JPS6131929A - Semiconductor spectroscope - Google Patents

Semiconductor spectroscope

Info

Publication number
JPS6131929A
JPS6131929A JP15438084A JP15438084A JPS6131929A JP S6131929 A JPS6131929 A JP S6131929A JP 15438084 A JP15438084 A JP 15438084A JP 15438084 A JP15438084 A JP 15438084A JP S6131929 A JPS6131929 A JP S6131929A
Authority
JP
Japan
Prior art keywords
semiconductor
spectroscope
refractive index
waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15438084A
Other languages
Japanese (ja)
Inventor
Yasushi Matsui
松井 康
Masato Ishino
正人 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15438084A priority Critical patent/JPS6131929A/en
Publication of JPS6131929A publication Critical patent/JPS6131929A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators

Abstract

PURPOSE:To obtain the spectroscope suitable for integration by forming a Fabry-Perot interferometer of a semiconductor light guide on a semiconductor substrate and arranging an input and an output light guide before and behind the interferene system, thus forming the light spectroscope, and varying the refractive index of the semiconductor by the spectroscope. CONSTITUTION:The input and output light guide layers 22 are formed on the low-resistance semiconductor substrate 21. A low-resistance semiconductor clad layer 23, upper and lower electrodes 24 and 25, insulating film 26, and metallic film 27 with a high reflection factor are formed. Thus, the input and output light guides are constituted on the same substrate to realize functions of an optical switch, spectroscope, etc., obtaining a means which serves effectively as part of an optical integrated circuit. The refractive index of the semiconductor waveguide is varied electricaslly to vary its optical path length, and the operation of the spectroscope is realized in an easy integration state by the interference which utilizes reflection at waveguide terminals.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光導波路媒質の屈折率を変化させることによ
シ光分光を行なう共振器構造を有する手元 導体分光器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hand conductor spectrometer having a resonator structure that performs optical spectroscopy by changing the refractive index of an optical waveguide medium.

従来例の構成とその問題点 近年光通信技術の高度化に伴い多波長伝送が注目されて
いる。たとえば半導体レーザにおいてはC3レーザによ
る波長制御やDFBレーザを用いた多波長光源が実現さ
れつつあり発光素子の小型化識別が困難となっている。
Conventional configuration and its problems In recent years, multi-wavelength transmission has attracted attention as optical communication technology has become more sophisticated. For example, in semiconductor lasers, wavelength control using C3 lasers and multi-wavelength light sources using DFB lasers are being realized, making it difficult to miniaturize and identify light emitting elements.

すなわち受光側ではその分解能の必要性よりグレーティ
ングやファプリ・ベロー干渉系を用いたものが多く、そ
の構成は大型となり、また取扱いも困難なものであった
In other words, on the light receiving side, gratings or Fabry-Bello interference systems are often used due to the need for high resolution, resulting in large configurations and difficult handling.

発明の目的 本発明は、小型かつ高分解能な、半導体分光器を提供す
ることを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a compact and high-resolution semiconductor spectrometer.

発明の構成 本発明は、半導体基板上に半導体光導波路で構成された
ファブリ・ベロー干渉系を形成。し、その前後に入出力
用光導波路を配置した光分光器で、干渉系を構成する半
導体部の屈折率を変化させることによ−り良好でかつ集
積化に適したものである。
Structure of the Invention The present invention forms a Fabry-Bello interference system made up of semiconductor optical waveguides on a semiconductor substrate. However, it is an optical spectrometer in which input/output optical waveguides are arranged before and after the optical spectrometer, and by changing the refractive index of the semiconductor part constituting the interference system, it is favorable and suitable for integration.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。第1図は不発間第1の実施例における半導体分
光器の断面図を示したものである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a sectional view of a semiconductor spectrometer in a first embodiment.

第2図において11はたとえばn型半導体基板、12は
高抵抗半導体光導波層、13はp型半導体クラッド層、
14.15はそれぞれ上部および下部の制御電極、16
は絶縁膜、17は高反射率金属膜である。ここで半導体
材料としてはたとえばInP、GaAs系、絶縁膜16
としてはSiO2゜Si3N4などが適当と考えられる
In FIG. 2, 11 is an n-type semiconductor substrate, 12 is a high-resistance semiconductor optical waveguide layer, 13 is a p-type semiconductor cladding layer,
14.15 are the upper and lower control electrodes, 16
1 is an insulating film, and 17 is a high reflectance metal film. Here, examples of the semiconductor material include InP, GaAs, and the insulating film 16.
For example, SiO2°Si3N4 is considered to be suitable.

以上のように構成された半導体分光器について以下その
動作を説明する。
The operation of the semiconductor spectrometer configured as described above will be explained below.

