JPS6131172B2 - - Google Patents

Info

Publication number
JPS6131172B2
JPS6131172B2 JP52062355A JP6235577A JPS6131172B2 JP S6131172 B2 JPS6131172 B2 JP S6131172B2 JP 52062355 A JP52062355 A JP 52062355A JP 6235577 A JP6235577 A JP 6235577A JP S6131172 B2 JPS6131172 B2 JP S6131172B2
Authority
JP
Japan
Prior art keywords
sintering
vacuum
amount
weight
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52062355A
Other languages
Japanese (ja)
Other versions
JPS53146904A (en
Inventor
Yasushi Takeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6235577A priority Critical patent/JPS53146904A/en
Publication of JPS53146904A publication Critical patent/JPS53146904A/en
Publication of JPS6131172B2 publication Critical patent/JPS6131172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • Contacts (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に高耐電圧を必要とする真空し
や断器に使用する接点材料の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a contact material used in vacuum shields and circuit breakers that particularly require a high withstand voltage.

〔従来の技術〕[Conventional technology]

従来、大電流しや断性能を要求されるしや断器
用の接点材料としては、主としてCu―Biが用い
られており(特公昭41―12131号公報参照)、該
Cu―Bi材料の特徴は、耐電圧性を余り低下する
ことなく耐溶着性を十分小さい値に抑えることが
できる点にあるとされている。
Conventionally, Cu-Bi has been mainly used as a contact material for shield breakers that require large current shielding performance (see Japanese Patent Publication No. 12131/1973).
A feature of Cu--Bi material is said to be that it is possible to suppress welding resistance to a sufficiently small value without reducing voltage resistance too much.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記接点材料には1%以上のBiが含ま
れており、これは排気工程中の高温加熱により、
その一部が接点内から蒸発、拡散する。そしてこ
の蒸発したBiは排気ポンプにより、真空しや断器
の容器外へ排出される訳であるが、それでもかな
りのBiが真空容器内の金属シールドや絶縁容器に
付着し、これが真空しや断器の耐圧を劣化させる
大きな原因の1つになつている。従つてこのよう
な接点を用いた真空しや断器では、高耐圧を要求
される用途に用いる場合は長大な開極距離が必要
となり、実用上極めて不利であり、かつ不経済で
あつた。
However, the above contact material contains more than 1% Bi, which is caused by high temperature heating during the exhaust process.
Some of it evaporates and diffuses from within the contact. This evaporated Bi is then exhausted by the exhaust pump to the outside of the vacuum chamber and disconnector, but a considerable amount of Bi still adheres to the metal shield and insulating container inside the vacuum chamber, and this causes the vacuum chamber to disconnect. This is one of the major causes of deterioration of the withstand voltage of the device. Therefore, when using a vacuum circuit breaker using such a contact in an application requiring a high withstand voltage, a long opening distance is required, which is extremely disadvantageous and uneconomical in practice.

また、上記欠点を除去できる接点材料として、
従来、特開昭50−55870号公報に記載されている
ように、50重量%のCuと50重量%のCrとを焼結
してなるものがあつたが、この従来のものでは高
耐圧、大電流の特性を得るには、上記焼結後高温
での鍛造加工あるいは再プレス加工を施す必要が
あつた。
In addition, as a contact material that can eliminate the above drawbacks,
Conventionally, as described in JP-A No. 50-55870, there was a product made by sintering 50% by weight of Cu and 50% by weight of Cr, but this conventional product had a high withstand voltage, In order to obtain large current characteristics, it was necessary to perform forging at a high temperature or re-pressing after the sintering.

本発明は上記従来の状況に鑑みてなされたもの
で、従来のような鍛造加工等を必要とすることな
く高耐電圧、大電流に適した特性が得られる真空
しや断器用接点材料の製造方法を提供することを
目的としている。
The present invention has been made in view of the above-mentioned conventional situation, and is directed to the production of a contact material for vacuum shields and disconnectors that can obtain characteristics suitable for high withstand voltage and large current without the need for conventional forging processes, etc. The purpose is to provide a method.

