孔・溝中に溜まる泥水、原位置撹拌工法においてソイルセメント構造物を構築する際の未固化状態のソイルセメント、場所打ちコンクリート杭の施工において削孔した孔に注入する孔壁安定液等、地盤の孔、溝の中で沈降状態の固体粒子を含む懸濁液の密度を地盤中の原位置で測定するのに使用する泥水等密度測定装置に関する。 The present invention includes, for example, muddy water accumulated in excavation holes / grooves in a method of drilling the ground using excavated water, unsolidified soil cement when a soil cement structure is constructed in an in-situ agitation method, cast-in-place Used to measure the density of suspension containing solid particles in the ground, such as hole wall stabilizing liquid injected into drilled holes in the construction of concrete piles, in the ground. The present invention relates to a muddy water density measuring device.
一般に、掘削水を使って地盤を削孔する工法では、掘削水の水量の適否を確認するために、掘削孔・溝中に溜まる泥水の密度を測定する。また、原位置撹拌工法では、ソイルセメントの水分量を推定するために、未固化状態のソイルセメントの密度を測定し、場所打ちコンクリート杭の施工では、削孔した孔に注入する孔壁安定液の品質を確認するために、孔壁安定液の密度を測定する。
このような孔、溝の中の泥水等の懸濁液中では、土粒子、セメント等の固化材等の固体粒子が水や分散剤等の中に懸濁したり等速に沈降したりしており、このような固体粒子を含む懸濁液(以下、単に「泥水等」という。)の密度を測定する場合、従来は、一定の容積を有する容器に泥水等を入れ、この容器の泥水等から、その質量を測定し、測定した質量値を容器の容積で除する計算で求めたり、また、マッドバランスと呼ばれる天秤形の秤を用い、一端の容器に定量の泥水等を入れ、この容器から延びる計測用の目盛りが付けられたアームを支持台座上で水平となるようにこのアーム上で錘を移動させ、錘の位置でアームの目盛りを読み取ることで比重を計測したりすることが行われている。
Generally, in the method of drilling the ground using drilling water, the density of mud collected in the drilling holes and grooves is measured in order to confirm the suitability of the drilling water volume. In the in-situ stirring method, in order to estimate the moisture content of the soil cement, the density of the unsolidified soil cement is measured. In order to confirm the quality, the density of the pore wall stabilizing solution is measured.
In suspension such as muddy water in such holes and grooves, solid particles such as soil particles, cement and other solidifying materials are suspended in water or dispersant, etc. or settled at a constant speed. In the case of measuring the density of a suspension containing such solid particles (hereinafter simply referred to as “muddy water”), conventionally, muddy water or the like is placed in a container having a certain volume, From the above, measure the mass and calculate by dividing the measured mass value by the volume of the container, or use a balance-type scale called mud balance and put a fixed amount of mud in one container. It is possible to measure the specific gravity by moving the weight on this arm so that the measurement scale extending from the arm is horizontal on the support pedestal and reading the scale of the arm at the position of the weight It has been broken.
ところで、このような容器やマッドバランスなどを用いた泥水等の密度の測定手法では、地盤の孔や溝から測定対象の泥水等を採取し、地上に設置された測定装置で泥水等の密度を測定するため、作業が煩雑で、多くの時間を要する。そこで、従来より、地盤中の泥水等の密度を地盤中の原位置で計測できる測定器が求められており、この種の測定器が特許文献1により提案されている。 By the way, in such a method for measuring the density of muddy water using a container or mud balance, the muddy water to be measured is collected from a hole or groove in the ground, and the density of the muddy water is measured by a measuring device installed on the ground. Since the measurement is performed, the work is complicated and a lot of time is required. Thus, a measuring instrument that can measure the density of muddy water or the like in the ground at the original position in the ground has been demanded, and this type of measuring instrument has been proposed in Patent Document 1.
この文献1は、液体の比重計に関するもので、この文献1の比重計は、図6に示すように、先端部が拡大された圧力感知部61を有し、かつ圧力伝達用液体62を内封した圧力伝達用管63を上下に連結した差圧変換器64と、差圧変換器64を囲繞した防水箱640と、差圧変換器64にコード65で連結された圧力指示計66と、圧力伝達用管63を支持し防水箱640と一体化した支持枠67と、支持枠67の上部に設けた複数の把手68と、把手68に連結したロープ69とを備え、この比重計を、地盤を削孔した孔内の泥水の中に挿入し、所定の深度で、泥水の比重を計測できるようにしている。
This document 1 relates to a liquid hydrometer. The hydrometer of this document 1, as shown in FIG. 6, has a
しかしながら、上記従来の液体の比重計では、次のような問題がある。
(1)そもそもこの比重計は、液体を測定対象とし、液体中に土粒子等の固体が懸濁したり沈降したりしている状態の泥水等を測定の対象としていないため、泥水等の密度測定装置として利用することはできない。
(2)圧力を伝達する液体が圧力伝達用管内に封入されているため、測定対象の液体中で温度差が生じると、圧力伝達用管内に封入された液体も温度変化の影響を受けて、密度、体積が変化し、その変化が見かけの圧力となって、正確な差圧を測定することができない。
(3)上記(2)の問題に対応するため、圧力伝達用液体をなくし、例えば、受圧部と差圧計を一体化することが考えられるが、この場合、測定される差圧が小さくなるため、測定精度が悪くなる。
(4)上記(3)の問題に対応するため、差圧計を大きくすることが考えられるが、差圧計を大きくすると、こんどは、差圧計の内部で、上記(2)と同様に、温度変化の影響が大きくなる。
(5)地盤中の泥水等の深部で密度を測定する場合、受圧部に作用する圧力は泥水等の深さとともに大きくなるため、これに合わせて受圧部の耐圧性能を高くすると、泥水等の深部での圧力に比べて微小な差圧の測定精度が低下する。この場合、受圧部の内部に流体を封入することで耐圧性能を高めようとすると、流体の圧縮性による誤差や感度の低下のほか、上記(2)と同様に、温度変化の影響が大きくなる。
(6)差圧計の測定容量は、測定対象となる密度と2深度間距離から計算される差圧に対して精度確保上最適な容量とすることが望ましいが、差圧の最大値は、泥水に差圧計を挿入する段階で、下部の受圧部にのみ泥水に浸かり、上部の受圧部が泥水に浸かる直前に生じるため、この最大差圧値に対して差圧測定部の容量を選ぶと、泥水中での差圧に対して最適な容量とした場合に比べて測定精度が低下する。
(7)測定対象とする泥水等の密度は、孔壁安定液の1.0〜1.05g/cm3程度から、泥水やソイルセメントの1.2〜1.6g/cm3程度までと幅広いため、測定対象毎に測定精度を確保するには、測定対象に合わせて差圧測定部の容量を変更できることが望ましい。
However, the conventional liquid hydrometer has the following problems.