先導波層12に入射した光は導波層両端の高反射率金属
膜17の間で77プリーベロー干渉を起こす。ここで制
御電極14および15の間にp−n接合に対し逆バイア
スとなるように電圧を印加した場合、導波路の光路長は
変化する。ここで、導波路内に入射された波長をλとす
ると、光路長がスの整数倍の時光の透過率は最大となる
。このとき印加電圧を変化させることにより導阪路内の
光路長を変化させてやれば、特定の波長の光のみ通過さ
せることができる。第2図に導波路の屈折率を3.3.
導波層の厚みを1μm、導阪路長を2閣1反射率を0.
9またポッケルス定数を1.4X10=2mV””’と
したときの光透過率の印加電圧依存性を示す。パラメー
ターには波長をとっており、λ−1,153μmおよび
1.163μmのものについて示している。このように
非常に高い分解能をもち、かつ小型の分光器が実現可能
となる。また導波路の屈折率を変化させる手段としてシ
ョットキーバリアに逆バイアスを印加することによって
も、同様の効果が得られる。
The light incident on the leading waveguide layer 12 causes 77 Priebello interference between the high reflectivity metal films 17 at both ends of the waveguide layer. If a voltage is applied between the control electrodes 14 and 15 so as to provide a reverse bias to the pn junction, the optical path length of the waveguide changes. Here, if the wavelength incident into the waveguide is λ, the transmittance of light is maximum when the optical path length is an integral multiple of S. At this time, by changing the applied voltage to change the optical path length within the guide path, only light of a specific wavelength can be passed. Figure 2 shows the refractive index of the waveguide as 3.3.
The thickness of the waveguide layer is 1 μm, the length of the guiding path is 2mm, the reflectance is 0.
9 also shows the dependence of the light transmittance on the applied voltage when the Pockels constant is 1.4×10=2 mV. The parameters include wavelength, and those of λ-1,153 μm and 1.163 μm are shown. In this way, it becomes possible to realize a compact spectrometer with very high resolution. A similar effect can also be obtained by applying a reverse bias to the Schottky barrier as a means of changing the refractive index of the waveguide.

以下本発明の第2の実施例について、図面を参照しなが
ら説明する。第3図は本発明の第2の実施例を示す半導
体分光器の断面図を示す。同図においそ、21は低抵抗
半導体基板、22は光導波層、23は低抵抗半導体クラ
ッド層、24 、25はそれぞれ上、下部電極、26は
絶縁膜、27は高反射率金属膜である。第2図の構成と
異なるのは、入力、出力用光導波路を同一半導体基板上
に構成した点である。ここで共振器となる反射面はエツ
チング等により構成するが、端面をフラットにするため
、異方性エツチング等を利用する。以上のように同一基
板上に導波路と分光部を構成することによシ光スイッチ
、分光器等の機能が実現でき、光集積回路の一役割を担
なうに有効な手段と考えられる。
A second embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows a sectional view of a semiconductor spectrometer showing a second embodiment of the present invention. In the figure, 21 is a low resistance semiconductor substrate, 22 is an optical waveguide layer, 23 is a low resistance semiconductor cladding layer, 24 and 25 are upper and lower electrodes, respectively, 26 is an insulating film, and 27 is a high reflectance metal film. . The difference from the structure shown in FIG. 2 is that the input and output optical waveguides are formed on the same semiconductor substrate. Here, the reflecting surface that becomes the resonator is constructed by etching or the like, but in order to make the end face flat, anisotropic etching or the like is used. By configuring the waveguide and the spectroscopic section on the same substrate as described above, functions such as an optical switch and a spectrometer can be realized, and this is considered to be an effective means for playing a role in an optical integrated circuit.

発明の効果 半導体光導波路の屈折率を電気的に変えることによりそ
の光路長を変化でき、導波路端での反射を利用した干渉
により分光器としての作用を、集積化が容易な形で実現
できる。
Effects of the invention By electrically changing the refractive index of a semiconductor optical waveguide, the optical path length can be changed, and by interference using reflection at the end of the waveguide, the function as a spectrometer can be realized in a form that is easy to integrate. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体の屈折率を電気的に変えること
によシ分光器機能をもった導波路型分光器の断面図、第
2図は本発明の第1の実施例における分光特性図、第3
図は本発明の第2の実施例の同一半導体基板上に入出力
導波路と一体化した場合の断面図である。 11.21・・・・・半導体基板、12.22・・・・
・・光導波層、13 、23・・・・・・クラッド層、
14,15゜24 、25・・・・・・制御電極、16
.26・・・・・・絶縁膜、17 、27・・・・・・
金属膜。
Figure 1 is a cross-sectional view of a waveguide spectrometer that has a spectrometer function by electrically changing the refractive index of a semiconductor according to the present invention, and Figure 2 is a spectral characteristic of the first embodiment of the present invention. Figure, 3rd
The figure is a sectional view of a second embodiment of the present invention in which input and output waveguides are integrated on the same semiconductor substrate. 11.21... Semiconductor substrate, 12.22...
... Optical waveguide layer, 13, 23... Cladding layer,
14, 15° 24, 25... Control electrode, 16
.. 26...Insulating film, 17, 27...
metal membrane.