ところで、Crの真空中の耐圧が高いことは従
来から知られている。しかしCrを接点材料とし
た場合、Crは耐熱性金属であるため熱電子放射
特性が強く、Cr単独では大きなしや断性能は期
待できず、またCrは熱伝導率が小さく、接触抵
抗が大きいため、大電流用途のしや器には温度上
昇が過大となり使用が困難である。
By the way, it has been known for a long time that Cr has a high withstand pressure in vacuum. However, when Cr is used as a contact material, since Cr is a heat-resistant metal, it has strong thermionic emission characteristics, so Cr alone cannot be expected to have great shearing performance, and Cr has low thermal conductivity and high contact resistance. Therefore, it is difficult to use in a heater for large current applications because the temperature rise is excessive.

そこで本発明者は、このようなCrの弱点をCu
を添加することにより補うことを試みた。一般に
Crは非常に酸化しやすい材料であるため、この
ようなCuとCrの合金は通常の製造方法では製造
困難である。またCuを添加することによる耐圧
性能の劣化を防ぐさめには、CuとCrが均一に存
在する必要がある。従来は接点材料は鋳造による
のが普通であつたが、鋳造法によれば、Cu中に
Crを均質に分散させることが困難であり、又、
高価なものとなる。
Therefore, the present inventors solved this weakness of Cr by using Cu.
An attempt was made to compensate by adding . in general
Since Cr is a material that easily oxidizes, it is difficult to manufacture such an alloy of Cu and Cr using normal manufacturing methods. Further, in order to prevent deterioration of pressure resistance performance due to the addition of Cu, Cu and Cr must be present uniformly. Conventionally, contact materials were usually made by casting, but according to the casting method, copper was mixed into
It is difficult to homogeneously disperse Cr, and
It becomes expensive.

本発明者は、これらを勘案して、種々の実験に
よりCuとCrを粉末治金法により、真空中にて焼
結する方法がこの接点を製造するのに最適であ
り、しかもCuを65〜80重量%、Crを35〜20重量
%にすれば、上記従来にような焼結後の鋳造加工
等は不要になることを見い出した。
Taking these into consideration, the present inventor has determined through various experiments that a method of sintering Cu and Cr in vacuum using a powder metallurgy method is optimal for manufacturing this contact, and that Cu is It has been found that by setting the content of Cr to 80% by weight and 35 to 20% by weight, the above-mentioned conventional casting process after sintering becomes unnecessary.

〔問題点を解決するための手段〕[Means for solving problems]

そこでこの発明に係る真空しや断器用接点材料
の製造方法は、65〜80重量%のCuと35〜20重量
%のCrと粉末治金法により真空中で焼結するよ
うにしたものである。
Therefore, the method for manufacturing a contact material for a vacuum sinter and disconnector according to the present invention involves sintering 65 to 80% by weight of Cu and 35 to 20% by weight of Cr in a vacuum using a powder metallurgy method. .

〔作用〕[Effect]

この発明においては、焼結後の鋳造加工なし
に、Crの酸化を防止しつつCr均一に分散した接
点を安価に提供できる。
In this invention, a contact in which Cr is uniformly dispersed can be provided at a low cost while preventing the oxidation of Cr without performing a casting process after sintering.

〔実施例〕〔Example〕

ここで、本発明の実施例を説明する前に、Cu
とCrの混合比を変化させて得られた接点材料の
諸特性を第2図ないし第7図に示す。この場合、
各混合比の接点材料は所定の空孔率に調整された
ものである。
Here, before explaining the embodiments of the present invention, Cu
Figures 2 to 7 show the properties of contact materials obtained by varying the mixing ratio of Cr and Cr. in this case,
The contact material of each mixing ratio was adjusted to have a predetermined porosity.

