JPS6131175B2 - - Google Patents

Info

Publication number
JPS6131175B2
JPS6131175B2 JP13794081A JP13794081A JPS6131175B2 JP S6131175 B2 JPS6131175 B2 JP S6131175B2 JP 13794081 A JP13794081 A JP 13794081A JP 13794081 A JP13794081 A JP 13794081A JP S6131175 B2 JPS6131175 B2 JP S6131175B2
Authority
JP
Japan
Prior art keywords
powder
temperature
press
melting point
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13794081A
Other languages
Japanese (ja)
Other versions
JPS5839759A (en
Inventor
Toshio Okuno
Hideki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13794081A priority Critical patent/JPS5839759A/en
Publication of JPS5839759A publication Critical patent/JPS5839759A/en
Publication of JPS6131175B2 publication Critical patent/JPS6131175B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

高融点金属鋳造用金型は高温の溶湯鋳込時の熱
衝撃がきわめて大きく、ヒートクラツクが早期に
生じやすく、また高温の溶湯の型面への激突によ
り焼付や溶損が問題となる。 したがつて、金型材料としては熱応力が過大と
ならないよう熱伝導率が大きく、熱膨脹係数が小
さく、また溶損に対する抵抗性が大きく、さらに
適度の高温強度と十分なねばさを備えていなけれ
ばならない。 また、ブラウン管金型など高級ガラス製品成形
用金型の場合には型抜性が良く、型抜・模様が生
成しないことが重視される。 本発明は熱伝導率がFeよりも大きく、かつね
ばいNiと熱伝導率ないし耐溶損性のすぐれた
W、Mo、WC、Mo2C各粉末を原料とし、これら
をNiが最終的に容積比で96〜14となるよう均一
混合したのち、プレスにて予備成形あるいは真空
中または水素中で還元処理を加えたのちプレスに
て予備成形を行ない、これをHIP熱間静水圧プレ
ス製置によりNiの溶融点以下あるいはこれより
高い温度で加圧成形し、緻密で強固な組織とし
て、とくにすぐれた延性を備え、上記高融点金属
鋳造用の用途にすぐれた性能を発揮し、またガラ
ス成形において、とくにすぐれた型抜性を発揮す
る熱間金型材料を得ることを可能としたものであ
る。 第1表に本発明材料の組成と物理的性質、高温
硬さ、小型シヤルビー衝撃値、耐焼付摩耗性指数
を示す。 試料は各粉末を均一に混合したのち、真空中で
1050℃×4Hr還元処理し、プレス成形後カプセル
に装入、真空封着したのち第1表に示した温度、
圧力条件でHIP処理したものである。比較材M、
NはHIPを使用せず、同様に混合、プレス後水素
中で1350℃×4Hr焼結処理したものであり、比較
材Oは熱間工具鋼SKD61、Pはガラス成形用途
に使用されている130r系ステンレス鋼SUS420の
各溶製→鍛伸材である。
Molds for casting high-melting point metals undergo extremely large thermal shocks when pouring high-temperature molten metal, and heat cracks are likely to occur early on, and seizure and melting damage occur due to the impact of high-temperature molten metal on the mold surface. Therefore, the mold material must have high thermal conductivity, low coefficient of thermal expansion, and high resistance to melting loss to prevent excessive thermal stress, as well as appropriate high-temperature strength and sufficient toughness. Must be. Furthermore, in the case of molds for molding high-grade glass products, such as cathode ray tube molds, it is important that the mold has good demoldability and that patterns do not form. The present invention uses Ni, which has a higher thermal conductivity than Fe and is sticky, and W, Mo, WC, and Mo 2 C powders, which have excellent thermal conductivity or melting resistance, as raw materials, and these are used to increase the final volume of Ni. After uniformly mixing to give a ratio of 96 to 14, preforming in a press or reduction treatment in vacuum or hydrogen, preforming in a press, and then HIP hot isostatic press making. Pressure-formed at a temperature below or above the melting point of Ni, it has a dense and strong structure with particularly excellent ductility, and exhibits excellent performance in the above-mentioned high-melting point metal casting applications. This makes it possible to obtain a hot mold material that exhibits particularly excellent demoldability. Table 1 shows the composition and physical properties, high-temperature hardness, small-sized Schallby impact value, and seize and wear resistance index of the material of the present invention. After uniformly mixing each powder, the sample was prepared in a vacuum.
After reduction treatment at 1050℃ x 4 hours, press molding, filling into capsules and vacuum sealing, the temperature shown in Table 1,
HIP processed under pressure conditions. Comparative material M,
N was mixed and pressed in the same way without using HIP, and then sintered in hydrogen at 1350°C for 4 hours. Comparative material O is hot work tool steel SKD61, and P is 130r, which is used for glass forming. These are melted and forged materials of stainless steel SUS420.