(1) In the first place, this hydrometer is intended to measure the density of muddy water, etc., because it does not measure the liquid, and does not measure the muddy water in which solid particles such as soil particles are suspended or settled. It cannot be used as a device.
(2) Since the liquid that transmits the pressure is enclosed in the pressure transmission tube, if a temperature difference occurs in the liquid to be measured, the liquid enclosed in the pressure transmission tube is also affected by the temperature change, The density and volume change, and the change becomes an apparent pressure, and an accurate differential pressure cannot be measured.
(3) In order to deal with the problem (2) above, it is conceivable to eliminate the pressure transmission liquid and, for example, integrate the pressure receiving portion and the differential pressure gauge. However, in this case, the measured differential pressure becomes small. , Measurement accuracy will deteriorate.
(4) To cope with the problem of (3) above, it is conceivable to enlarge the differential pressure gauge. However, if the differential pressure gauge is enlarged, this causes the temperature change within the differential pressure gauge as in (2) above. The effect of.
(5) When the density is measured in the deep part of the muddy water in the ground, the pressure acting on the pressure receiving part increases with the depth of the muddy water, etc. The measurement accuracy of minute differential pressure is reduced compared to the pressure in the deep part. In this case, if an attempt is made to increase the pressure resistance performance by enclosing the fluid inside the pressure receiving portion, in addition to the error due to the compressibility of the fluid and a decrease in sensitivity, the effect of temperature change is increased as in (2) above. .
(6) The measurement capacity of the differential pressure gauge is preferably the optimum capacity for ensuring accuracy with respect to the differential pressure calculated from the density to be measured and the distance between two depths, but the maximum value of the differential pressure is muddy water. At the stage of inserting the differential pressure gauge into the mud, only the lower pressure receiving part is immersed in the muddy water, and the upper pressure receiving part occurs immediately before being immersed in the mud, so if you select the capacity of the differential pressure measuring part for this maximum differential pressure value, Measurement accuracy is lower than when the capacity is optimal for the differential pressure in the muddy water.
(7) Density of muddy water or the like to be measured is wide and the 1.0~1.05g / cm 3 about hole wall stabilizing solution until 1.2~1.6g / cm 3 order of mud and soil cement Therefore, in order to ensure measurement accuracy for each measurement target, it is desirable that the capacity of the differential pressure measurement unit can be changed according to the measurement target.
本発明は、このような従来の問題を解決するものであり、この種の泥水等密度測定装置において、地盤に削孔した孔、溝の中の泥水等、地盤中で懸濁又は沈降状態の固体粒子を含む液体の密度を地盤中の原位置で簡易かつ正確に測定すること、を目的とする。 The present invention solves such a conventional problem, and in this type of muddy water equal density measuring apparatus, a hole drilled in the ground, mud water in a groove, etc. are suspended or submerged in the ground. An object is to easily and accurately measure the density of a liquid containing solid particles at an in-situ location in the ground.
上記目的を達成するために、本発明は、上下に受圧部を有し、泥水等固体粒子を含む液体の液面から深度の異なる上下の2地点間の圧力差を測定する差圧測定装置と、前記差圧測定装置から得られた前記2地点間の圧力差と、前記2地点間の距離及び重力加速度とに基いて前記2地点間の前記液体の平均密度を算出する演算装置とを備え、前記差圧測定装置を、前記液体の中に挿入し、所定の深度で、前記2地点間の前記液体の平均密度を測定する泥水等液体密度測定装置において、 前記差圧測定装置は、 前記上下の受圧部を相互に近接して有する差圧測定部と、 前記差圧測定部の前記上部の受圧部の周囲を水密に取り囲み、かつ上方に向けて立ち上げられて前記下部の受圧部から前記2地点間の距離に対応する所定の高さまで延びる、上端に開口を有する連通管とを備え、 前記下部の受圧部を直に前記液体中の下の地点で前記液体に接して、前記下部の受圧部で圧力を受け、 前記連通管内に水を充填して前記連通管上端の開口を密封することなしに開口状態で前記液体中に開放し、前記開口を前記液体中の上の地点で前記液体に接して、前記連通管内の水を介して前記上部の受圧部で圧力を受け、 前記2地点間の圧力差を測定する、ことを要旨とする。 In order to achieve the above-described object, the present invention provides a differential pressure measuring device that has pressure receiving portions at the top and bottom and measures a pressure difference between two points at different depths from the liquid surface containing solid particles such as muddy water. An arithmetic unit that calculates an average density of the liquid between the two points based on a pressure difference between the two points obtained from the differential pressure measuring device, a distance between the two points, and a gravitational acceleration. In the liquid density measuring device such as muddy water, the differential pressure measuring device is inserted into the liquid and measures an average density of the liquid between the two points at a predetermined depth. A differential pressure measuring section having upper and lower pressure receiving sections close to each other, and surrounding the upper pressure receiving section of the differential pressure measuring section in a watertight manner and raised upward from the lower pressure receiving section Extending up to a predetermined height corresponding to the distance between the two points A communication pipe having an opening at the bottom, the lower pressure receiving portion is in direct contact with the liquid at a lower point in the liquid, the pressure is received by the lower pressure receiving portion, and the communication pipe is filled with water. The upper end of the communication pipe is opened into the liquid in an open state without sealing , the opening is in contact with the liquid at a point above the liquid, and the upper part is connected via the water in the communication pipe. The gist is that the pressure is received by the pressure receiving portion of and the pressure difference between the two points is measured.