第2図はCu量と導電率との関係を示し、同図
からCu量の増加とともに導電率が増大すること
がわかる。
FIG. 2 shows the relationship between the amount of Cu and the electrical conductivity, and it can be seen from the figure that the electrical conductivity increases as the amount of Cu increases.

第4図はCu量と表面硬度との関係を示し、同
図から硬度はCu量とともに低下していることが
わかる。
Figure 4 shows the relationship between the amount of Cu and the surface hardness, and it can be seen from the figure that the hardness decreases with the amount of Cu.

第3図はCu量と接触抵抗との関係を示し第3
図の特性は、第2図、第4図に示すように、Cu
量が増加するとともに導電率が上がり、かつ硬度
が低下して有効接触面積が増すことの相乗効果に
より、接触抵抗が低下したものと解釈される。
Figure 3 shows the relationship between Cu content and contact resistance.
As shown in Figures 2 and 4, the characteristics of the Cu
It is interpreted that the contact resistance decreased due to the synergistic effect of increasing the electrical conductivity and decreasing the hardness, increasing the effective contact area as the amount increases.

第5図は約200Aの電流を5万回開閉した後の
耐電圧とCu量との関係を示し、同図から耐圧は
Cu量とともに低下することがわかるが、その低
下はCu量が40%から80%の間ではさほど大きく
なく、80%をこえると急速に低下することがわか
る。
Figure 5 shows the relationship between the withstand voltage and the amount of Cu after a current of approximately 200A is switched on and off 50,000 times.
It can be seen that it decreases with the amount of Cu, but the decrease is not so large when the amount of Cu is between 40% and 80%, and it decreases rapidly when it exceeds 80%.

第6図はCu量とさい断電流との関係を示し、
同図からさい断電流はCu量が40〜80%の間では
ほぼ一定の、平均約2.9Aとなる鍋底型の特性を
示す。本発明による接点のさい断電流値の特徴
は、たとえばCu―Bi系にくらべて、かなり平均
値が低いこと、分布の巾が小さいこと、又、電流
開閉後でも値がそれ程変化しないこと等である。
なおCu―Bi系に限らず、低沸点材料を少量添加
した接点のさい断電流値は、電流開閉回数に対す
るバラツキが比較的大きい。
Figure 6 shows the relationship between Cu amount and shearing current,
As can be seen from the figure, the severing current is almost constant between 40% and 80% Cu, and exhibits a pot-bottom type characteristic with an average of about 2.9A. The characteristics of the breaking current value of the contact according to the present invention include, for example, compared to the Cu-Bi system, the average value is considerably lower, the width of the distribution is smaller, and the value does not change much even after the current is switched on and off. be.
Note that, not only Cu-Bi type contacts, but also the cutting current values of contacts to which a small amount of low-boiling point material is added have relatively large variations depending on the number of current openings and closings.

第7図はCu量と溶着特性との関係を示し、こ
のデータはモデル管の接点に20Kgの加圧力を加え
た状態で所定の電流を流し、しかる後に100Kgの
力で引外し可能であつた最大電流値を示す。同図
からCu量が40〜90%の範囲では、従来の操作機
構で十分引外し可能であるが、その他の範囲では
急速に溶着力が増大することがわかる。
Figure 7 shows the relationship between the amount of Cu and the welding characteristics, and this data shows that when a specified current was applied to the contact point of the model pipe with a pressure of 20 kg applied, it was possible to trip with a force of 100 kg. Indicates the maximum current value. From the same figure, it can be seen that when the Cu content is in the range of 40 to 90%, the conventional operation mechanism can be used to sufficiently remove the weld, but in other ranges, the welding force increases rapidly.