【表】【table】

【表】 本発明材料は従来の標準的熱間工具鋼SKD61
に対比して、熱伝導率が明らかに大きく、かつ熱
膨脹係数が小さく、かつ高温強度が高く、熱衝撃
に耐えるすぐれた特性を備えていることがわか
る。 またHIP仕上した本発明材料は従来の焼結材料
に対比して5mmφ×40mm(スパン35mm、2mm深
さ1mmRμノツチ)で行なつた小型シヤルピー値
(比較の焼結材Mのそれを100としてあらわした指
数値)で明らかなように靭性のすぐれていること
がわかる。 これはHIP処理により緻密な組織が得られたた
めでその結果、熱伝導率においてもB−M、E―
Nの比較からわかるように焼結材に対して改善効
果が得られていることがわかる。焼付摩耗試験は
円柱状試料の端面を800℃の赤熱鋼材に加圧接触
させつつ、高速で回転させ、焼付を生じる限界荷
重を求め、比較材Mのそれを100として指数で示
したものである。 本願発明のHIP材は同一組成の焼結材に対して
耐焼付摩耗性がすぐれている事がわかる。 これは熱伝導率が相対的に大きいことによるも
のである。 なお、耐焼付摩耗性の改善効果はWC、Mo2C
等の炭化物配合による効果が相対的に大きく、高
温強度改善効果はW、次いでMoが大きく、また
靭性ではMo配合がW配合よりもすぐれており、
用途、要求条件に応じてW、Mo、WC、Mo2C等
を単独または複合添加される。 なお、本発明材料B組成について、HIPに先だ
つて還元処理を行なわずHIP仕上処理を行なつた
が、この場合1割程度のシヤルビー衝撃値の減少
がみとめられ、一方真空還元処理にかえて水素中
還元処理を実施したのちHIP処理を行なつたとこ
ろ、1割程度のシヤルビー値の向上効果を得た。 これは粉末表面の酸化の程度の大小に起因する
もので、還元処理なしのものより、真空還元、水
素中還元処理を施したものが靭性面で相対的にま
さつていることがわかる。 第2表に本発明材料のヒートクラツク試験
(850℃20℃水冷、1000回繰返えし)の結果を示
す。
[Table] The material of the present invention is the conventional standard hot work tool steel SKD61.
In contrast, it can be seen that the thermal conductivity is clearly large, the coefficient of thermal expansion is small, the high temperature strength is high, and the material has excellent properties to withstand thermal shock. In addition, compared to the conventional sintered material, the HIP-finished material of the present invention has a small-sized sharpie value (expressed as 100 for the comparative sintered material M) measured at 5mmφ x 40mm (span 35mm, 2mm depth 1mmRμ notch). As is clear from the index value), it is clear that the toughness is excellent. This is because a dense structure was obtained by the HIP process, and as a result, the thermal conductivity was also
As can be seen from the comparison of N, it can be seen that an improvement effect is obtained for the sintered material. In the seizure wear test, the end face of a cylindrical sample is brought into pressure contact with a red-hot steel material at 800°C and rotated at high speed to determine the limit load that will cause seizure, and the limit load that causes seizure is determined and expressed as an index with that of comparative material M set as 100. . It can be seen that the HIP material of the present invention has superior seizure wear resistance compared to the sintered material of the same composition. This is due to its relatively high thermal conductivity. In addition, the improvement effect of seizure and wear resistance is due to WC, Mo 2 C
The effect of carbide blending is relatively large, and the high temperature strength improvement effect is W, followed by Mo, and in terms of toughness, Mo blending is superior to W blending.
W, Mo, WC, Mo 2 C, etc. are added singly or in combination depending on the application and requirements. Regarding the composition of material B of the present invention, HIP finishing treatment was performed without performing reduction treatment prior to HIP, but in this case, a decrease in the Shalby impact value of about 10% was observed. When HIP treatment was performed after medium reduction treatment, an effect of improving the Sialby value by about 10% was obtained. This is due to the degree of oxidation on the powder surface, and it can be seen that the products subjected to vacuum reduction and reduction in hydrogen are relatively superior in terms of toughness to those without reduction treatment. Table 2 shows the results of a heat crack test (850°C, 20°C water cooling, repeated 1000 times) for the materials of the present invention.

