JPS6131872A - Production unit for high-purity nitrogen gas - Google Patents

Production unit for high-purity nitrogen gas

Info

Publication number
JPS6131872A
JPS6131872A JP59153490A JP15349084A JPS6131872A JP S6131872 A JPS6131872 A JP S6131872A JP 59153490 A JP59153490 A JP 59153490A JP 15349084 A JP15349084 A JP 15349084A JP S6131872 A JPS6131872 A JP S6131872A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
rectification column
storage means
nitrogen storage
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59153490A
Other languages
Japanese (ja)
Other versions
JPH0425472B2 (en
Inventor
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP59153490A priority Critical patent/JPS6131872A/en
Publication of JPS6131872A publication Critical patent/JPS6131872A/en
Publication of JPH0425472B2 publication Critical patent/JPH0425472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04945Details of internal structure; insulation and housing of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高純度窒素ガス製造装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a high purity nitrogen gas production apparatus.

〔背景技術〕[Background technology]

電子工業では極めて多量の窒素ガスが使用されているが
、部品精度維持向上の観点から窒素ガスの純度について
厳しい要望をだしてきている。すなわち、窒素ガスは、
一般に、空気を原料とし、これを圧縮機で圧縮したのち
、吸着筒に入れて炭酸ガスおよび水分を除去し、さらに
熱交換器を通して冷媒と熱交換させて冷却し、ついで精
留塔で深冷液化分離して製品窒素ガスを製造し、これを
前記の熱交換器を通して常温近傍に昇温させるという工
程を経て製造されている。しかしながら、このようにし
て製造される製品窒素ガスには、酸素が不純分として混
在しているため、これをそのまま使用することは不都合
なことが多い。不純酸素の除去方法としては、■pt触
媒を使用し窒素ガス中に微量の水素を添加して不純酸素
と200℃程度の温度雰囲気中で反応させ水として除去
する方法および■Ni触媒を使用し、窒素ガス中の不純
酸素を200℃程度の温度雰囲気においてNi触媒と接
触させNt+1/20□→NiOの反応を起こさせて除
去する方法がある。しかしながら、これらの方法は、い
ずれも窒素ガスを高温にして触媒と接触させなければな
らないため、その装置を、超低温系である窒素ガス製造
装置中には組み込めない。したがって、窒素ガス製造装
置とは別個に精製装置を設置しなげればならず、全体が
大形になるという欠点がある。そのうえ、前記■の方法
では、水素の添加量の調整に高精度が要求され、不純酸
素量と丁度反応するだけの量の水素を添加しないと、酸
素が残存したり、また添加した水素が残存して不純分と
なってしまうため、操作に熟練を要するという問題があ
る。前記■の方法では、不純酸素との反応で生したNi
Oの再生(NiO+Hg→N i + H20)をする
必要が生じ、再生用H2ガス設備が必要となって精製費
の上昇を招くという問題がある。したがって、これらの
改善が強く望まれていた。
Extremely large amounts of nitrogen gas are used in the electronics industry, but strict requirements have been placed on the purity of nitrogen gas from the perspective of maintaining and improving component precision. In other words, nitrogen gas is
Generally, air is used as a raw material, and after compressing it with a compressor, it is put into an adsorption column to remove carbon dioxide and moisture, and then cooled by exchanging heat with a refrigerant through a heat exchanger, and then deeply cooled in a rectification column. It is manufactured through a process of liquefying and separating product nitrogen gas, and raising the temperature of this gas to near room temperature through the aforementioned heat exchanger. However, since the product nitrogen gas produced in this way contains oxygen as an impurity, it is often inconvenient to use it as it is. Methods for removing impure oxygen include: ■ Using a PT catalyst, adding a small amount of hydrogen to nitrogen gas and reacting with impure oxygen in an atmosphere at a temperature of about 200°C to remove it as water; and ■ Using a Ni catalyst. There is a method of removing impure oxygen in nitrogen gas by bringing it into contact with a Ni catalyst in an atmosphere at a temperature of about 200° C. to cause a reaction of Nt+1/20□→NiO. However, in all of these methods, the nitrogen gas must be heated to a high temperature and brought into contact with the catalyst, so the apparatus cannot be incorporated into a nitrogen gas production apparatus that is an ultra-low temperature system. Therefore, it is necessary to install a purification device separately from the nitrogen gas production device, which has the drawback of increasing the overall size. Furthermore, the method (■) requires high precision in adjusting the amount of hydrogen added, and if the amount of hydrogen that is not added is just enough to react with the amount of impure oxygen, oxygen may remain or the added hydrogen may remain. The problem is that it requires skill to operate, as it becomes an impurity. In the method (①) above, Ni produced by the reaction with impure oxygen
There is a problem in that it becomes necessary to regenerate O (NiO+Hg→N i + H20), and H2 gas equipment for regeneration is required, leading to an increase in refining costs. Therefore, these improvements have been strongly desired.