また、この密度測定装置は、各部に、次のような構成を備えることが好ましい。
(1)差圧測定部は、上面に上部の受圧部を有し、上下方向に伸縮可能な上ベローズと、下面に下部の受圧部を有し、上下方向に伸縮可能な下ベローズと、前記上ベローズ及び前記下ベローズの内部軸芯上に挿通され、前記上部の受圧部と前記下部の受圧部とを剛結合する連結部材と、前記上ベローズ又は前記下ベローズの内部に設置され、前記上下の受圧部で受ける圧力差に対して前記上下の各ベローズの変形により前記上下の各ベローズの軸方向に変位する前記連結部材の変位量を検出し、前記上下部の受圧部間の圧力差を計測する変位計とを備える。
この場合、変位計は非接触型の変位計が採用され、この非接触型の変位計は、連結部材の一部に配設される差動トランスコアと、上ベローズ又は下ベローズの内部に設置され、前記差動トランスコアの周囲に配置される差動トランスとを有することが望ましい。
(2)連通管は高さが変更可能に上下方向の長さを伸長又は短縮する手段を有する。
(3)連通管は、差圧測定部の外周面から上部の受圧部の上方所定の高さまでを包囲可能な大径部と、前記大径部の一部に連通され、この大径部の上方に向けて所定の高さまで延びる小径部とを有する。
この場合、連通管の大径部に水を注入するための注入口を有することが望ましい。
また、連通管の小径部は全体が略逆L字形をなし、上端部が水平方向に向けて屈曲されて、その端面が開口されることが望ましい。
Moreover, it is preferable that this density measuring apparatus is provided with the following structures in each part.
(1) The differential pressure measuring unit has an upper pressure-receiving portion on the upper surface and can be expanded and contracted in the vertical direction, a lower bellows having a lower pressure-receiving portion on the lower surface and expandable and contracted in the vertical direction, A connecting member that is inserted on the inner shaft core of the upper bellows and the lower bellows and rigidly connects the upper pressure receiving portion and the lower pressure receiving portion; and installed in the upper bellows or the lower bellows, The amount of displacement of the connecting member that is displaced in the axial direction of the upper and lower bellows due to the deformation of the upper and lower bellows is detected with respect to the pressure difference received by the pressure receiving portion, and the pressure difference between the pressure receiving portions of the upper and lower portions is detected. A displacement meter to measure.
In this case, a non-contact type displacement meter is employed as the displacement meter, and this non-contact type displacement meter is installed inside the differential transformer core disposed in a part of the connecting member and the upper bellows or the lower bellows. And a differential transformer disposed around the differential transformer core.
(2) The communication pipe has means for extending or shortening the length in the vertical direction so that the height can be changed.
(3) The communication pipe communicates with a large diameter portion capable of enclosing from the outer peripheral surface of the differential pressure measuring portion to a predetermined height above the upper pressure receiving portion, and a part of the large diameter portion. A small-diameter portion extending upward to a predetermined height.
In this case, it is desirable to have an inlet for injecting water into the large diameter portion of the communication pipe.
Further, it is desirable that the small-diameter portion of the communication pipe has a substantially inverted L shape as a whole, its upper end portion is bent in the horizontal direction, and its end surface is opened.
本発明の泥水等密度測定装置では、上記の構成により、差圧測定装置を、泥水等、地盤中で懸濁又は沈降状態の固体粒子を含む液体の中に挿入し、所定の深度で、下部の受圧部を直に液体中の下の地点で液体に接して、下部の受圧部で圧力を受け、連通管内に水を充填して連通管上端の開口を密封することなしに開口状態で液体中に開放し、この開口を液体中の上の地点で液体に接して、連通管内の水を介して上部の受圧部で圧力を受け、2地点間の圧力差を測定するので、連通管の高さ分だけ、測定する上下2地点間の圧力差を大きくして、この2地点間の圧力差の測定精度を向上させることができ、また、この連通管は上端の開口が開口された状態で液体中に開放されて、連通管内に水が密封されないので、連通管内の水は、液体中の温度変化の影響を受けることがなく、上端の開口で接する液体中の上の地点の圧力を差圧測定部に確実に伝達することができ、泥水等、地盤中で懸濁又は沈降状態の固体粒子を含む液体の密度を地盤中の原位置で簡易かつ正確に測定することができる、という格別な効果を奏する。
また、本発明の泥水等密度測定装置によれば、特に、差圧測定部をベローズ構造とし、上下の受圧部で受ける圧力差に対して上下の各ベローズの変形により上下の各ベローズの軸方向に変位する連結部材の変位量を変位計で検出し、上下部の受圧部間の圧力差を計測するようにしたので、簡単な構造で、泥水等の深部での大きな圧力に耐えることができるとともに、泥水圧に比べて微小な差圧の測定精度を高めることができる、という顕著な効果を有する。また、この場合、非接触型の変位計を採用することで、例えば、一方の受圧部にだけ圧力が作用して過大な差圧となり、ベローズ内の連結部材が測定容量を超えて変位した場合でも、差圧測定部において変位計その他の各部はいずれの部位も損傷することがなく、連結部材が再び測定容量内に収まれば、連結部材の変位量を正常に測定することができる、という利点がある。
さらに、本発明の泥水等密度測定装置によれば、特に、連通管の高さを変更可能に上下方向の長さを伸長又は短縮できるようにしたので、測定対象の泥水等の密度に合わせて、連通管の高さを変えることにより、測定対象毎に同等の高い測定精度を確保することができる、という効果を得ることができる。
In the muddy water equal density measuring device of the present invention, the differential pressure measuring device is inserted into a liquid containing solid particles suspended or settled in the ground, such as muddy water, at the predetermined depth, by the above-described configuration. The pressure receiving part of the liquid is in direct contact with the liquid at a lower point in the liquid, receives the pressure at the lower pressure receiving part, fills the communication pipe with water, and seals the opening at the upper end of the communication pipe. The inside is opened, this opening is contacted with the liquid at a point above the liquid, pressure is received at the upper pressure receiving part via the water in the communication pipe, and the pressure difference between the two points is measured. by the height, to increase the pressure difference between the upper and lower two points of measurement state, it is possible to improve the measurement accuracy of the pressure difference between the two points, also the communicating pipe to the opening at the upper end is opened in is open in the liquid, since the communicating pipe water is not sealed, water communicating tube, the temperature in the liquid Without being affected by changes, the pressure at the upper point in the liquid in contact with the opening at the upper end can be reliably transmitted to the differential pressure measurement unit, and solid particles suspended or settled in the ground such as muddy water There is an extraordinary effect that the density of the liquid containing can be easily and accurately measured at the original position in the ground.