Claims (5)

【特許請求の範囲】[Claims] (1)電気的に屈折率が可変な光導波路部及び前記導波
路に対し垂直かつ互いに平行に配設された2個の高反射
率反射面で構成されるファブリ・ペロー共振器と、前記
光導波路部の屈折率を変化する電圧印加部とを有するこ
とを特徴とする半導体分光器。
(1) A Fabry-Perot resonator consisting of an optical waveguide portion whose refractive index is electrically variable and two high-reflectance reflecting surfaces disposed perpendicular to the waveguide and parallel to each other; 1. A semiconductor spectrometer, comprising: a voltage application section that changes the refractive index of a wavepath section.
(2)同一半導体基板上に光入力導波路と光出力導波路
を、半導体分光器の前後に光路を同一にして備えたこと
を特徴とする特許請求の範囲第1項記載の半導体分光器
(2) A semiconductor spectrometer according to claim 1, characterized in that an optical input waveguide and an optical output waveguide are provided on the same semiconductor substrate with the same optical path before and after the semiconductor spectrometer.
(3)電気的に屈折率を変える手段として半導体p−n
接合に逆バイアスを印加することを特徴とする特許請求
の範囲第1項記載の半導体分光器。
(3) Semiconductor p-n as a means of electrically changing the refractive index
2. The semiconductor spectrometer according to claim 1, wherein a reverse bias is applied to the junction.
(4)電気的に屈折率を変える手段として半導体−金属
間におけるショットキーバリアを利用することを特徴と
する特許請求の範囲第1項記載の半導体分光器。
(4) The semiconductor spectrometer according to claim 1, characterized in that a Schottky barrier between a semiconductor and a metal is used as means for electrically changing the refractive index.
(5)電気的に屈折率を変える手段として半導体への電
流注入を利用することを特徴とする特許請求の範囲第1
項記載の半導体分光器。
(5) Claim 1, characterized in that current injection into a semiconductor is used as a means to electrically change the refractive index.
Semiconductor spectrometer described in section.
JP15438084A 1984-07-25 1984-07-25 Semiconductor spectroscope Pending JPS6131929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15438084A JPS6131929A (en) 1984-07-25 1984-07-25 Semiconductor spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15438084A JPS6131929A (en) 1984-07-25 1984-07-25 Semiconductor spectroscope

Publications (1)

Publication Number Publication Date
JPS6131929A true JPS6131929A (en) 1986-02-14

Family

ID=15582879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15438084A Pending JPS6131929A (en) 1984-07-25 1984-07-25 Semiconductor spectroscope

Country Status (1)

Country Link
JP (1) JPS6131929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185842A (en) * 1990-10-08 1993-02-09 Fujitsu Limited Optical waveguide type wavelength filter
JPH05229643A (en) * 1992-02-19 1993-09-07 Kawasaki Heavy Ind Ltd Die changer
WO2001031388A1 (en) * 1999-10-25 2001-05-03 Intel Corporation Method and apparatus for optically modulating an optical beam with a multi-pass wave-guided optical modulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185842A (en) * 1990-10-08 1993-02-09 Fujitsu Limited Optical waveguide type wavelength filter
JPH05229643A (en) * 1992-02-19 1993-09-07 Kawasaki Heavy Ind Ltd Die changer
WO2001031388A1 (en) * 1999-10-25 2001-05-03 Intel Corporation Method and apparatus for optically modulating an optical beam with a multi-pass wave-guided optical modulator
JP2003513304A (en) * 1999-10-25 2003-04-08 インテル・コーポレーション Method and apparatus for optically modulating a light beam using a multipath guided light modulator

Similar Documents

Publication Publication Date Title
EP0602839A1 (en) Asymmetric Y-branch optical device
WO2013021421A1 (en) Semiconductor optical element
US5424559A (en) Surface emitting photonic switching structure
EP0314490A2 (en) Semiconductor laser
US20040136415A1 (en) Tunable semiconductor laser and method thereof
WO2019111401A1 (en) Semiconductor optical element
US4899361A (en) Optical filter device
EP0762576B1 (en) Integrated opto-electronic device
US4747650A (en) Semiconductor optical amplifier
CN113937617B (en) Multi-wavelength laser
JPH11224970A (en) Electrical isolation of photoelectric device component
JP2000082864A (en) Laser device
EP0578802A1 (en) Device and method for polarization-independent processing of a signal comprising a combined wave-guide and polarisation converter
JPS6131929A (en) Semiconductor spectroscope
JP3223930B2 (en) Optical device
CA2126882C (en) Tunable optical arrangement
JP3023942B2 (en) Wavelength tuning type compact spectrometer
JPH0467119A (en) Semiconductor optical modulator
JP2655600B2 (en) Optical filter element
JPH0719928B2 (en) Optical filter element
US20230411929A1 (en) Narrow linewidth semiconductor laser
Oberg et al. InGaAsP-InP laser amplifier with integrated passive waveguides
JPH0511609B2 (en)
US7133194B1 (en) Wavelength tunable light source integrated with optical amplifier, beam steering unit, and concave diffraction grating
JP3023941B2 (en) Spectral switch