JPS6131432B2 - - Google Patents

Info

Publication number
JPS6131432B2
JPS6131432B2 JP5223777A JP5223777A JPS6131432B2 JP S6131432 B2 JPS6131432 B2 JP S6131432B2 JP 5223777 A JP5223777 A JP 5223777A JP 5223777 A JP5223777 A JP 5223777A JP S6131432 B2 JPS6131432 B2 JP S6131432B2
Authority
JP
Japan
Prior art keywords
detector
energy measurement
detectors
level
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5223777A
Other languages
Japanese (ja)
Other versions
JPS53137194A (en
Inventor
Yoshito Narimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5223777A priority Critical patent/JPS53137194A/en
Publication of JPS53137194A publication Critical patent/JPS53137194A/en
Publication of JPS6131432B2 publication Critical patent/JPS6131432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は独立した数個の半導体検出器を備えた
放射線(荷電粒子)検出装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation (charged particle) detection device equipped with several independent semiconductor detectors.

従来のこの種の装置の方式は数個の半導体検出
器を粒子入射方向に並べ各検出器の出力信号を回
路的に組合せ、多数チヤンネルの測定を行なうテ
レスコープ型検出方式(第1図参照)や、半導体
検出器を測定チヤンネル数だけ使用して独立した
回路(第4図参照)により荷電粒子を測定する方
式であつた。
The conventional method of this type of device is a telescope detection method in which several semiconductor detectors are arranged in the direction of particle incidence, and the output signals of each detector are combined in a circuit to measure multiple channels (see Figure 1). Another method was to use semiconductor detectors for the same number of measurement channels and measure charged particles using independent circuits (see Figure 4).

第1図はほぼ同面積の3個の検出器を使用した
テレスコープの機能系統図で、検出器7を突抜け
る粒子は必ず検出器8又はシンチレータおよび光
電子増倍管を用いた入力回路15に入射し、検出
器8を突抜ける粒子は必ず検出器9又は入力回路
15に入射するように構成されている。検出器7
〜9および入力回路15に入射した粒子のエネル
ギーは電圧変換され、増幅器3、レベル判別器
4、ロジツク5で処理される。この際入力回路1
5からの出力を検出器7〜9の出力のキヤンセル
に使うことで、入射粒子のコリメーシヨンを行う
ものである。又、第2図は後方の検出器ほど大面
積にした場合で、検出器7に入射した粒子がこれ
を突抜ける高エネルギーに対し、必ず検出器8,
9に入射させるものである。第3図は、第1図あ
るいは第2図に示した放射線検出装置における、
放射線1の入射エネルギーと検出器7,8及び9
の検出出力24,25及び26との関係を示した
ものである。入射エネルギーが零から増大する
と、放射線は16の点で検出器7を突抜け、検出器
8の出力が増大し始める。更に入射エネルギーが
増大すると、17の点で検出器8を突抜け、検出器
9に到達し、検出器9も出力も増大し始める。一
方、‘17の点より上の入射エネルギーに対しては
検出器8の出力は、図示の如く減少し始める。
Figure 1 is a functional diagram of a telescope that uses three detectors with approximately the same area. Particles that pass through detector 7 are always sent to detector 8 or to an input circuit 15 that uses a scintillator and a photomultiplier tube. The structure is such that a particle that enters and passes through the detector 8 always enters the detector 9 or the input circuit 15 . Detector 7
.about.9 and the input circuit 15 are converted into voltages and processed by the amplifier 3, level discriminator 4, and logic 5. In this case, input circuit 1
By using the output from the detector 5 to cancel the outputs of the detectors 7 to 9, the incident particles are collimated. In addition, Fig. 2 shows a case in which the area of the detectors at the rear is larger, so that the detector 8,
9. FIG. 3 shows the radiation detection device shown in FIG. 1 or 2.
Incident energy of radiation 1 and detectors 7, 8 and 9
The relationship between the detection outputs 24, 25, and 26 is shown. As the incident energy increases from zero, the radiation penetrates the detector 7 at points 16 and the output of the detector 8 begins to increase. As the incident energy further increases, it passes through the detector 8 at point 17 and reaches the detector 9, and the output of the detector 9 also begins to increase. On the other hand, for incident energies above the point '17, the output of the detector 8 begins to decrease as shown.