Further, according to the muddy water equal density measuring device of the present invention, in particular, the differential pressure measuring part has a bellows structure, and the axial direction of the upper and lower bellows by the deformation of the upper and lower bellows with respect to the pressure difference received by the upper and lower pressure receiving parts The displacement of the connecting member that is displaced in the direction is detected with a displacement meter, and the pressure difference between the pressure receiving parts at the upper and lower parts is measured, so it can withstand large pressure in deep parts such as muddy water with a simple structure. At the same time, it has a remarkable effect that the measurement accuracy of the minute differential pressure can be increased as compared with the muddy water pressure. Also, in this case, by adopting a non-contact type displacement meter, for example, when pressure acts only on one pressure receiving part and becomes an excessive differential pressure, the connecting member in the bellows is displaced beyond the measurement capacity However, in the differential pressure measuring part, the displacement gauge and other parts do not damage any part, and if the connecting member is again within the measurement capacity, the displacement amount of the connecting member can be measured normally. There is.
Furthermore, according to the muddy water density measuring device of the present invention, in particular, the height in the vertical direction can be extended or shortened so that the height of the communication pipe can be changed. By changing the height of the communication pipe, it is possible to obtain an effect that the same high measurement accuracy can be ensured for each measurement object.
次に、この発明を実施するための形態について図を用いて説明する。図1に泥水等密度測定装置を示している。図1に示すように、泥水等密度測定装置Sは、上下に受圧部11、12を有し、泥水等固体粒子を含む液体の液面から深度の異なる上下の2地点間の圧力差を測定する差圧測定装置1と、差圧測定装置1で測定された2地点間の圧力差を保存する記録部2と、記録部2に保存された2地点間の圧力差と、この2地点間の距離及び重力加速度とに基いて2地点間の液体の平均密度を算出する演算装置3とを備えて構成され、差圧測定装置1を、液体の中に挿入し、所定の深度で、2地点間の液体の平均密度を測定するようになっている。
Next, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows an apparatus for measuring the density of muddy water. As shown in FIG. 1, the muddy water equal density measuring device S has
この密度測定装置Sでは、差圧測定装置1は、上下に受圧部11、12を相互に近接して有する差圧測定部10と、差圧測定部10の上部の受圧部11の周囲を水密に取り囲み、かつ上方に向けて立ち上げられて下部の受圧部12から前記2地点間の距離に対応する所定の高さまで延びる、上端に開口21を有する連通管20とを備える。
In this density measuring device S, the differential pressure measuring device 1 includes a differential
この差圧測定装置1において、差圧測定部10は、上面に上部の受圧部11を有し、上下方向に伸縮可能な上ベローズ101と、下面に下部の受圧部12を有し、上下方向に伸縮可能な下ベローズ102と、上ベローズ101及び下ベローズ102の内部軸芯上に挿通され、上部の受圧部11と下部の受圧部12とを剛結合する連結部材13と、上ベローズ101又は下ベローズ102の内部に設置され、上下部の受圧部11、12で受ける圧力差に対して上下の各ベローズ101、102の変形により上下の各ベローズ101、102の軸方向に変位する連結部材13の変位量を検出し、上下部の受圧部11、12間の圧力差を計測する変位計14とを備える。
この差圧測定部10の場合、上ベローズ101と下ベローズ102は同型で同じ大きさのベローズが採用される。上下の各ベローズ101、102はそれぞれ、蛇腹状の略円筒形になっていて、この円筒形側面に対する耐圧性能は高く、円筒形の軸方向に対する圧力に対してはその作用力に応じて伸縮変形し、バネとして働く。これら上下のベローズ101、102は仕切板15を介して上下に重合し接合される。上下部の受圧部11、12を結合する連結部材13には剛性を有する連結棒が採用され、上下部の受圧部11、12は上下のベローズ101、102の内部で軸芯上に挿通される連結棒により連結される。