また、従来の窒素ガスの製造装置は、圧縮機で圧縮され
た圧縮空気を熱交換するための熱交換器の冷媒冷却用に
、膨張タービンを用い、これを精留塔内に溜る液体空気
(深冷液化分離により低沸点の窒素はガスとして取り出
され、残部が酸素リッチな液体空気となって溜る)から
蒸発したガスの圧力で駆動するようになっている。とこ
ろが、膨張タービンは回転速度が極めて大(数万回/分
)であって、負荷変動に対する追従運転が困難であり、
特別に養成した運転員が必要となる。また、このものは
高速回転するため機械構造上高精度が要求され、かつ高
価であり、機構が複雑なため特別に養成した保全要員が
必要という難点を有している。すなわち、膨張タービン
は高速回転部を有するため、上記のような諸問題を生じ
るのであり、このような高速回転部を有する膨張タービ
ンの除去に対して強い要望があった。
In addition, conventional nitrogen gas production equipment uses an expansion turbine to cool the refrigerant in the heat exchanger that exchanges heat with the compressed air compressed by the compressor. Through cryogenic liquefaction separation, low-boiling point nitrogen is extracted as a gas, and the remainder accumulates as oxygen-rich liquid air.It is driven by the pressure of the evaporated gas. However, expansion turbines have extremely high rotational speeds (tens of thousands of rotations per minute), making it difficult to follow load fluctuations.
Specially trained operators are required. Furthermore, since this type of rotor rotates at a high speed, it requires high precision in its mechanical structure, is expensive, and has the disadvantage of requiring specially trained maintenance personnel due to its complicated mechanism. That is, since the expansion turbine has a high-speed rotating section, it causes the various problems described above, and there has been a strong desire to eliminate the expansion turbine having such a high-speed rotating section.

この発明者は、このような要望に応えるため、膨張ター
ビンを除去し、それに代えて、外部から寒冷として液体
窒素を精留塔内に供給する窒素ガス製造装置を開発し、
すでに特許出願(特願昭58−38050)している。
In order to meet these demands, the inventor has developed a nitrogen gas production device that removes the expansion turbine and instead supplies liquid nitrogen from the outside as cold into the rectification column.
A patent application (Japanese Patent Application No. 58-38050) has already been filed.

この装置は、極めて高純度の窒素ガスを製造しうるため
、これまでのような精製装置が全く不要になる。また、
膨張タービンを除去しているため、それにもとづく弊害
も全く生じない。しかしながら、この装置は、液体窒素
を貯蔵する液体窒素貯槽を精留塔とは別個に離して設け
ているため、装置全体の設置スペースが大きくなってい
た。また、液体窒素貯槽から精留塔へ延びる液体窒素輸
送配管(真空断熱配管)が大気中を通っているため、液
体窒素の蒸発損失が大きいという難点も有していた。
Since this device can produce nitrogen gas of extremely high purity, conventional purification equipment is completely unnecessary. Also,
Since the expansion turbine is removed, there are no adverse effects caused by it. However, in this device, the liquid nitrogen storage tank for storing liquid nitrogen is provided separately from the rectification column, so the installation space of the entire device is large. Furthermore, since the liquid nitrogen transport pipe (vacuum insulated pipe) extending from the liquid nitrogen storage tank to the rectification tower passes through the atmosphere, it also has the disadvantage that the evaporation loss of liquid nitrogen is large.

〔発明の目的〕[Purpose of the invention]

この発明は、膨張タービンや精製装置を用いることなく
高純度の窒素ガスを製造でき、しかも設置スペースが少
なくてすみ、また液体窒素の蒸発損失も少なくてすむ装
置の提供をその目的とするものである。
The purpose of this invention is to provide an apparatus that can produce high-purity nitrogen gas without using an expansion turbine or purification equipment, requires less installation space, and reduces evaporation loss of liquid nitrogen. be.