検出レベル13及び14は検出器8の判別レベ
ル(スレツシヨールドレベル)であり、判別レベ
ル11,12あるいは15は検出器8と同様な検
出出力特性を示す検出器7あるいは9に対する判
別レベルを示している。検出器8の検出出力とス
レツシヨールドレベル13及び14によつて決ま
る入射エネルギーレベルと、検出器7あるいは9
の検出出力とスレツシヨールドレベル11,12
あるいは15によつて決まる入射エネルギーレベ
ルとを組合せれば、入射エネルギーレベルは18〜
22の範囲で一義的に決定される。この場合、検出
できる入射エネルギーレベル数(チヤンネル数)
は、スレツシヨールドレベルの数により決定され
る。
Detection levels 13 and 14 are the discrimination levels (threshold levels) of the detector 8, and discrimination levels 11, 12, or 15 are the discrimination levels for the detector 7 or 9, which exhibits the same detection output characteristics as the detector 8. It shows. The incident energy level determined by the detection output of the detector 8 and the threshold levels 13 and 14 and the detection output of the detector 7 or 9
detection output and threshold level 11, 12
Alternatively, if you combine it with the incident energy level determined by 15, the incident energy level will be 18 ~
Uniquely determined within the range of 22. In this case, the number of incident energy levels (number of channels) that can be detected
is determined by the number of threshold levels.

次に、第4図の方式では各独立した検出器の入
出力特性27〜30に対し、測定エネルギー範囲に従
つてスレツシヨールドレベル23を設け、レベル
判定回路4によりこのレベル以上を「1」、以下
を「0」とすることでレベル判別を行ない各チヤ
ンネルごとに粒子数をカウントする。この方式で
は検出器数とチヤンネル数が同じになる。
Next, in the method shown in FIG. 4, a threshold level 23 is set for the input/output characteristics 27 to 30 of each independent detector according to the measurement energy range, and the level determination circuit 4 determines that this level or higher is "1". ", and the following are set to "0" to perform level discrimination and count the number of particles for each channel. In this method, the number of detectors and the number of channels are the same.

従来のこのような方式の場合、前者については
入射立体角を大きく取る必要がある装置では、上
述のようにアンテイコインシステム用のシンチレ
ータと光電子増倍管又は大面積の半導体検出器が
必要であつた。更に、1個の検出器の故障により
通常はほとんどのチヤンネルのデータが取得でき
なくなる欠点があつた。又、後者については測定
チヤンネル数が多い場合、検出器数および処理回
数が多くなり、寸法、重量、消費電力が大きくな
るという欠点があつた。これらの欠点は特に人工
衛星やロケツト等宇宙用の装置における要求条件
1)小型、軽量、2)装置の高信頼度(一度打上
げると交換、修理ができない)、3)低消費電
力、低電圧駆動(高電圧は広範囲の気圧変動に対
しての放電や絶縁破壊を起こす原因になる)等の
点から不利であつた。
In the case of conventional methods like this, the former requires a scintillator and a photomultiplier tube or a large-area semiconductor detector for the antennae system, as mentioned above, in devices that require a large solid angle of incidence. Ta. Furthermore, a failure of one detector usually makes it impossible to acquire data for most channels. In addition, the latter has the disadvantage that when the number of measurement channels is large, the number of detectors and the number of processing times are increased, resulting in an increase in size, weight, and power consumption. These drawbacks are particularly important for space equipment such as satellites and rockets, which require 1) small size and light weight, 2) high reliability of the equipment (cannot be replaced or repaired once launched), and 3) low power consumption and low voltage. It was disadvantageous in terms of driving (high voltage causes discharge and dielectric breakdown in response to wide range of atmospheric pressure fluctuations), etc.

本発明は荷電粒子検出装置として、これらの欠
点を除去するために、独立した数個の半導体検出
器により多数チヤンネルのデータを取得し、後で
そのデータの単純計算とすることのみで必要なチ
ヤンネルデータが得られるようにした放射線検出
装置にある。
In order to eliminate these drawbacks as a charged particle detection device, the present invention acquires data of multiple channels using several independent semiconductor detectors, and later performs simple calculation of the data to obtain the required channels. It is located in the radiation detection device that allows the data to be obtained.

以下、図面により詳細な説明をする。 A detailed explanation will be given below with reference to the drawings.

第6図は本発明の実施例の処理回路のブロツク
図であつて、第7図はその検出特性図である。1
は荷電粒子、2は検出器系、3は増幅器系、4は
レベル判別回路系、、7〜10は各検出器であ
る。又、第7図において、縦軸は増幅器出力、横
軸は入射粒子エネルギー、41〜44は検出器7
〜10に対応する検出特性、45〜48は検出特
性41〜44に対する判別回路4のエネルギー判
別レベル、51〜57は各検出器7〜10および
各判別レベル45〜48によつて測定される荷電
粒子エネルギーに対するチヤンネル範囲を示す。
第6図において、荷電粒子1が検出器系2に入射
し、そのエネルギーが電荷として検出器系2の中
に生ずると、増幅器系3によつて電圧に変換さ
れ、判別回路4である電圧より大きいか、小さい
かの判定が行なわれて「1」,「0」の信号に変換
される。検出器7〜10はその厚さ、およびその
前面に置かれるアブソーバの厚さを選択すること
によつて異なつた特性41〜44をもたせること
ができる。
FIG. 6 is a block diagram of a processing circuit according to an embodiment of the present invention, and FIG. 7 is a detection characteristic diagram thereof. 1
2 is a charged particle, 2 is a detector system, 3 is an amplifier system, 4 is a level discrimination circuit system, and 7 to 10 are each detector. In addition, in FIG. 7, the vertical axis is the amplifier output, the horizontal axis is the incident particle energy, and 41 to 44 are the detector 7.
Detection characteristics corresponding to 10, 45 to 48 are energy discrimination levels of the discrimination circuit 4 for detection characteristics 41 to 44, and 51 to 57 are charges measured by each detector 7 to 10 and each discrimination level 45 to 48. Shows channel range versus particle energy.
In FIG. 6, when a charged particle 1 enters a detector system 2 and its energy is generated as a charge in the detector system 2, it is converted into a voltage by an amplifier system 3, and the voltage is determined by a discrimination circuit 4. A determination is made as to whether it is large or small, and the signal is converted into a "1" or "0" signal. The detectors 7-10 can have different properties 41-44 by selecting their thickness and the thickness of the absorber placed in front of them.

本発明の特徴は特性41〜44およびレベル4
5〜48の選択を工夫することによつて、各検出
器での検出範囲51〜57を連続させ、かつ特性
41から得られる各チヤンネル55〜57と特性
42〜44より得られる各チヤンネル55〜57
とを完全に重ね合せることにある。第6図に示し
た例においては、4個の検出器を独立して使用す
るが、この場合、最も低いエネルギーを検出する
検出器に4つの判別レベル45を設け、4チヤン
ネルの検出を行なう。このうち最も高い判別レベ
ル以上の出力のみカウントすることによつてチヤ
ンネル54に相当するデータが取得できる。又、
高い方から1番目と2番目の間のレベルの出力の
みカウントすることによつて、チヤンネル53お
よび55に相当する合計のカウント数が得られ
る。同様にしてチヤンネル52および56,51
および57に相当するそれぞれの合計のカウント
数が得られる。
The features of the present invention are characteristics 41 to 44 and level 4.
By devising the selection of 5 to 48, the detection ranges 51 to 57 in each detector are made continuous, and each channel 55 to 57 obtained from characteristic 41 and each channel 55 to 57 obtained from characteristics 42 to 44 are made continuous. 57
The goal is to completely overlap the two. In the example shown in FIG. 6, four detectors are used independently. In this case, the detector that detects the lowest energy is provided with four discrimination levels 45, and four channels of detection are performed. Data corresponding to the channel 54 can be obtained by counting only the outputs having the highest discrimination level or higher. or,
By counting only the outputs at levels between the first and second highest, a total count corresponding to channels 53 and 55 is obtained. Similarly, channels 52 and 56, 51
and a respective total count corresponding to 57 is obtained.

次に検出器8〜10の特性42〜44および判
別レベルの選択により、それぞれ検出器8でチヤ
ンネル55、検出器9でチヤンネル56、検出器
10でチヤンネル57に相当するチヤンネルのカ
ウント数を取得する。
Next, by selecting the characteristics 42 to 44 of the detectors 8 to 10 and the discrimination level, the counts of channels corresponding to channel 55 in detector 8, channel 56 in detector 9, and channel 57 in detector 10 are obtained, respectively. .