変位計14は非接触型の変位計が採用される。この非接触型の変位計14は、連結部材13の一部に配設される差動トランスコア141と、上ベローズ101又は下ベローズ102の内部に設置され、差動トランスコア141の周囲に配置される差動トランス142とからなり、この場合、差動トランスコア141は連結部材103の上下方向中央位置付近に配置され、差動トランス142が上ベローズ101内に差動トランスコア141に対応して配置される。このようにして、上下部の受圧部11、12で受けた圧力の差圧により変位する連結部材103と一体の差動トランスコア141を差動トランス142で検出し、上下部の受圧部11、12間の圧力差を計測し、電気信号に変換して出力するようになっている。
In this differential pressure measuring device 1, a differential
In the case of the differential
The
また、連通管20は、差圧測定部10の外周面から上部の受圧部11の上方所定の高さまでを包囲可能な大径部201と、大径部201の一部、この場合、上面の中心に連通され、この大径部201の上面に上方に向けて略垂直に所定の高さまで延びる小径部202とからなる。
この連通管20の場合、高さが変更可能に上下方向の長さを伸長又は短縮する手段を有する。この場合、連通管20は上下方向の長さの異なる複数の連通管が用意されて、それぞれ、差圧測定部10の外周面に着脱可能に取り付けられるようにしてもよく、また、連通管20は複数の管材を連結して形成され、連結する管材の数の増減により上下方向の長さが調整されるようにしてもよい。
この場合、大径部201は外周面が差圧測定部10の下部の受圧部12のレベルよりも少し下方まで延び、下面が開口される。この開口には差圧測定部10を保護するためのフィルタ22が装着される。この大径部201は上下のベローズ101、102間の仕切板15により上下に仕切られて、上ベローズ101の上部及び外周面が水密に包囲される。この大径部201の外周面には、上ベローズ101の外周面を包囲する上部側に連通管20内に水を注入するための注入口23が形成される。この水の注入口23はバルブにより開閉される。
小径部202は全体が略逆L字形をなし、上端部が水平方向に向けて屈曲されて、その端面が開口される。
The
In the case of this
In this case, the outer peripheral surface of the
The small-
また、この密度測定装置Sでは、記録部2はデータロガーなどにより具体化され、演算部3はパソコンとパソコンに格納されるOSソフト及び各種のアプリケーションソフトなどにより実現される。なお、データロガーやパソコンについては一般に市販されているものが使用されるため、ここでは個々の詳しい説明は省略することにする。
In this density measuring apparatus S, the
図2にこの密度測定装置Sの測定原理を例示している。図2において、Mは、水と土粒子やセメント等の固化材、分散剤等が混合された泥水等で、液相中を、土粒子等の固体粒子が懸濁又は等速で沈降する状態になっている。
この密度測定装置Sは、このような泥水等Mの中で上下2深度間の圧力差を測定し、この圧力差を2深度間の距離と重力加速度で除することにより、この2深度間の泥水等Mの平均密度を求める。
この密度測定装置Sの場合、差圧測定装置1の連通管20内に上端の開口21まで水Wを充填して、この差圧測定装置1を泥水等Mの中に挿入し、所定の深度で、下部の受圧部12を直に泥水等M中の下の地点で泥水等Mに接して、下部の受圧部12で圧力を受け、連通管20上端の開口21を泥水等Mの中に開放し、開口21を泥水等M中の上の地点で泥水等Mに接して、上部の受圧部11で圧力を受け、泥水等Mの中の上下所定の2地点間の圧力差を測定する。この圧力差はデータロガー2に保存される。そして、パソコン3(図1参照)により、このデータロガー2に保存された上下所定の2地点間の圧力差とこの2地点間の距離及び重力加速度とに基いてこの2地点間の泥水等の平均密度を算出する。
この場合、2深度間の泥水等の平均密度は、次の式(1)により、求められる。
平均泥水密度Pavr=(P2−P1)/(H+h)/g
=(Pw・g・H+ΔP)/(H+h)/g (1)
ただし、式(1)において、
H :連通管水頭(差圧測定部上面(上部の受圧部)から上の連通管の高さ)
h :差圧測定部の高さ(上部の受圧部と下部の受圧部との間の高さ)
Pw :連通管中の水の密度
g :重力加速度
P1 :上部泥水圧
P2 :下部泥水圧
ΔP:測定差圧
FIG. 2 illustrates the measurement principle of the density measuring device S. In FIG. 2, M is muddy water mixed with water and solidifying material such as soil particles and cement, a dispersing agent, etc., and the solid particles such as soil particles are suspended or settled at a constant velocity in the liquid phase. It has become.
This density measuring device S measures the pressure difference between the upper and lower two depths in such muddy water M, and divides this pressure difference by the distance between the two depths and the gravitational acceleration. Find the average density of M, such as muddy water.
In the case of this density measuring device S, water W is filled in the
In this case, the average density of mud water between two depths is obtained by the following equation (1).