第8図はCr粒度と耐電圧との関係を示し、同
図からCrの平均粒径が100μm以下であれば、ほ
ぼ一定の耐電圧が得られるが、それ以上になると
相当耐電圧が劣化するため好ましくないことがわ
かる。また大電流しや断能力については、Cu量
が40%以上であれば、実用上何等支障はない。
Figure 8 shows the relationship between Cr grain size and withstand voltage. From the figure, if the average grain size of Cr is 100 μm or less, a nearly constant withstand voltage can be obtained, but if it exceeds this, the equivalent withstand voltage deteriorates. It turns out that this is not desirable. Also, regarding the large current shedding ability, if the Cu content is 40% or more, there will be no practical problem.

そこで、我々は上記実験により以下の結論を得
た。即ち、40〜80重量%のCuと、60〜20重量%
の平均粒径100μm以下のCrとを真空中で粉末治
金法により焼結して得た合金より成る接点材料
は、高圧大電流用の真空しや断器の接点として非
常に優れた諸特性を有しており、また後述するよ
うにCuを65〜80重量%、Crを35〜20重量%とす
れば、焼結後に鋳造加工を施すことなく所定の密
度のものが得られ、焼結だけで上記諸特性が得ら
れる。
Therefore, we obtained the following conclusion from the above experiment. i.e. 40-80% by weight Cu and 60-20% by weight
A contact material made of an alloy obtained by sintering Cr with an average particle size of 100 μm or less in a vacuum using a powder metallurgy method has excellent properties as a contact for vacuum shields and breakers for high voltage and large current. Moreover, as described later, if Cu is 65 to 80% by weight and Cr is 35 to 20% by weight, a product with a specified density can be obtained without casting after sintering, and sintering The above characteristics can be obtained with just one.

以下、上記各実験結果によつて得られた本発明
の実施例について説明する。
Examples of the present invention obtained from the above experimental results will be described below.

第1実施例: 100μmより小さい平均粒径のCu粉とCr粉とを
80対20重量比で混合し、この混合粉の所定量を所
望の形状の金型に充填し、約3ton/cm2の圧力にお
いて冷間圧縮する。このようにして得られた成形
体を最悪真空度1Torr程度の雰囲気において、
1080℃×1hrの焼結を行なうことにより、理論密
度比98%(空孔率2%)の焼結体が得られた。
First example: Cu powder and Cr powder with an average particle size smaller than 100 μm are
Mixed at a weight ratio of 80:20, a predetermined amount of this mixed powder is filled into a mold of a desired shape, and cold compressed at a pressure of about 3 tons/cm 2 . The molded product obtained in this way is placed in an atmosphere with a worst-case vacuum of about 1 Torr.
By performing sintering at 1080°C for 1 hour, a sintered body with a theoretical density ratio of 98% (porosity: 2%) was obtained.

第2実施例: 100μmより小さい平均粒径のCu粉とCr粉とを
75対25重量比で混合し、この混合粉の所定量を所
望の形状の金型に充填し、約3ton/cm2の圧力にお
いて冷間圧縮する。このようにして得られた成形
体を最悪真空度1Torr程度の雰囲気において、
1100℃×1hrの焼結を行なうことにより、理論密
度比98%(空孔率2%)の焼結体が得られた。
Second example: Cu powder and Cr powder with an average particle size smaller than 100 μm
Mixed at a weight ratio of 75:25, a predetermined amount of this mixed powder is filled into a mold of a desired shape, and cold-pressed at a pressure of about 3 tons/cm 2 . The molded product obtained in this way is placed in an atmosphere with a worst-case vacuum of about 1 Torr.
By performing sintering at 1100°C for 1 hour, a sintered body with a theoretical density ratio of 98% (porosity: 2%) was obtained.

第3実施例: 100μmより小さい平均粒径のCu粉とCr粉とを
65対35重量比で混合し、この混合粉の所定量を所
望の形状の金型に充填し、約5ton/cm2の圧力にお
いて冷間圧縮する。このようにして得られた成形
体を最悪真空度1Torr程度の雰囲気において、
1150℃×1hrの焼結を行うことにより、理論密度
比98%(空孔率2%)の焼結体が得られた。なお
この実施例の条件で焼結温度のみを1080℃にした
場合、空孔率は8%であつた。
Third example: Cu powder and Cr powder with an average particle size smaller than 100 μm
Mixed at a weight ratio of 65:35, a predetermined amount of this mixed powder is filled into a mold of a desired shape, and cold-pressed at a pressure of about 5 tons/cm 2 . The molded product obtained in this way is placed in an atmosphere with a worst-case vacuum of about 1 Torr.
By performing sintering at 1150°C for 1 hour, a sintered body with a theoretical density ratio of 98% (porosity: 2%) was obtained. Note that when only the sintering temperature was set to 1080° C. under the conditions of this example, the porosity was 8%.

以上のように第1〜第3実施例による接点材料
は、65〜80重量%のCuと35〜20重量%のCrとを
あらかじめ混合成形し、これを1Torr程度の雰囲
気において1000℃ないし1200℃の温度にて焼結し
て得られたものである。ここで酸化を防止するた
めには、それ程高真空は必要ではなく、上述の如
く1Torr程度でよいが、この場合はCu粉が吸着し
ているガスを有効に放出させるために1100℃以上
のCuが溶融する温度域での焼結が望ましい。
As described above, the contact materials according to the first to third embodiments are prepared by pre-mixing and molding 65 to 80% by weight of Cu and 35 to 20% by weight of Cr, and heating the mixture at 1000°C to 1200°C in an atmosphere of about 1 Torr. It was obtained by sintering at a temperature of . In order to prevent oxidation, a very high vacuum is not necessary, and a vacuum of about 1 Torr is sufficient as mentioned above, but in this case, in order to effectively release the gas adsorbed by Cu powder, Cu It is desirable to sinter in a temperature range where the metal melts.

第1図に本発明の製造方法により得られた接点
材料の組織の顕微鏡写真を示す。この第1図に示
した接点材料は、75重量%のCuと25重量%のCr
とを混合し、1100℃で焼結した場合を示す。この
場合の空孔率は2%である。写真から明らかなよ
うに、Cu中にCrの粒子(白い部分)が良く分散
していることがわかる。
FIG. 1 shows a microscopic photograph of the structure of a contact material obtained by the manufacturing method of the present invention. The contact material shown in Figure 1 consists of 75% Cu and 25% Cr by weight.
This shows the case of mixing and sintering at 1100℃. The porosity in this case is 2%. As is clear from the photo, Cr particles (white parts) are well dispersed in Cu.

次に、上記焼結体の空孔率について説明する
と、焼結体の空孔率はCuとCrの混合比、焼結条
件などにより変化するが、Cu量を変化させた場
合、所定の密度に調整するためには、上記第1〜
第3実施例に示すようにCu量が65〜80重量%の
場合であれば焼結条件などを適当に設定すること
により実現できる。しかるに、Cu量が65%以下
となつた場合は、焼結条件を適当に設定しても所
定の密度に調整することは次第に困難となり、例
えばCu量が50%の場合(後述する第1比較例参
照)は、焼結のみでは空孔率12〜13%以下にする
ことはできない。このためCu量50%の場合等に
おいては、所定の密度を得るためには特開昭50―
55870号公報に記載されているように、焼結後に
高温での鋳造加工あるいは再プレス加工を施す必
要がある。
Next, to explain the porosity of the sintered body mentioned above, the porosity of the sintered body changes depending on the mixing ratio of Cu and Cr, sintering conditions, etc., but when the amount of Cu is changed, the predetermined density In order to adjust to
As shown in the third embodiment, if the Cu amount is 65 to 80% by weight, this can be achieved by appropriately setting the sintering conditions. However, when the Cu amount is 65% or less, it becomes increasingly difficult to adjust the density to a specified level even if the sintering conditions are set appropriately.For example, when the Cu amount is 50% (the first comparison described below (see example) cannot reduce the porosity to below 12-13% by sintering alone. For this reason, in cases such as when the Cu content is 50%, in order to obtain the specified density, it is necessary to
As described in Japanese Patent No. 55870, it is necessary to perform high-temperature casting or re-pressing after sintering.

これに対し本発明のようにCu量が65〜80%の
場合は、焼結だけで所定の密度のものが得られる
ものである。
On the other hand, when the Cu amount is 65 to 80% as in the present invention, a material with a predetermined density can be obtained only by sintering.

ここで、空孔率に影響する条件はいくつかある
が、そのうち焼結温度だけに着目すれば、液相を
生ずる温度で焼結する方が小さくなる。上記第1
実施例はCuの比率が高いので液相が生じない温
度で焼結しても空孔率は2%であつたが、第2,
第3実施例ではCuの比率が低いので液相が生ず
る温度で焼結して空孔率を2%としている。
Here, there are several conditions that affect the porosity, but if we focus only on the sintering temperature, the porosity will be smaller if sintered at a temperature that produces a liquid phase. 1st above
In the example, the porosity was 2% even when sintered at a temperature where a liquid phase did not occur due to the high proportion of Cu.
In the third embodiment, since the proportion of Cu is low, sintering is performed at a temperature at which a liquid phase is generated, and the porosity is set to 2%.

なお、本発明の効果をより明確にするために、
Cu量が65%以下の場合の比較例を以下に示す。
In addition, in order to clarify the effects of the present invention,
A comparative example where the amount of Cu is 65% or less is shown below.

第1比較例: 100μmより小さい平均粒径のCu粉とCr粉とを
50対50重量比で混合し、この混合粉の所定量を所
望の形状の金型に充填し、約5ton/cm2の圧力にお
いて冷間圧縮する。このようにして得られた成形
体を最悪真空度1Torr程度の真空中において、
1150℃×1hrの焼結を行うことにより、理論密度
比88%(空孔率12%)の焼結体が得られた。
First comparative example: Cu powder and Cr powder with an average particle size smaller than 100μm
Mixed at a weight ratio of 50:50, a predetermined amount of this mixed powder is filled into a mold of a desired shape, and cold compressed at a pressure of about 5 tons/cm 2 . The molded product obtained in this way is placed in a vacuum with a worst-case vacuum of about 1 Torr.
By performing sintering at 1150°C for 1 hour, a sintered body with a theoretical density ratio of 88% (porosity 12%) was obtained.

第2比較例: 100μmより小しい平均粒径のCu粉とCr粉とを
30対70の重量比で混合し、この混合粉の所定量を
所望の形状の金型に充填し、約5ton/cm2の圧力に
おいて冷間圧縮する。このようにして得られた成
形体を最悪真空度1Torr程度の真空中において
1150℃×1hrの焼結を行うことにより、理論密度
比80%(空孔率20%)の焼結体が得られた。
Second comparative example: Cu powder and Cr powder with an average particle size smaller than 100 μm
Mixed at a weight ratio of 30:70, a predetermined amount of this mixed powder is filled into a mold of a desired shape, and cold compressed at a pressure of about 5 tons/cm 2 . The molded product obtained in this way is placed in a vacuum with a worst case vacuum level of about 1 Torr.
By performing sintering at 1150°C for 1 hour, a sintered body with a theoretical density ratio of 80% (porosity 20%) was obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、Cuを65〜80重
量%、Crを35〜20重量%とし、これを真空中に
おいて焼結するようにしたので、従来のような鋳
造加工を施すことなく高耐電圧、大電流用として
優れた諸特性を有する真空しや断器の接点材料が
容易に得られる効果がある。
As described above, according to the present invention, Cu is 65 to 80% by weight and Cr is 35 to 20% by weight, and these are sintered in a vacuum, so there is no need for conventional casting processing. This has the effect of easily obtaining a contact material for vacuum shields and disconnectors that have excellent properties for high withstand voltage and large current applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による接点材料の組
織顕微鏡写真、第2図はCu量と導電率との関係
を示す図、第3図はCu量と接触抵抗との関係を
示す図、第4図はCu量と表面硬度との関係を示
す図、第5図はCu量と耐圧との関係を示す図、
第6図はCu量とさい断電流値との関係を示す
図、第7図はCu量と耐溶着性との関係を示す
図、第8図はCrの平均粒径と耐電圧との関係を
示す図である。
FIG. 1 is a micrograph of the structure of a contact material according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the amount of Cu and conductivity, and FIG. 3 is a diagram showing the relationship between the amount of Cu and contact resistance. Figure 4 is a diagram showing the relationship between Cu content and surface hardness, Figure 5 is a diagram showing the relationship between Cu content and withstand pressure,
Figure 6 is a diagram showing the relationship between Cu content and shearing current value, Figure 7 is a diagram showing the relationship between Cu content and welding resistance, and Figure 8 is a diagram showing the relationship between Cr average grain size and withstand voltage. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 65〜80重量%のCuと、35〜20重量%の平均
粒径100μm以下のCrとを粉末治金法により真空
中で焼結してなることを特徴とする真空しや断器
用接点材料の製造方法。
1. A contact material for vacuum shields and breakers, characterized in that it is made by sintering 65 to 80% by weight of Cu and 35 to 20% by weight of Cr with an average particle size of 100 μm or less in vacuum using a powder metallurgy method. manufacturing method.
JP6235577A 1977-05-27 1977-05-27 Preparation of material of contact for vacuum circuit breaker Granted JPS53146904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6235577A JPS53146904A (en) 1977-05-27 1977-05-27 Preparation of material of contact for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6235577A JPS53146904A (en) 1977-05-27 1977-05-27 Preparation of material of contact for vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JPS53146904A JPS53146904A (en) 1978-12-21
JPS6131172B2 true JPS6131172B2 (en) 1986-07-18

Family

ID=13197715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6235577A Granted JPS53146904A (en) 1977-05-27 1977-05-27 Preparation of material of contact for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPS53146904A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873928A (en) * 1981-10-03 1983-05-04 株式会社明電舎 Vacuum breaker
JPS61124542A (en) * 1984-11-21 1986-06-12 Toshiba Corp Electric contact point material and its production

Also Published As

Publication number Publication date
JPS53146904A (en) 1978-12-21

Similar Documents

Publication Publication Date Title
US6551374B2 (en) Method of controlling the microstructures of Cu-Cr-based contact materials for vacuum interrupters and contact materials manufactured by the method
US4032301A (en) Composite metal as a contact material for vacuum switches
US4008081A (en) Method of making vacuum interrupter contact materials
US4430124A (en) Vacuum type breaker contact material of copper infiltrated tungsten
EP0622816B1 (en) Electrode and process for forming an electrode material
JP2908071B2 (en) Contact material for vacuum valve
JPS6131172B2 (en)
JPS6337072B2 (en)
EP0460680B1 (en) Contact for a vacuum interrupter
US3548135A (en) Contacts for vacuum interrupters
JPH10255603A (en) Contact material for vacuum valve
JP4143308B2 (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
KR820000167B1 (en) Method of manufacture for a vaccume breacker
JP4619821B2 (en) Contact material and vacuum valve
JP2831834B2 (en) Manufacturing method of contact material for vacuum valve
KR820000166B1 (en) Vaccume breacker
JPS6032217A (en) Vacuum interrupter
KR0171607B1 (en) Vacuum circuit breaker and contact
KR100283915B1 (en) Manufacturing method of contact material for vacuum breaker
JPH07192565A (en) Contact material and its manufacture
SU1368927A1 (en) Material for contacts of vacuum arc chutes
JPH08209268A (en) Copper-chromium-nickel composite material and its production
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker
JPS6316849B2 (en)