チヤンネル54のカウント数は、検出器7の出
力のうち判定レベル45の最も高い判定レベル以
上のものから取得できる。チヤンネル55,56
及び57のカウント数は、検出器8,9及び10
の出力を判定レベル46,47及び48でそれぞ
れ判定してカウントしたものからそれぞれ得られ
る。更にチヤンネル51,52及び53のカウン
ト数は、荷電粒子1が統計的に検出器7〜10に
ほぼ均等に入射することから、検出器7のカウン
ト数から検出器8〜10のカウント数をそれぞれ
減算することによつて得られる。即ち、検出器7
で測定したチヤンネル(51+7)のカウント数
から、検出器10によるチヤンネル57のカウン
ト数を減算することによつてチヤンネル51のカ
ウント数が得られ、同様に、検出器7のチヤンネ
ル(52+56)及び(53+55)のカウント
数から、検出器9及び8によるチヤンネル56及
び55のカウント数をそれぞれ減算することによ
つて、チヤンネル52及び53のカウント数が得
られる。このようにして、所定のエネルギー測定
範囲51〜57の放射線スペクトラムを連続的に
測定することができる。
The count number of the channel 54 can be obtained from the output of the detector 7 that is equal to or higher than the highest determination level 45. Channel 55, 56
and 57 counts are detected by detectors 8, 9 and 10.
The outputs are determined and counted at determination levels 46, 47, and 48, respectively. Furthermore, the counts of channels 51, 52, and 53 are calculated by subtracting the counts of detectors 8 to 10 from the counts of detector 7, since the charged particles 1 statistically enter the detectors 7 to 10 almost equally. Obtained by subtraction. That is, the detector 7
The count number of the channel 51 is obtained by subtracting the count number of the channel 57 measured by the detector 10 from the count number of the channel (51+7) measured by the channel (52+56) of the detector 7 and ( By subtracting the counts of channels 56 and 55 by detectors 9 and 8 from the counts of 53+55), the counts of channels 52 and 53 are obtained. In this way, the radiation spectrum in the predetermined energy measurement ranges 51 to 57 can be continuously measured.

以上説明したように、本発明による方式では各
検出器出力をほとんどある基準レベルに対して
「1」「0」判定するだけの単純なシステムにより
データを取得し、後で単純にカウントデータの差
引きを行なうだけで、多数チヤンネルの荷電粒子
エネルギーおよびカウント数を得られる利点があ
る。又、大面積の検出器シンチレータと光電子増
倍管(および、これに必要は高電圧)等が不必要
になると共に、検出器の故障の影響範囲を狭くす
ること、および従来の方式の後者の場合よりも小
型、軽量にすることができる等の利点がある。
As explained above, in the method according to the present invention, data is acquired using a simple system that only judges each detector output as "1" or "0" with respect to a certain reference level, and then simply calculates the difference between the count data. There is an advantage that the charged particle energies and counts of multiple channels can be obtained simply by performing a pull. In addition, large-area detector scintillators and photomultiplier tubes (and the high voltage required for these) are no longer necessary, and the range of influence of detector failures is narrowed, and the latter of the conventional methods is It has the advantage of being smaller and lighter than the conventional case.

本発明による装置は2項で述べた宇宙用条件の
他に衛星上でのデータ処理が簡単であることとい
う条件に対しても特に有効である。
The apparatus according to the present invention is particularly effective not only for the space requirements mentioned in Section 2 but also for the requirement that data processing on a satellite be simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のテレスコープ型測定装置のブロ
ツク図、第2図は第1図の検出器部の別の構成
図、第3図は第1図の検出特性図、第4図は従来
の方式の他のブロツク図、第5図は第4図の入出
力特性図、第6図は本発明の実施例のブロツク
図、第7図は第6図の入出力特性図である。図に
おいて、 1……荷電粒子、2……検出器系、3……増幅
器系、4……レベル判別回路、5……ロジツク、
7〜10……検出器、11〜15,23,45…
…スレツシヨールドレベル、15……入力回路、
16,17……出力点、24〜30,41〜44
……特性曲線、45〜48……判別レベルであ
る。
Figure 1 is a block diagram of a conventional telescope type measuring device, Figure 2 is another configuration diagram of the detector section in Figure 1, Figure 3 is a detection characteristic diagram of Figure 1, and Figure 4 is a diagram of the conventional telescope type measuring device. FIG. 5 is an input/output characteristic diagram of FIG. 4, FIG. 6 is a block diagram of an embodiment of the present invention, and FIG. 7 is an input/output characteristic diagram of FIG. 6. In the figure, 1...Charged particles, 2...Detector system, 3...Amplifier system, 4...Level discrimination circuit, 5...Logic,
7-10...Detector, 11-15, 23, 45...
...Threshold level, 15...Input circuit,
16, 17...Output point, 24-30, 41-44
. . .Characteristic curve, 45 to 48 . . .Discrimination level.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体から成る荷電粒子検出用の第1及び第
2の検出器を含み、前記第1の検出器の検出器突
抜け領域を含むエネルギー測定範囲3つがまり、
かつ前記突き抜け領域を含むエネルギー測定範囲
以外のエネルギー測定範囲の1つと前記第2の検
出器のエネルギー測定範囲が一致するように、前
記第1の検出器の出力に対し高低2つの判定レベ
ルを、前記第2の検出器に対し1つの判定レベル
とそれぞれ設定するとともに各検出器の厚さ、前
面のアブソーバの厚さ等を調整し、前記突き抜け
領域を含むエネルギー測定範囲のカウント数を前
記第1の検出器の高判定レベル以上の出力カウン
ト数から得、前記第1及び第2の検出器のエネル
ギー測定範囲が一致する測定範囲のカウント数を
前記第2の検出器の出力のカウント数から得、残
りのエネルギー測定範囲のカウント数を前記第1
の検出器の前記高判定レベルと前記低判定レベル
の間の出力のカウント数から前記第2の検出器の
出力カウント数を減算して得ることにより、所定
ののエネルギー測定範囲内の放射線スペクトラム
を連続的に測定することを特徴とする放射線検出
装置。
1. A collection of three energy measurement ranges including first and second detectors for detecting charged particles made of semiconductors, and including a detector penetration region of the first detector,
and two determination levels, high and low, for the output of the first detector so that one of the energy measurement ranges other than the energy measurement range including the penetration region and the energy measurement range of the second detector match, One determination level is set for each of the second detectors, and the thickness of each detector, the thickness of the front absorber, etc. are adjusted, and the count number of the energy measurement range including the penetration area is set to the first determination level. A count number in a measurement range in which the energy measurement ranges of the first and second detectors match is obtained from the output count number of the second detector. , the number of counts in the remaining energy measurement range is determined by the first
The radiation spectrum within a predetermined energy measurement range is obtained by subtracting the output count number of the second detector from the output count number between the high judgment level and the low judgment level of the detector. A radiation detection device characterized by continuous measurement.
JP5223777A 1977-05-06 1977-05-06 Radioactive ray detector Granted JPS53137194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223777A JPS53137194A (en) 1977-05-06 1977-05-06 Radioactive ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223777A JPS53137194A (en) 1977-05-06 1977-05-06 Radioactive ray detector

Publications (2)

Publication Number Publication Date
JPS53137194A JPS53137194A (en) 1978-11-30
JPS6131432B2 true JPS6131432B2 (en) 1986-07-19

Family

ID=12909105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223777A Granted JPS53137194A (en) 1977-05-06 1977-05-06 Radioactive ray detector

Country Status (1)

Country Link
JP (1) JPS53137194A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139977Y2 (en) * 1979-03-31 1986-11-15
JP5395753B2 (en) * 2010-06-22 2014-01-22 株式会社日立製作所 Radiation measurement equipment

Also Published As

Publication number Publication date
JPS53137194A (en) 1978-11-30

Similar Documents

Publication Publication Date Title
US5659177A (en) Directional thermal neutron detector
CA2214231C (en) Method for pulse shape regulation and discrimination in a nuclear spectroscopy system
US7528377B2 (en) Radiation detector circuit
CN103069305B (en) By the method for multi-energy X-ray identification material
US9885674B2 (en) Method and device for recognition of a material making use of its transmission function
Buckley et al. A new measurement of the flux of the light cosmic-ray nuclei at high energies
US7595494B2 (en) Direction-sensitive radiation detector and radiation detection method
JP5395753B2 (en) Radiation measurement equipment
JPS6131432B2 (en)
US5367168A (en) Method for discrimination and simultaneous or separate measurement of single or multiple electronic events in an opto-electronic detector
JP2000206249A (en) Improved output circuit for electrical charge detector
Cross et al. Scattering of 14.6 MeV neutrons by Mg, Ca, Cd, Ta and Bi
US7161153B2 (en) Apparatus and method for detecting α-ray
Agnetta et al. Use of RPC in EAS physics with the COVER_PLASTEX experiment
Motobayashi et al. A silicon counter array for 2He detection
JP2005300245A (en) Radiation measuring instrument
Marrocchesi CALET measurements with cosmic nuclei and performance of the charge de-tectors
US3588536A (en) Pulse height analyzer
Llacer et al. Characterization of fragmented heavy‐ion beams using a three‐stage telescope detector: Detector configuration and instrumentation
Rowell et al. Calibration of Gamma Ray Telescopes with Single Muon Cerenkov Pulses
Shoffner A pulse shape analyzer for phoswich detectors
RU2617129C9 (en) Charged particles spectrometer
JP2002062359A (en) Radiation-measuring apparatus
JPH03185386A (en) Method for measuring radiation quantity using radiation detector
Eyrich et al. Measurement and evaluation of particle-γ angular correlations for the study of nuclear reaction mechanisms