Mean mud density P avr = (P 2 -P 1 ) / (H + h) / g
= ( Pw · g · H + ΔP) / (H + h) / g (1)
However, in Formula (1),
H: Communication pipe head (height of the communication pipe above the upper surface of the differential pressure measurement part (upper pressure receiving part))
h: Height of the differential pressure measurement part (height between the upper pressure receiving part and the lower pressure receiving part)
P w : Density of water in the communication pipe g: Gravitational acceleration P 1 : Upper mud pressure P 2 : Lower mud pressure ΔP: Measurement differential pressure
この密度測定装置Sによると、泥水等Mのように水に土粒子などの固体粒子が懸濁あるいは等速で沈降している場合でも、上下2深度間の圧力差を計測することで、その区間の平均密度を求めることができる。この場合、下部の受圧部12を直に泥水等M中の下の地点で泥水等Mに接して、下部の受圧部12で圧力を受け、上部の受圧部11上に立ち上げられ、水Wを充填された連通管20の上端開口21を泥水等Mの中に開放し、この開口21を泥水等M中の上の地点で泥水等に接して、上部の受圧部11で圧力を受けるので、上部の受圧部11上に立ち上げられた連通管20の高さ分だけ、測定する上下2地点間の圧力差が大きくなり、連通管20の高さを測定対象毎に適宜設定することにより、この2地点間に必要な測定精度を得ることができる。
この場合、連通管20は上端の開口21が泥水等Mの中に開放され、連通管20内の水Wが密封されないことから、連通管20内の水Wは泥水等Mの中の温度変化に影響されず、測定誤差は実用上無視できる程度に小さくすることができ、上端の開口21で接する泥水等M中の上の地点の圧力を差圧測定部10(の上部の受圧部11)に確実に伝達することができる。
そして、差圧測定部10をベローズ構造としたことで、泥水等の深部での大きな圧力に耐えることができ、泥水圧に比べて微小な差圧に対してはベローズ101、102が軸方向に変形してベローズ101、102の内部で連結部材13が変位するので、この連結材13の変位を変位計14を用いて検出するだけで、上下の各受圧部11、12間の差圧を計測することができる。この場合、変位計14に非接触型のトランス式の変位計を採用したので、一方の受圧部(12)にだけ泥水の圧力が作用して両方の受圧部11、12間に過大な差圧が生じ、ベローズ101、102中の連結部材13が測定容量を超えて変位した場合でも、変位計14その他の各部はいずれの部位も損傷することがなく、連結部材13が再び測定容量内に収まれば、連結部材13の変位量を正常に測定することができる。
また、この密度測定装置Sでは、連通管20の上下方向の長さを伸長又は短縮できるようにしたので、測定対象の泥水等の密度に合わせて、連通管20の差圧測定部10に対する立ち上がり高さを適宜変更することで、すなわち、密度が小さい場合は立ち上がり高さを適宜高くし、密度が大きい場合は立ち上がり高さを適宜低くすることにより、測定する差圧を差圧測定部10の有する測定容量に最適となるように調整することができ、差圧測定部10それ自体を変更することなしに、泥水等の密度を測定対象毎に同等の測定精度で測定することができる。
According to this density measuring device S, even when solid particles such as soil particles are suspended or settled at a constant velocity in water, such as muddy water M, by measuring the pressure difference between the upper and lower two depths, The average density of the section can be obtained. In this case, the lower
In this case, since the upper end opening 21 of the
Since the differential
Further, in this density measuring device S, the length in the vertical direction of the
本願出願人はこの密度測定装置Sについて、次のとおり、室内試験及び現場試験を行い、次のような結果を得た。
(室内試験)
室内試験では、室内に密度測定装置Sが入る大きさの水槽を設け、この水槽に清水を溜め、密度測定装置Sを設置して、清水の密度を測定し、続いて、この水槽に粘土、砂を加え、撹拌して、泥水を作り、この泥水の密度を段階的に大きくして、その都度、密度測定装置Sで泥水の密度を測定した。この室内試験の結果を図3に示す。
そして、泥水を採取し、その体積と質量から求めた泥水の密度と、密度測定装置Sで測定した泥水の密度がほぼ同じ値となったことを確認した。
また、水槽に清水を溜め、密度測定装置Sを挿入したままで、初期温度20℃からヒーターで30℃まで暖め、その後、20℃の清水を水槽底部から注入し、上部で排水して、水槽内の水を20℃の清水で置換した。この試験の結果を図4に示す。
水温が上昇すると密度は小さくなり、水温が低下すると密度は大きくなる。測定された密度は、実線で示される蒸留水の密度と同様の傾向を示しており、温度変化による測定密度の変化は、水自体の密度の変化が大部分を占めており、温度変化の影響による誤差は実用上無視できる程度(0.001g/cm3)であることが分かる。
(現場試験)
現場試験では、実地盤に深さ5mのセメント固化杭を打設した。この場合、セメント固化杭は、セメント、ベントナイト、水を練り混ぜたセメントスラリを地盤に注入して造成した。打設直後のセメント固化杭の中心付近に密度測定装置Sを挿入して、深さ50cm毎にセメントスラリの密度を測定した。この現場試験の結果を図5に示す。
セメント固化杭の密度は、硬化後にオールコアボーリングによりコアを採取し、その体積と質量から計算して求めた。原位置測定による密度に対して、コアの密度は、上部で小さく、下部で大きくなっているが、これは、原位置で密度を測定した後にもセメント粒子等が沈降し続けて、上部で密度が小さく、下部で大きくなったことによると考えられる。このことから、原位置で測定した密度は、測定時点における密度としてほぼ妥当な値と考えられる。
The applicant of the present application conducted an indoor test and a field test on the density measuring device S as follows, and obtained the following results.
(Indoor test)
In the laboratory test, a water tank of a size that can accommodate the density measuring device S is provided in the room, fresh water is stored in the water tank, the density measuring device S is installed, the density of the fresh water is measured, and then the clay, Sand was added and stirred to create muddy water. The density of this muddy water was increased stepwise, and the density of the muddy water was measured with the density measuring device S each time. The results of this laboratory test are shown in FIG.
And the muddy water was extract | collected and it confirmed that the density of the muddy water calculated | required from the volume and mass and the density of the muddy water measured with the density measuring apparatus S became the substantially same value.
In addition, fresh water is stored in the water tank, the density measuring device S is inserted, and the initial temperature is heated from 20 ° C. to 30 ° C. with a heater, and then 20 ° C. fresh water is injected from the bottom of the water tank and drained at the top. The water inside was replaced with fresh water at 20 ° C. The results of this test are shown in FIG.
As the water temperature increases, the density decreases, and as the water temperature decreases, the density increases. The measured density shows the same tendency as the density of distilled water indicated by the solid line, and the change in the measured density due to the temperature change is mostly due to the change in the density of the water itself. It can be seen that the error due to is practically negligible (0.001 g / cm 3 ).
(Field test)
In the field test, a cement solidified pile with a depth of 5 m was placed on the actual ground. In this case, the cement solidified pile was formed by injecting cement slurry into which the cement, bentonite and water were mixed. A density measuring device S was inserted in the vicinity of the center of the cement solidified pile immediately after placing, and the density of the cement slurry was measured every 50 cm in depth. The results of this field test are shown in FIG.