〔発明の開示〕[Disclosure of the invention]

上記の目的を達成するため、この発明は、外部より取り
入れた空気を圧縮する空気圧縮手段と、この空気圧縮手
段によって圧縮された圧縮空気中の炭酸ガスと水とを除
去する除去手段と、この除去手段を経た圧縮空気を超低
温に冷却する熱交換手段と、この熱交換手段により超低
温に冷却された圧縮空気の一部を液化して内部に溜め窒
素のみを気体として保持する精留塔と、液体窒素を貯蔵
する液体窒素貯蔵手段と、この液体窒素貯蔵手段内の液
体窒素を圧縮空気液化用の寒冷源として上記楕留塔に導
く導入路と、上記精留塔内に保持されている気化窒素を
取り出す窒素ガス取出路を備え、少なくとも上記精留塔
および液体窒素貯蔵手段が同一の真空断熱容器内に配設
さ、かつその精留塔および液体窒素貯蔵手段が一体的に
設けられているという構成をとるものである。
In order to achieve the above object, the present invention includes an air compression means for compressing air taken in from the outside, a removal means for removing carbon dioxide and water from the compressed air compressed by the air compression means, and a removal means for removing carbon dioxide and water from the compressed air compressed by the air compression means. A heat exchange means that cools the compressed air that has passed through the removal means to an ultra-low temperature; a rectification column that liquefies a part of the compressed air that has been cooled to an ultra-low temperature by the heat exchange means and stores it therein, retaining only nitrogen as a gas; a liquid nitrogen storage means for storing liquid nitrogen; an introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means to the elliptical distillation column as a cold source for liquefying compressed air; and a vaporizer held in the rectification column. A nitrogen gas extraction passage for extracting nitrogen is provided, and at least the rectification column and the liquid nitrogen storage means are arranged in the same vacuum insulation container, and the rectification column and the liquid nitrogen storage means are provided integrally. It has this structure.

つぎに、この発明を実施例にもとづいて詳しく説明する
Next, the present invention will be explained in detail based on examples.

第1図はこの発明の一実施例を示し、第2図はその要部
の概念を示している。これらの図において、9は空気圧
縮機、lOはドレン分離器、11はフロン冷却器、12
は2個1組の吸着筒である。吸着筒12は内部にモレキ
ュラーシーブが充填されていて空気圧縮機9により圧縮
された圧縮空気中のH2CおよびCO2を吸着除去する
作用をする。8はH2C,Co2が吸着除去された圧縮
空気を送る圧縮空気供給パイプである。13は第1の熱
交換器であり、吸着筒12によりH2CおよびCO2が
吸着除去された圧縮空気が送り込まれる。14は第2の
熱交換器であり、第1の熱交換器13を経た圧縮空気が
送り込まれる。15は塔頂部が凝縮器21aを有する分
縮器部21になっており、それより下が塔部22になっ
ている精留塔であり、第1および第2の熱交換器13,
14により超低温に冷却されパイプ17を経て送り込ま
れる圧縮空気をさらに冷却し、その一部を液化し液体空
気18として塔部22の底部に溜め、窒素のみを気体状
態で塔部22の上部天井部22aに溜めるようになって
いる。23は上記精留塔塔部22の外周に嵌合配設され
た略円筒状の液体窒素貯槽であり、内部の液体窒素(高
純度品)23aを、導入路パイプ24aを経由させて精
留塔15の塔部22の上部側に送入し、塔部22内に供
給される圧縮空気の寒冷源にする。ここで前記精留塔1
5についてより詳しく説明すると、精留塔15は分縮器
部21と塔部22とからなり、上記分縮器部21内の凝
縮器21aには、塔部22の上部に溜る窒素ガスの一部
がパイプ21bを介して送入される。このパイプ21b
は塔部22の上部に溜る窒素ガスを製品窒素ガスとして
取り出す取出パイプ27から分岐している。そして、上
記分縮器部21内は、塔部22内よりも減圧状態になっ
ており、塔部22の底部の貯留液体空気(N、:50〜
70%、0□;30〜50%)18が膨張弁19a付き
パイプ19を経て送り込まれ、気化して内部温度を液体
窒素の沸点以下の温度に冷却するようになっている。こ
の冷却により、凝縮器21a内に送入された窒素ガスが
液化する。精留塔15の塔部22の上部側の部分には、
上記分縮器部21の凝縮器21aで生成した液体窒素が
パイプ21cを通って流下供給されるとともに、液体窒
素貯槽23から液体窒素23aがパイプ24aを経て供
給され、これらが液体窒素溜め21dを経て塔部22内
を下方に流下し、塔部22の底部から上昇する圧縮空気
と向流的に接触し冷却してその一部を液化するようにな
っている。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows the concept of its main parts. In these figures, 9 is an air compressor, 1O is a drain separator, 11 is a freon cooler, 12
is a set of two adsorption cylinders. The adsorption column 12 is filled with molecular sieve and functions to adsorb and remove H2C and CO2 in the compressed air compressed by the air compressor 9. 8 is a compressed air supply pipe that sends compressed air in which H2C and Co2 have been adsorbed and removed. 13 is a first heat exchanger, into which compressed air from which H2C and CO2 have been adsorbed and removed by the adsorption column 12 is sent. 14 is a second heat exchanger, into which the compressed air that has passed through the first heat exchanger 13 is sent. Reference numeral 15 denotes a rectification column whose top part is a dephlegmator part 21 having a condenser 21a, and the part below it is a column part 22, and the first and second heat exchangers 13,
The compressed air cooled to an ultra-low temperature by 14 and sent through the pipe 17 is further cooled, a part of which is liquefied and stored at the bottom of the tower section 22 as liquid air 18, and only nitrogen in a gaseous state is sent to the upper ceiling of the tower section 22. It is designed to be stored in 22a. 23 is a substantially cylindrical liquid nitrogen storage tank fitted around the outer periphery of the rectification column section 22, and the liquid nitrogen (high purity product) 23a inside is rectified through the introduction pipe 24a. The compressed air is fed into the upper side of the tower section 22 of the tower 15 and serves as a cold source for the compressed air supplied into the tower section 22. Here, the rectification column 1
5 in more detail, the rectification column 15 consists of a dephlegmator part 21 and a column part 22, and a condenser 21a in the dephlegmator part 21 contains part of the nitrogen gas accumulated in the upper part of the column part 22. part is fed through pipe 21b. This pipe 21b
is branched from a take-out pipe 27 that takes out the nitrogen gas accumulated in the upper part of the tower section 22 as a product nitrogen gas. The inside of the dephlegmator section 21 is in a lower pressure state than the inside of the column section 22, and the liquid air (N,: 50~
70%, 0□; 30-50%) 18 is fed through a pipe 19 with an expansion valve 19a, and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 21a is liquefied. In the upper part of the column section 22 of the rectification column 15,
Liquid nitrogen generated in the condenser 21a of the demultiplexer section 21 is supplied downstream through the pipe 21c, and liquid nitrogen 23a is supplied from the liquid nitrogen storage tank 23 through the pipe 24a, which flows into the liquid nitrogen reservoir 21d. The air then flows downward in the tower section 22, contacts the compressed air rising from the bottom of the tower section 22 in a countercurrent manner, cools it, and partially liquefies it.

この過程で圧縮空気中の高沸点成分は液化されて塔部2
2の底部に溜り、低沸点成分の窒素ガスが塔部22の上
部に溜る。27は前記のように精留塔塔部22の上部天
井部22aに溜った窒素ガスを製品窒素ガスとして取り
出す取出パイプで、超低温の窒素ガスを第2および第1
の熱交換器14.13内に案内し、そこに送り込まれる
圧縮空気と熱交換させて常温にしメインパイプ28に送
り込む作用をする。この場合、精留塔塔部22内におけ
る最上部には、窒素ガスとともに、沸点の低いHe (
、−26’9℃)、H2(253℃)が溜りやすいため
、取出パイプ27は、塔部22の最上部よりかなり下側
に開口しており、He、H2の混在しない純窒素ガスの
みを製品窒素ガスとして取り出すようになっている。2
9は分縮器部21内の気化液体空気を第2および第1の
熱交換器14.13に送り込んで熱交換させた後、大気
中に放出するパイプであり、29aはその保圧弁である
。一点鎖線Aは、パーライト真空断熱がなされている真
空保冷向を示しており、精留塔15および第1.第2の
熱交換器13.14ならびに液体窒素貯槽23が収容さ
れている。なお、30は液体窒素貯槽23の液体窒素供
給パイプ、32は不純物分析計であり、メインパイプ2
8に送り出される製品窒素ガスの純度を分析し、純度の
低し)ときは、弁34,34aを作動させて製品窒素ガ
スを矢印Bのように外部に逃気する作用をする。
In this process, high boiling point components in the compressed air are liquefied and
Nitrogen gas, which is a low boiling point component, accumulates at the top of the tower section 22. Reference numeral 27 denotes a take-out pipe for taking out the nitrogen gas accumulated in the upper ceiling part 22a of the rectification column section 22 as a product nitrogen gas as described above, and the extremely low temperature nitrogen gas is passed through the second and first pipes.
The air is guided into the heat exchangers 14 and 13, where it exchanges heat with the compressed air sent there to bring it to room temperature and send it into the main pipe 28. In this case, He (
, -26'9°C) and H2 (253°C) tend to accumulate, so the take-out pipe 27 opens well below the top of the tower section 22, allowing only pure nitrogen gas without He and H2 to be collected. It is designed to be extracted as product nitrogen gas. 2
9 is a pipe that sends the vaporized liquid air in the dephlegmator section 21 to the second and first heat exchangers 14.13 for heat exchange and then releases it into the atmosphere, and 29a is its pressure holding valve. . A dashed-dotted line A indicates a vacuum cooling section with pearlite vacuum insulation, and indicates the rectification column 15 and the first. A second heat exchanger 13,14 as well as a liquid nitrogen storage tank 23 are accommodated. In addition, 30 is a liquid nitrogen supply pipe of the liquid nitrogen storage tank 23, 32 is an impurity analyzer, and the main pipe 2
The purity of the product nitrogen gas sent out in step 8 is analyzed, and if the purity is low (), the valves 34, 34a are operated to release the product nitrogen gas to the outside as shown by arrow B.

また、第2図において、31は特殊な真空断熱層を示し
ている。すなわち、この真空断熱N31は、第3図に示
すように、精留塔15の外周を、アルミ箔にデキシター
ペーパー(ガラス粉末入り紙材)を重合した断熱材41
で複数回巻回し、その外周面と液体窒素貯槽23の内側
面との間を真空排気することにより構成されてい′る。
Further, in FIG. 2, numeral 31 indicates a special vacuum insulation layer. That is, as shown in FIG. 3, this vacuum insulation N31 is made of a heat insulating material 41 that is made by polymerizing Dexitar paper (paper material containing glass powder) and aluminum foil around the outer periphery of the rectification column 15.
The liquid nitrogen storage tank 23 is wound with a plurality of turns, and the space between its outer peripheral surface and the inner surface of the liquid nitrogen storage tank 23 is evacuated.

この装置は、つぎのようにして製品窒素ガスを製造する
。すなわち、空気圧縮機9により空気を圧縮し、ドレン
分離器10により圧縮された空気中の水分を除去してフ
ロン冷却器11により冷却し、その状態で吸着筒12に
送り込み、空気中のH2OおよびCO□を吸着除去する
。ついで、H2O,CO2が吸着除去された圧縮空気を
、第1、第2の熱交換器13.14に送り込んで超低温
に冷却し、その状態で精留塔塔部22の下部内に投入す
る。ついで、この投入圧縮空気を、液体窒素貯槽23か
ら精留塔塔部22内に送り込まれた液体窒素23aおよ
び液体窒素溜め21dからの溢流液体窒素と接触させて
冷却し、その一部を液化して塔部22の底部に液体空気
18として溜める。この過程において、窒素と酸素の沸
点の差(酸素の沸点−183℃2M素の沸点−196°
C)により、圧縮空気中の高沸点成分である酸素が液化
し、窒素が気体のまま残る。ついで、この気体のまま残
った窒素を取出パイプ27から取り出して第2および第
1の熱交換器14.13に送り込み、常温近くまで昇温
させメインパイプ28から製品窒素ガスとして送り出す
。この場合、液体窒素貯槽23から導入路パイプ24a
を経て精留塔塔部22内に送り込まれる液体窒素は、圧
縮空気液化用の寒冷源として作用し、それ自身は気化し
て取出パイプ27から製品窒素ガスの一部として取り出
される。
This device produces product nitrogen gas in the following manner. That is, air is compressed by the air compressor 9, water in the compressed air is removed by the drain separator 10, and cooled by the fluorocarbon cooler 11. In this state, the air is sent to the adsorption column 12 to remove H2O and CO□ is adsorbed and removed. Next, the compressed air from which H2O and CO2 have been adsorbed and removed is sent to the first and second heat exchangers 13 and 14 to be cooled to an ultra-low temperature, and in that state is introduced into the lower part of the rectification column section 22. Next, this input compressed air is cooled by contacting with the liquid nitrogen 23a sent into the rectification column section 22 from the liquid nitrogen storage tank 23 and the overflowing liquid nitrogen from the liquid nitrogen reservoir 21d, and a part of it is liquefied. The liquid air 18 is stored at the bottom of the tower section 22 as liquid air 18. In this process, the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen - 183°C boiling point of 2M element - 196°
Due to C), oxygen, which is a high boiling point component in compressed air, is liquefied, and nitrogen remains as a gas. Next, the remaining gaseous nitrogen is taken out from the extraction pipe 27 and sent to the second and first heat exchangers 14.13, where it is heated to near room temperature and sent out from the main pipe 28 as a product nitrogen gas. In this case, from the liquid nitrogen storage tank 23 to the inlet pipe 24a
The liquid nitrogen fed into the rectification column section 22 acts as a cold source for liquefying compressed air, and is vaporized and taken out from the take-out pipe 27 as part of the product nitrogen gas.

このように、この装置は、精留塔15を略円筒状の液体
窒素貯槽23で外嵌して精留塔15と液体窒素貯槽23
とを一体的に構成し、これを同一の真空保冷函(一点鎖
線)に収容しているため、設置スペースを低減できる。
In this way, this device has a substantially cylindrical liquid nitrogen storage tank 23 fitted around the rectification tower 15, and the rectification tower 15 and the liquid nitrogen storage tank 23 are connected to each other.
Since these are integrally constructed and housed in the same vacuum cooling box (dotted chain line), the installation space can be reduced.

また、これまでは、液体窒素貯槽を真空保冷函に入れず
に別個に設けており、液体窒素貯槽と精留塔とを、大気
中において液体窒素輸送配管(真空断熱配管)で連絡し
ていたため、その輸送配管からの液体窒素の蒸発損失が
大きかったのであるが、この装置は、液体窒素貯槽23
と精留塔15とを上記のように構成し、輸送配管(導入
路パイプ24)を真空保冷国内に、液体窒素貯槽23と
近接した状態で入れたため、輸送配管が液体窒素貯槽2
3内の液体窒素23aで冷やされるようになり、液体窒
素23aの蒸発損失が大幅に低減されるようになる。そ
のうえ、精留塔15が液体窒素貯槽23で外嵌されてお
り、液体窒素23aで冷却されるため、精留塔15自体
の断熱性が向上し精留効率が向上するようになる。また
、装置の始動時(スタートアップ時)においては、精留
塔15が液体窒素貯槽23の液体窒素23aで予冷され
た状態となっているため、スタートアップ時間の短縮化
を実現しうるようになる。
In addition, until now, the liquid nitrogen storage tank was not placed in a vacuum cooling box but was installed separately, and the liquid nitrogen storage tank and the rectification tower were connected through liquid nitrogen transport piping (vacuum insulation piping) in the atmosphere. , the evaporation loss of liquid nitrogen from the transportation piping was large, but this device
and the rectification column 15 are constructed as described above, and the transport piping (introduction pipe 24) is placed in the vacuum cold insulation country in close proximity to the liquid nitrogen storage tank 23.
3, and the evaporation loss of the liquid nitrogen 23a is significantly reduced. Furthermore, since the rectification column 15 is fitted with a liquid nitrogen storage tank 23 and is cooled by the liquid nitrogen 23a, the heat insulation of the rectification column 15 itself is improved, and the rectification efficiency is improved. Furthermore, at the time of starting up the apparatus, the rectification column 15 is pre-cooled with the liquid nitrogen 23a of the liquid nitrogen storage tank 23, so that the start-up time can be shortened.

第4図は他の実施例を示し、第5図はその要部の概念を
示している。この実施例は、上記の実施例のように精留
塔を略円筒状の液体窒素貯槽で外嵌するのではなく、精
留塔15の略円筒状塔部22で液体窒素貯槽23を外嵌
している。それ以外の部分は前記の実施例と同じである
から、説明を省略する。
FIG. 4 shows another embodiment, and FIG. 5 shows the concept of its main part. In this embodiment, a liquid nitrogen storage tank 23 is fitted around a substantially cylindrical column section 22 of the rectification column 15, instead of fitting the rectification column with a substantially cylindrical liquid nitrogen storage tank as in the above embodiment. are doing. Since the other parts are the same as those in the previous embodiment, the explanation will be omitted.

この実施例も、前記の実施例と同様の作用効果を奏する
This embodiment also has the same effects as the previous embodiment.

〔発明の効果〕〔Effect of the invention〕

この発明の高純度窒素ガス製造装置は、膨張タービンを
用いず、それに代えて何ら回転部を持たない液体窒素貯
槽等の液体窒素貯蔵手段を用いるため、装置全体として
回転部がなくなり故障が全く生じない。しかも液体窒素
貯槽は安価であり、また構造が簡単なため特別な要員も
不要になる。
The high-purity nitrogen gas production device of the present invention does not use an expansion turbine, but instead uses liquid nitrogen storage means such as a liquid nitrogen storage tank that does not have any rotating parts, so the entire device has no rotating parts and is free from malfunctions. do not have. Furthermore, liquid nitrogen storage tanks are inexpensive and have a simple structure, so special personnel are not required.