【表】 試験片は平板状で火焔にて平面を850℃に加熱
後水冷する操作を1000回繰返えしたものである。 B―Mの比較からわかるように、本発明材料は
同一成分の焼結材に対して、さらにすぐれた耐ヒ
ートクラツク性を有している。 また、熱間工具鋼SKD61に対比して格段にす
ぐれた耐ヒートクラツク性を有している。 これは本発明材料の熱膨脹係数が小さく、熱伝
導率が大きいこと、適度の高温強度、靭性を備え
ていることに起因している。 第3表に13Cr鋼の1550℃溶湯滴下試験におけ
る焼付発生までの回数比を示す。
[Table] The test piece was a flat plate that was heated to 850°C with a flame and then cooled with water, which was repeated 1000 times. As can be seen from the comparison of BM, the material of the present invention has better heat crack resistance than the sintered material with the same composition. It also has much better heat crack resistance than hot work tool steel SKD61. This is due to the fact that the material of the present invention has a small coefficient of thermal expansion, high thermal conductivity, and appropriate high temperature strength and toughness. Table 3 shows the ratio of times until seizure occurs in a 1550°C molten metal dripping test of 13Cr steel.

【表】 試験片は平板状試片で水平面に対し30゜傾斜さ
せ、裏面を水冷しつつ、表面に5gr溶湯を高さ
100mmより繰返えし落下させた場合の焼付開始ま
での繰返えし数を比較材0(SKD61)のそれを
100として指数で示したものである。 本発明材料は比較の5%Cr系熱間工具鋼
SKD61に対比して格段に耐溶損焼付性がすぐれ
ている事がわかる。 これに本発明材料のW、Mo、WC、Mo2C等の
本質的にすぐれた耐溶損焼付性およびNiとの十
分な接合による大きな熱伝導率、耐肌あれ性など
との総合効果によるものである。 第4表に溶融ガラス成形における型抜性試験の
結果を示す。 試験片は30mmφ×120の円柱状試片(内部水
冷)で、50mmφ×100の同心円筒の内径を有す
る雌型に滴下した高温(1050℃)のガラスを加圧
成形し引続き型抜きする操作を繰返えし200回行
ない30mmφ円筒面上に生じた1mm長さ以上のスリ
疵模様の数を読取つた結果である。 本ガラス成形金型用途には比較鋼P
(SUS420)クラスにCrメツキをしたものが一般
に使用されているが、第4表からわかるように本
発明材料は比較鋼PにCrメツキしたものより格
段にスリ疵模様が少なく型抜性がすぐれている事
がわかる。 これは本発明材料を構成するNi、W、Mo、
WC、Mo2C等の本質的にすぐれた型抜性による
ものである。 本発明材料において容積比でNiが96%を越え
ると耐溶損性、強度面で総合的に実用性能上不利
となること、またNi14%未満では延性上不利と
なるためNiの配合比を容積比で96〜14%に限定
した。 なお、HIP時の収縮率は大きくなるが、予備プ
レス成形を省略してHIP仕上を行なうことも可能
である。 以上に記述したように本発明材料はNiと熱伝
導率、高温強度が大きく、熱膨脹係数の小さい
W、Moあるいは耐溶損性のすぐれたWC、Mo2C
炭化物との組合せおよびHIPによる十分な圧密化
により強度、物理的性質、耐溶損性、靭性を兼備
し、また溶融ガラスに対する型抜性がすぐれてお
り、高融点金属鋳造用途、溶融ガラス成形用途に
適用し、すぐれた使用性能、寿命を与える新しい
金型材料とその製造方法を提供するものである。
[Table] The test specimen is a flat specimen tilted at 30 degrees to the horizontal plane, and while the back side is water-cooled, 5g molten metal is poured on the front surface at a height of 30 degrees.
The number of repetitions until the onset of seizure when repeatedly dropped from 100 mm is that of comparison material 0 (SKD61).
It is expressed as an index with a value of 100. The material of the present invention is a comparative 5% Cr hot work tool steel.
It can be seen that the melting and seizure resistance is much better than SKD61. This is due to the overall effect of the present invention material, such as W, Mo, WC, Mo 2 C, etc., which have essentially excellent resistance to melting and seizure, and high thermal conductivity and roughness resistance due to sufficient bonding with Ni. It is. Table 4 shows the results of the demoldability test in molten glass molding. The test piece was a 30 mmφ x 120 cylindrical specimen (internally water cooled), which was dropped into a female mold with a concentric cylinder inner diameter of 50 mmφ x 100 mm, pressure-molded with high temperature (1050℃) glass, and then mold-cut. This is the result of reading the number of scratch patterns with a length of 1 mm or more that occurred on a 30 mm diameter cylindrical surface after repeating the test 200 times. Comparative steel P is suitable for this glass forming mold application.
(SUS420) class steel plated with Cr is generally used, but as can be seen from Table 4, the material of the present invention has significantly fewer scratch patterns and excellent demoldability than the comparative steel P plated with Cr. I can see that it is. This is Ni, W, Mo, which constitutes the material of the present invention.
This is due to the inherently excellent demoldability of WC, Mo 2 C, etc. In the material of the present invention, if Ni exceeds 96% by volume, it will be disadvantageous in terms of overall practical performance in terms of erosion resistance and strength, and if Ni is less than 14%, it will be disadvantageous in terms of ductility. It was limited to 96-14%. Although the shrinkage rate during HIP increases, it is also possible to perform HIP finishing by omitting preliminary press molding. As described above, the material of the present invention is made of Ni, W, Mo, which has high thermal conductivity, high high-temperature strength, and small coefficient of thermal expansion, or WC, Mo2C , which has excellent erosion resistance.
Combined with carbide and sufficiently compacted by HIP, it has strength, physical properties, erosion resistance, and toughness, and has excellent demoldability for molten glass, making it suitable for high melting point metal casting and molten glass molding. The purpose is to provide a new mold material that can be applied, provide excellent usability and longevity, and a method for manufacturing the same.

【表】【table】

Claims (1)

【特許請求の範囲】 1 Ni粉末とW、Mo、WC、Mo2C粉末群の中の
1種または2種以上を容積比でNiが最終的に96
〜14%となるよう均一に混合したものを出発原料
とし、熱間静水圧プレス装置で圧密化したことを
特徴とする高融点金属鋳造または高温ガラス成形
用工具材料。 2 Ni粉末とW、Mo、WC、Mo2C粉末群の中の
1種または2種以上を容積比でNiが最終的に96
〜14%となるよう均一に混合しプレスにて予備成
形し、カプセルに入れて内部を真空としたのち封
着し、熱間静水圧プレス装置を使用し、温度980
〜1450℃で加圧して製造することを特徴とする高
融点金属鋳造または高温ガラス成形用工具材料の
製造方法。 3 Ni粉末W、Mo、WC、Mo2C粉末群の中の1
種または2種以上を容積比でNiが最終的に96〜
14%となるよう均一に混合したのち、真空中また
は水素中で加熱することにより還元し、これをプ
レスにて予備成形し、カプセルに入れて内部を真
空としたのち封着し、熱間静水圧プレス装置を使
用し、温度980〜1450℃で加圧して製造すること
を特徴とする高融点金属鋳造または高温ガラス成
形用工具材料の製造方法。
[Claims] 1 Ni powder and one or more of the W, Mo, WC, and Mo 2 C powder groups in a volume ratio such that Ni is finally 96
A tool material for high-melting point metal casting or high-temperature glass molding, characterized in that the starting materials are homogeneously mixed at ~14% and are compacted using a hot isostatic press device. 2 Ni powder and one or more of the W, Mo, WC, and Mo 2 C powder groups in a volume ratio of 96
Mix uniformly to ~14%, preform with a press, put it in a capsule, vacuum the inside, seal it, use a hot isostatic press device, and press at a temperature of 980.
A method for producing a tool material for high-melting point metal casting or high-temperature glass molding, which is produced by pressurizing at ~1450°C. 3 Ni powder W, Mo, WC, one of the Mo2C powder group
The volume ratio of the species or two or more species is finally 96 ~
After mixing uniformly to 14%, it is reduced by heating in vacuum or hydrogen, preformed in a press, placed in a capsule, evacuated inside, sealed, and hot-static. A method for manufacturing a tool material for high-melting point metal casting or high-temperature glass molding, characterized in that the manufacturing method uses a hydraulic press device and pressurizes at a temperature of 980 to 1450°C.
JP13794081A 1981-09-02 1981-09-02 Composite material for metallic mold and its manufacture by powder metallurgy Granted JPS5839759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13794081A JPS5839759A (en) 1981-09-02 1981-09-02 Composite material for metallic mold and its manufacture by powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13794081A JPS5839759A (en) 1981-09-02 1981-09-02 Composite material for metallic mold and its manufacture by powder metallurgy