The density of the cement-solidified pile was obtained by taking a core by all-core boring after hardening and calculating from the volume and mass. The core density is smaller at the upper part and larger at the lower part than the density measured in-situ. This is because the cement particles continue to settle after the density is measured in-situ. This is thought to be due to the small size and the large size at the bottom. From this, the density measured in-situ is considered to be a reasonable value as the density at the time of measurement.
以上説明したように、この密度測定装置Sによれば、差圧測定装置1を、上下に受圧部11、12を相互に近接して有する差圧測定部10と、差圧測定部10の上部の受圧部11の周囲を水密に取り囲み、かつ上方に向けて立ち上げられて下部の受圧部12から測定する上下2地点間の距離に対応する所定の高さまで延びる、上端に開口21を有する連通管20とを備えて構成し、差圧測定装置1の連通管21内に水Wを充填して、この差圧測定装置1を、泥水等Mの中に挿入し、所定の深度で、下部の受圧部12を直に泥水等M中の下の地点で泥水等Mに接して、下部の受圧部12で圧力を受け、連通管20上端の開口21を泥水等Mの中に開放し、開口21を泥水等M中の上の地点で泥水等Mに接して、上部の受圧部11で圧力を受け、2地点間の圧力差を測定するので、上部の受圧部11上に立ち上げられる連通管20の高さ分だけ、測定する上下2地点間の圧力差を大きくして、この2地点間の圧力差の測定精度を向上させることができ、また、連通管20は上端の開口21が泥水等Mの中に開放され、連通管20内の水Wが密封されないため、この連通管20内の水Wは、泥水等Mの中の温度変化の影響を受けることがなく、上端の開口21で接する泥水等M中の上の地点の圧力を差圧測定部10に確実に伝達することができ、泥水等Mの密度を地盤中の原位置で簡易かつ正確に測定することができる。
As described above, according to the density measuring device S, the differential pressure measuring device 1 includes the differential
また、この密度測定装置Sでは、差圧測定部10を、上面に上部の受圧部11を有し、上下方向に伸縮可能な上ベローズ101と、下面に下部の受圧部12を有し、上下方向に伸縮可能な下ベローズ102と、上ベローズ101及び下ベローズ102の内部軸芯上に挿通され、上部の受圧部11と下部の受圧部12とを剛結合する連結部材13と、上ベローズ101又は下ベローズ102の内部に設置され、上下部の受圧部11、12で受ける圧力差に対して上下の各ベローズ101、102の変形により上下の各ベローズ101、102の軸方向に変位する連結部材13の変位量を検出し、上下部の受圧部11、12間の圧力差を計測する変位計14とにより構成し、全体を上下2段のベローズ構造としたので、泥水等の深部での大きな圧力に対して耐圧性能を高めることができ、泥水圧に比べて微小な差圧に対してはベローズ101、102の軸方向の変形によりベローズ101、102内部の連結部材13が変位し、この連結部材13の変位を変位計14により検出するようにしたので、圧力に対する感度を高めることができる。
そして、この場合、変位計14に非接触型の変位計を採用し、連結部材13の一部に配設される差動トランスコア141と、上ベローズ101又は下ベローズ102の内部に設置され、差動トランスコア141の周囲に配置される差動トランス142とにより構成したので、一方の受圧部12にだけ泥水の圧力が作用して過大な差圧が生じ、ベローズ101、102中の連結部材13が測定容量を超えて変位した場合でも、差圧測定部10において変位計14その他の各部はいずれの部位も損傷することがなく、連結部材13が再び測定容量内に収まれば、連結部材13の変位量を正常に測定することができる。
Further, in this density measuring device S, the differential
In this case, a non-contact type displacement meter is adopted as the
さらに、この密度測定装置Sでは、連通管20は高さが変更可能に上下方向の長さを伸長又は短縮する手段を有するので、測定対象の泥水等の密度に合わせて、連通管20の差圧測定部10に対する立ち上がり高さを適宜変更することで、差圧測定部10それ自体を変更することなしに、泥水等の測定対象毎に測定精度を向上させることができる。
また、連通管20を、差圧測定部10の外周面から上部の受圧部11の上方所定の高さまでを包囲可能な大径部201と、大径部201の上面の中心に連通し、この大径部201の上面に上方に向けて略垂直に所定の高さまで延びる小径部202とにより構成したので、連通管20全体を簡易な構造にして差圧測定部10に取り付けることができ、差圧測定部10とともに差圧測定装置1全体をコンパクトにすることができる。
そして、この連通管20の場合、大径部201に水を注入するための注入口23を設けたので、この注入口23を用いて連通管20内に水を容易に充填することができ、また、差圧測定装置1を泥水等Mの中に挿入し、上下の2地点間の圧力差を計測する作業を繰り返す間に、連通管20内に泥水等が浸入してきても、大径部201の水の注入口23から水を連通管20内に注入することにより、連通管20から泥水等Mを容易に排出することができる。また、小径部202全体を略逆L字形とし、上端部を水平方向に向けて屈曲して、その端面を開口するので、連通管20上端の開口21を泥水等M中の上の地点(所定の深度)に確実に開放して、連通管20の上端まで充填した水Wで泥水等の圧力を確実に受けることができる。
また、上端部を水平方向に向けて屈曲していることにより、連通管20の開口21から泥水等が侵入してきても、土粒子の固体は連通管20の水平部の底に溜まり、連通管20の略鉛直部分まで侵入しにくくなり、連通管20の略鉛直部の中の水の密度に影響しにくくなり、測定誤差を小さくすることができる。
Further, in this density measuring apparatus S, the
Further, the
And in the case of this
Further, since the upper end portion is bent in the horizontal direction, even if muddy water or the like enters from the
S 泥水等密度測定装置
1 差圧測定装置
10 差圧計本体
101 上ベローズ
102 下ベローズ
11 上部の受圧部
12 下部の受圧部
13 連結部材
14 変位計
141 差動トランスコア
142 差動トランス
15 仕切板
20 連通管
201 大径部
202 小径部
21 開口
22 フィルタ
23 水の注入口
2 記録部(データロガー)
3 演算装置(パソコン)
DESCRIPTION OF SYMBOLS S Muddy water equal density measuring apparatus 1 Differential
3 Arithmetic unit (PC)
Claims (8)
前記差圧測定装置は、
前記上下の受圧部を相互に近接して有する差圧測定部と、
前記差圧測定部の前記上部の受圧部の周囲を水密に取り囲み、かつ上方に向けて立ち上げられて前記下部の受圧部から前記2地点間の距離に対応する所定の高さまで延びる、上端に開口を有する連通管と、
を備え、
前記下部の受圧部を直に前記液体中の下の地点で前記液体に接して、前記下部の受圧部で圧力を受け、
前記連通管内に水を充填して前記連通管上端の開口を密封することなしに開口状態で前記液体中に開放し、前記開口を前記液体中の上の地点で前記液体に接して、前記連通管内の水を介して前記上部の受圧部で圧力を受け、
前記2地点間の圧力差を測定する、
ことを特徴とする泥水等液体密度測定装置。 A differential pressure measuring device that has pressure receiving portions above and below and measures a pressure difference between two points above and below at different depths from a liquid surface containing solid particles such as muddy water, and the 2 obtained from the differential pressure measuring device An arithmetic device that calculates an average density of the liquid between the two points based on a pressure difference between the points, a distance between the two points, and a gravitational acceleration, and the differential pressure measuring device is disposed in the liquid. In a liquid density measuring device such as muddy water that measures the average density of the liquid between the two points at a predetermined depth,
The differential pressure measuring device is
A differential pressure measuring unit having the upper and lower pressure receiving units close to each other;