さらに、膨張タービン(窒素精留塔内に溜る液体空気か
ら蒸発したガスの圧力で駆動する)は、回転速度が極め
て大(数万回/分)であるため、負荷変動(製品窒素ガ
スの取出量の変化)に対するきめ細かな追従運転が困難
であり、製品窒素ガスの取出量の変化に応じて膨張ター
ビンの回転数を正確に変化させ、窒素ガス製造原料であ
る圧縮空気を常時一定温度に冷却することが容易ではな
(、その結果、得られる製品窒素ガスの純度がばらつき
、頻繁に低純度のものがつくりだされ全体的に製品窒素
ガスの純度が低くなるところ、この発明は、それに代え
て液体窒素貯槽を用い、供給量のきめ細かい調節が可能
な液体窒素を寒冷源として用いるため、負荷変動に対す
るきめ細かな追従が可能となり、純度が安定していて極
めて高い窒素ガスを製造しうるようになる。したがって
、従来の精製装置が不要となる。しかも、この発明の装
置は、精留塔および液体窒素貯蔵手段が同一の真空断熱
容器内に一体的に配設されているため、設置スペースを
低減できる。また、これまでは、液体窒素貯槽を真空断
熱容器内に入れず別個に設けており、液体窒素貯槽と精
留塔とを液体M素輸送配管(真空断熱配管)で連絡して
いたため、その輸送配管からの液体窒素の蒸発損失が大
きかったのであるが、この装置は、液体窒素貯槽と精留
塔とを上記のように構成したため、輸送配管を真空断熱
容器に、液体窒素貯蔵手段と近接した状態で入れうるよ
うになり、それによって輸送配管が液体窒素貯槽内の液
体窒素で冷やされ、液体窒素の蒸発損失を大幅に低減し
うるようになる。そのうえ、精留塔が液体窒素貯蔵手段
の液体窒素で冷却されるようになるため、精留塔自体の
断熱性が向上し精留効率が向上するようになる。また、
装置の始動時(スタートアップ時)においては、精留塔
が液体窒素貯蔵手段の液体窒素で予冷された状態となっ
ているため、スタートアップ時間の短縮化を実現しうる
ようになる。
Furthermore, the expansion turbine (which is driven by the pressure of gas evaporated from the liquid air accumulated in the nitrogen rectification column) has an extremely high rotational speed (tens of thousands of rotations/minute), so load fluctuations (the removal of product nitrogen gas) Therefore, it is difficult to precisely follow the changes in the amount of product nitrogen gas taken out, so the rotation speed of the expansion turbine is changed accurately according to changes in the amount of product nitrogen gas taken out, and the compressed air, which is the raw material for nitrogen gas production, is constantly cooled to a constant temperature. However, as a result, the purity of the product nitrogen gas varies, and low-purity products are frequently produced, resulting in the overall purity of the product nitrogen gas being low. By using a liquid nitrogen storage tank as a cooling source, the supply amount of which can be finely adjusted, is used as a cooling source, making it possible to closely follow load fluctuations and producing nitrogen gas with stable and extremely high purity. Therefore, conventional purification equipment is not required.Furthermore, the equipment of the present invention saves installation space because the rectification column and liquid nitrogen storage means are integrated in the same vacuum insulated container. In addition, until now, the liquid nitrogen storage tank was not placed inside a vacuum insulated container but was provided separately, and the liquid nitrogen storage tank and the rectification column were connected by liquid M transport piping (vacuum insulation piping). , the evaporation loss of liquid nitrogen from the transportation piping was large, but since this device had the liquid nitrogen storage tank and rectification tower configured as described above, the transportation piping was placed in a vacuum insulated container and the liquid nitrogen storage means was As a result, the transport piping can be cooled with liquid nitrogen in the liquid nitrogen storage tank, greatly reducing evaporation loss of liquid nitrogen.Furthermore, the rectification column can be cooled with liquid nitrogen in the liquid nitrogen storage tank. Since it is now cooled by liquid nitrogen in the storage means, the heat insulation of the rectification column itself is improved and the rectification efficiency is improved.Also,
At the start-up of the apparatus, the rectification column is pre-cooled with liquid nitrogen in the liquid nitrogen storage means, so that the start-up time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成図、第2図ははその
要部の概念図、第3図は第2図のA−A′断面図、第4
図は他の実施例の構成図、第5図はその要部のl!Ii
念図である。 9・・・空気圧縮機 11.12・・・吸着筒 13゜
14・・・熱交換器 15・・・窮素精留塔 17・・
・パイプ 18 用液体空気 21・・・分縮器部 2
1a・・・凝縮器 21d・・・液体窒素溜め 22・
・・塔部 23・・・液体窒素貯槽 24a・・・導入
路バイ128・・・メインパイプ
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a conceptual diagram of its main parts, Fig. 3 is a sectional view taken along line AA' in Fig. 2, and Fig. 4
The figure is a block diagram of another embodiment, and FIG. 5 shows its main parts. Ii
It is a mental idea. 9... Air compressor 11.12... Adsorption cylinder 13゜14... Heat exchanger 15... Impurity rectification column 17...
・Liquid air for pipe 18 21... demultiplexer part 2
1a... Condenser 21d... Liquid nitrogen reservoir 22.
...Tower part 23...Liquid nitrogen storage tank 24a...Introduction path by 128...Main pipe

Claims (3)

【特許請求の範囲】[Claims] (1)外部より取り入れた空気を圧縮する空気圧縮手段
と、この空気圧縮手段によって圧縮された圧縮空気中の
炭酸ガスと水とを除去する除去手段と、この除去手段を
経た圧縮空気を超低温に冷却する熱交換手段と、この熱
交換手段により超低温に冷却された圧縮空気の一部を液
化して内部に溜め窒素のみを気体として保持する精留塔
と、液体窒素を貯蔵する液体窒素貯蔵手段と、この液体
窒素貯蔵手段内の液体窒素を圧縮空気液化用の寒冷源と
して上記精留塔に導く導入路と、上記精留塔内に保持さ
れている気化窒素を取り出す窒素ガス取出路を備え、少
なくとも上記精留塔および液体窒素貯蔵手段が同一の真
空断熱容器内に配設され、かつその精留塔および液体窒
素貯蔵手段が一体的に設けられていることを特徴とする
高純度窒素ガス製造装置。
(1) Air compression means for compressing air taken in from the outside, removal means for removing carbon dioxide and water from the compressed air compressed by this air compression means, and cooling the compressed air that has passed through this removal means to an ultra-low temperature. A heat exchange means for cooling, a rectification column that liquefies a part of the compressed air cooled to an ultra-low temperature by the heat exchange means and stores it inside to retain only nitrogen as a gas, and a liquid nitrogen storage means for storing liquid nitrogen. and an introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means to the rectification column as a cold source for liquefying compressed air, and a nitrogen gas extraction path for taking out the vaporized nitrogen held in the rectification column. , a high-purity nitrogen gas characterized in that at least the rectification column and the liquid nitrogen storage means are arranged in the same vacuum insulation container, and the rectification column and the liquid nitrogen storage means are provided integrally. Manufacturing equipment.
(2)精留塔および液体窒素貯蔵手段を一体的に設ける
ことが、液体窒素貯蔵手段を略円筒状に形成して精留塔
に外嵌することにより行われている特許請求の範囲第1
項記載の高純度窒素ガス製造装置。
(2) The rectification column and the liquid nitrogen storage means are integrally provided by forming the liquid nitrogen storage means into a substantially cylindrical shape and fitting the liquid nitrogen storage means into the rectification column.
High-purity nitrogen gas production equipment as described in .
(3)精留塔および液体窒素貯蔵手段を一体的に設ける
ことが、精留塔を略円筒状に形成して液体窒素貯蔵手段
に外嵌することにより行われている特許請求の範囲第1
項記載の高純度窒素ガス製造装置。
(3) The rectification column and the liquid nitrogen storage means are integrally provided by forming the rectification column into a substantially cylindrical shape and fitting the liquid nitrogen storage means onto the outside of the first claim.
High-purity nitrogen gas production equipment as described in .
JP59153490A 1984-07-24 1984-07-24 Production unit for high-purity nitrogen gas Granted JPS6131872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153490A JPS6131872A (en) 1984-07-24 1984-07-24 Production unit for high-purity nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153490A JPS6131872A (en) 1984-07-24 1984-07-24 Production unit for high-purity nitrogen gas

Publications (2)

Publication Number Publication Date
JPS6131872A true JPS6131872A (en) 1986-02-14
JPH0425472B2 JPH0425472B2 (en) 1992-04-30

Family

ID=15563707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153490A Granted JPS6131872A (en) 1984-07-24 1984-07-24 Production unit for high-purity nitrogen gas

Country Status (1)

Country Link
JP (1) JPS6131872A (en)

Also Published As

Publication number Publication date
JPH0425472B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
KR900005985B1 (en) High- purity nitrogen gas production equipment
WO1984003554A1 (en) Apparatus for producing high-purity nitrogen gas
JPS6124967A (en) Production unit for high-purity nitrogen gas
WO1985004466A1 (en) Apparatus for producing high-purity nitrogen gas
JPS6158747B2 (en)
JPS6131872A (en) Production unit for high-purity nitrogen gas
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JPS62158976A (en) Production unit for high-purity nitrogen gas
JPS62158975A (en) Production unit for high-purity nitrogen gas
JPS6115070A (en) Production unit for high-purity nitrogen gas
JPS6115068A (en) Production unit for high-purity nitrogen gas
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPS60232470A (en) Production unit for high-purity nitrogen gas
JPS6244190B2 (en)
JP2686050B2 (en) High-purity nitrogen gas production equipment
JPS62158977A (en) Production unit for high-purity nitrogen gas
JPH02157584A (en) High purity nitrogen gas manufacturing apparatus
JPS60232471A (en) Production unit for high-purity nitrogen gas
JPS63148079A (en) Production unit for high-purity nitrogen gas
JPS6115067A (en) Production unit for high-purity nitrogen gas
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
JPS6115069A (en) Production unit for high-purity nitrogen gas
JPS6152390B2 (en)
JPS6152389B2 (en)
JPS62158978A (en) Production unit for high-purity nitrogen gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term