Publications (2)

Publication Number Publication Date
JPS5839759A JPS5839759A (en) 1983-03-08
JPS6131175B2 true JPS6131175B2 (en) 1986-07-18

Family

ID=15210253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13794081A Granted JPS5839759A (en) 1981-09-02 1981-09-02 Composite material for metallic mold and its manufacture by powder metallurgy

Country Status (1)

Country Link
JP (1) JPS5839759A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247054C1 (en) * 1982-12-20 1984-05-10 Goetze Ag, 5093 Burscheid Spray powder for the production of wear-resistant coatings
JPS6086041A (en) * 1983-10-19 1985-05-15 Matsushita Electric Ind Co Ltd Mold material for direct press forming of optical glass lens
JPS60135502A (en) * 1983-12-26 1985-07-18 Hoya Corp Die material for molding glass lens
JPS63211555A (en) * 1987-02-26 1988-09-02 東芝ライテック株式会社 Jig for crush sealing of bulb
JPH0192196A (en) * 1987-06-01 1989-04-11 Toru Nishioka Automatic control system of ash crane
CN102329973B (en) * 2011-09-21 2013-04-17 西安理工大学 Preparation method for Ni-W alloy by using smelting method

Also Published As

Publication number Publication date
JPS5839759A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
CN103586296B (en) Mosaic ceramic drawing die and making method thereof
CN110330345B (en) Silicon nitride ceramic material, preparation method thereof and ceramic mold
CN112974774B (en) Silver-based composite material and preparation method thereof
CN114318038B (en) Boride modified Mo 2 FeB 2 Preparation method of base cermet
CN111531166A (en) Method for improving sintering density of iron-based powder metallurgy part
JPS6131175B2 (en)
CN113443919A (en) Amorphous alloy nozzle material and preparation method thereof
CN106673680B (en) Magnesia carbon brick and preparation method thereof
JPH02185904A (en) Hot pressing of powder and granule
CN110983090A (en) Sintering method of carbon-containing molybdenum alloy
CN115896495A (en) Method for rapidly sintering high-uranium-density high-thermal-conductivity composite core block
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JPS5853058B2 (en) Composite mold material and its manufacturing method using powder metallurgy
JPS6260461B2 (en)
CN115323244B (en) High-entropy alloy material and preparation method thereof
CN103938051A (en) High-density cermet material resistant to molten aluminum corrosion and manufacturing method thereof
CN117026015B (en) High-temperature-resistant alloy and preparation method and application thereof
JP4178070B2 (en) Method for canning sintered preform and method for producing sintered material thereby
JP2599729B2 (en) Ingot making method for alloy articles
RU2052319C1 (en) Method of making mouth ring for glass molding machine
JPS58147531A (en) Composite jig and tool material and its manufacture
CN117127090A (en) Process for preparing ceramic particle reinforced steel-based composite material
CN116145001A (en) Novel heat-resistant sliding block material for push steel type heating furnace and production process
CN116589266A (en) Slag line low-carbon magnesia carbon brick for refining ladle and preparation method and application thereof
CN112760544A (en) Formula and preparation process of high-temperature-resistant vapor chamber for 3D glass hot bending machine