The upper end of the differential pressure measuring unit is surrounded by water tightly around the upper pressure receiving unit and is raised upward to extend to a predetermined height corresponding to the distance between the two points from the lower pressure receiving unit. A communication pipe having an opening;
With
The lower pressure receiving portion is in direct contact with the liquid at a lower point in the liquid, and receives pressure at the lower pressure receiving portion,
The communication pipe is filled with water to open the liquid in an open state without sealing the opening at the upper end of the communication pipe, the opening is in contact with the liquid at a point above the liquid, and the communication Receiving pressure at the upper pressure receiving part through the water in the pipe ,
Measuring the pressure difference between the two points;
An apparatus for measuring the density of liquid such as muddy water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011157712A JP5815316B2 (en) | 2011-07-19 | 2011-07-19 | Muddy water density measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011157712A JP5815316B2 (en) | 2011-07-19 | 2011-07-19 | Muddy water density measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013024631A JP2013024631A (en) | 2013-02-04 |
JP5815316B2 true JP5815316B2 (en) | 2015-11-17 |
Family
ID=47783167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011157712A Expired - Fee Related JP5815316B2 (en) | 2011-07-19 | 2011-07-19 | Muddy water density measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5815316B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105113499B (en) * | 2015-10-23 | 2017-03-22 | 河海大学 | Test system and method for detecting cement content of pile body of cement stirring pile in real time |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213923A (en) * | 1982-06-07 | 1983-12-13 | Oomotogumi:Kk | Measurement of internal atmospheric pressure of caisson working chamber |
JPS6182249U (en) * | 1984-11-02 | 1986-05-31 | ||
JP2002350315A (en) * | 2001-05-24 | 2002-12-04 | Yokogawa Electric Corp | Suspended solids quantity measuring device |
-
2011
- 2011-07-19 JP JP2011157712A patent/JP5815316B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013024631A (en) | 2013-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103590812B (en) | Calculation method, calculation device and determination method for gas well liquid accumulation amount | |
US9677396B2 (en) | Method and apparatus for permanent measurement of wellbore formation pressure from an in-situ cemented location | |
CN106088166B (en) | A kind of tubular pole inclination measurement device and its inclinometer pipe are centered about component | |
US20140116114A1 (en) | Permeameter for in-situ measurement of saturated hydraulic conductivity | |
CN102933950A (en) | Non-invasive compressibility and in situ density testing of a fluid sample in a sealed chamber | |
CN108332706B (en) | Underground double-sleeve probe for borehole strain measurement | |
CN106018755B (en) | A kind of experimental system of large size ground fissure physical model | |
US3534605A (en) | Method and apparatus for the underwater measurement of the thickness of a silt layer | |
JP5528642B2 (en) | Deposit thickness measuring apparatus and deposit thickness measuring method | |
CN107675734A (en) | A kind of underwater directional vehicle construction dynamic monitoring method | |
CN101871344B (en) | Weighing type gas well shaft liquid level position determination method | |
CN107542453A (en) | Self-floating drilling fluid leakage direction finder | |
JP5815316B2 (en) | Muddy water density measuring device | |
WO2008077041A2 (en) | Method to measure flow line return fluid density and flow rate | |
Burali d'Arezzo et al. | Measuring horizontal stresses during jacked pile installation | |
CN102797268B (en) | Installation method for testing tube used for testing internal force of pre-stress tubular pile with slide micrometer | |
JPH11511566A (en) | Strain monitoring system | |
CN107941137A (en) | Arbitrary angle drilling deformation measurement method | |
CN109489626A (en) | Hydraulic sensing surface settlement meter and settlement measurement method | |
CN106841578B (en) | Slurry shield tunnel face slurry pressure experimental testing device and testing method | |
CN109282790A (en) | Parallel deep multiple spot static leveling system and method for pile foundation | |
US20220220686A1 (en) | Hydrostatically compensated device for ground penetration resistance measurements | |
CN213985493U (en) | Three-dimensional soil pressure measuring device for model test | |
JP6313047B2 (en) | Apparatus and method for measuring the level of pile pile | |
RU2483284C1 (en) | Hydrostatic downhole densitometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140619 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5815316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |