JPS6316849B2 - - Google Patents

Info

Publication number
JPS6316849B2
JPS6316849B2 JP8096981A JP8096981A JPS6316849B2 JP S6316849 B2 JPS6316849 B2 JP S6316849B2 JP 8096981 A JP8096981 A JP 8096981A JP 8096981 A JP8096981 A JP 8096981A JP S6316849 B2 JPS6316849 B2 JP S6316849B2
Authority
JP
Japan
Prior art keywords
alloy
electrode
sintered body
weight
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8096981A
Other languages
Japanese (ja)
Other versions
JPS57196425A (en
Inventor
Ryuji Watanabe
Hisashi Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8096981A priority Critical patent/JPS57196425A/en
Publication of JPS57196425A publication Critical patent/JPS57196425A/en
Publication of JPS6316849B2 publication Critical patent/JPS6316849B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真空しや断器用電極に係り、さらに詳
しくは低サージ用の改善された真空しや断器用電
極及びその製造方法に関する。 従来、真空しや断器用電極の中で、とくに低サ
ージ型電極として、Cu又はCu―Co合金にBi、
Pb、Te又はSeのような低融点・高蒸気圧元素を
多量添加したもの及び粉末冶金法で製造された
Ag―WcあるいはAg―Wc―Co系の材料になるも
のが知られている。前者のCu合金系の電極は、
しや断前の初期の状態においては低サージ性を示
すが、短絡電流をしや断後にBi、Pb等の低融
点・高蒸気圧元素のしみ出しや蒸発等が起つてサ
ージ特性が低下する傾向があり、信頼性に乏しい
ので実用的でない。一方、後者のAg系のものは
しや断前後とも良好な低サージ性を示すが、あま
りしや断性能が良くないため大容量化に限界があ
り、しかも材質的にもろいため機械加工性が良く
ないなど製造上に問題がある。 本発明者らは、かかる従来品の欠陥を克服すべ
く研究し、改善された新規な低サージ型電極を見
出し先に提案した(特願昭55−81425号)。提案に
係るCo―Ag―Te又はSe系電極は、しや断前後
の低サージ性が優れるばかりでなく、高い大電流
しや断性能を有するものである。しかし、Co―
Ag系の溶融金属は2液相分離型であるため、通
常の溶融製造ができないので、焼結、含浸等の手
段で製造されるが、この場合一般的には、ガスフ
リー化を達成するには、Co焼結成形体にAg、
Te、Se等を含浸する方法を採用しなければなら
なかつた。しかしながら、Co粉末状の成形性は
それほどよいものではなく、稜縁やコーナーがか
けたり、あるいは成形体の焼結の際にヒビ割れな
どの不都合な現象が生じ易く、極めて作業性が悪
いという欠点がある。また、ベース金属に純Co
を用いると原材料費があまりに高価となり、著し
く工業的に不利益である。 本発明者らは、かかる欠点を解消すべく更に研
究を重ね、上記Co―Ag―Te、Se系電極と同等
もしくはそれ以上の性能を有し、しかも容易に且
つ安価に製造しうる改善された電極及びその製造
法を見出した。 すなわち、本発明の目的は、改善された低サー
ジ性及び高しや断性を有する真空しや断器用電極
を提供するにある。また他の目的は製造が容易で
且つ低価格の真空しや断器用電極の新規製造方法
を提供するにある。本発明のその他の目的ないし
優れた効果は以下の記載から一層明らかとなるで
あろう。 本発明者らは、低サージ性を失うことなく、高
しや断性を付与させた電極の開発において、Fe
―Coの組合せをベースとする電極について研究
を進めた結果、本発明に到達した。 本発明によれば、粉末状Fe及びCo混合物又は
Fe―Co合金粉末の焼結成形体中に、Ag―Te、
Ag―Se又はAg―Te―Seの合金が含浸されてな
る真空しや断器用電極、及び粉末状Fe及びCo混
合物又は非酸化性雰囲気中で溶解したFe―Co合
金の粉末を成形したのち、該成形体を非酸化性雰
囲気中で焼成し、該焼成成形体に、あらかじめ非
酸化性雰囲気中で溶解したAg―Te、Ag―Se又
はAg―Te―Se合金の溶湯を浸透させる該電極の
製造方法が提供される。 本発明において、焼成成形体はFe及びCoの粉
末混合物又はFe―Co合金粉を成形焼成して製造
される。しかし、本発明に係る電極としては、合
金の焼成成形体をスケルトンとするものが一層好
ましい。FeとCoから構成されるスケルトンは、
Coを25〜75重量%含むものが用いられる。この
量範囲を逸脱すると本発明の目的が達成されない
ので不都合である。Fe―Co合金の場合には、理
由は不明であるが、Co量が約26〜76重量%の範
囲で電気比抵抗値が下がること、そしてかかる材
料においては長範囲にわたつてFeとCoの規則格
子が形成され、焼晶格子点にある原子の規則性も
良くなつて電気伝導を支配する自由電子の散乱が
少なくなるために比抵抗が小さくなると考えられ
ている。とくにCo量が50〜76重量%の組成のも
のは純Feや純Coの常温における電気比抵抗値よ
りも小さくなり、いわゆる導電材料として望まし
いものとなる。Fe―Co合金の製造は、両金属を
加熱溶融して容易に得られるが、非酸化性雰囲気
で加熱溶融することが一層有効である。合金の場
合はFeの酸化が防止できるので粉末の品質を管
理するのに好都合である。 かかるスケルトンに対し、本発明においては、
Ag―Te、Ag―Se又はAg―Te―Seの合金を溶
融浸透させるが、かかる溶融合金もまた非酸化性
雰囲気で行なうことが本発明の目的達成のために
極めて望ましい、またそのスケルトンへの浸透工
程も非酸化性雰囲気中で行なわれる。本発明にお
いてスケルトンに溶融浸透させる上記Ag合金類
は、Agに対しTe及び(又は)Seを3〜70重量含
有させたAg合金であり、3重量%未満では低サ
ージ性が不充分となるので好ましくない。また70
重量%を超えると、TeやSeの単体が遊離して蒸
気が出易く、従つてアークが発生し易くなり真空
しや断能が低下して不都合である。AgとTe又は
SeはAg2―Te、Ag2―Seの化合物状態でもつと
も安定化するようである。本発明においては、ス
ケルトンに対し上記Ag系合金を浸透させて電極
を製造するが、これは金属Coと金属Agが固溶し
ないことに基づいており、浸透手段として非酸化
性ガスを用いて強制加圧含浸が好都合に利用でき
る。 また、浸透含浸させるAg系合金の量は、スケ
ルトンに対し10〜80重量%である。10重量%未満
では低サージ性及び真空しや断電流効果が低くな
り、また80重量%を超えると、しや断電流時に蒸
気を介してアークが発生しさい断が不能となるの
で不都合である。 本発明に係る電極は、極めて低サージ性で高い
真空しや断性を有する実用性の高いものである。
Fe―Co合金は、一般に常温では導電性が良いが、
高温で電気抵抗が急激に増大し導電性を低下させ
る限流材料的性質を有し、従つて高温下での電気
抵抗の増大により電極面を昇温させる。しかし該
性質がかえつてAg系溶浸合金を安定化させて、
さい断電流低減効果が得られるのではないかと推
定される。 本発明に係る電極の製造において、Fe―Co合
金粉末は還元、脱ガス等により、ガスフリー化す
ることが容易であり、また成形性及び機械加工性
に優れている。さらにAg系溶浸合金の溶湯の浸
透性もよく、スケルトンの気孔部に容易に浸透し
て、例えば、その約96〜98%に溶湯が充てん含浸
されることも確認された。 本発明の電極の製造に用いるスケルトンの気孔
率は、それほど重要ではないが、一般に製造の容
易さから15〜60%、好ましくは30〜55%が採用さ
れる。気孔率は、スケルトン成形用粉末の粒度、
成形温度、とくに成形圧力により容易にコントロ
ールすることができる。大きい気孔率のスケルト
ンを得るには、低い成形圧で成形すればよいが、
あらかじめAg粉末をスケルトン成形用粉末に加
えておくと一層有効である。Ag粉末を加えるこ
とは溶浸性を高めるには有効であるが、あまり得
策でない。 溶浸合金は、ガスフリー化のためには母合金化
しておくことが良い。母合金化は、例えばAgを
真空中で溶解し、直ちにArガスを封入してArガ
スの雰囲気下にTe、Se等を加えることにより、
それらの蒸発損失を防止しつつ行なうことができ
る。この方法は、Agに対しTe、Seが10%以下の
場合に可能であり、それ以上では添加金属の蒸発
が激しく困難である。10%以上の場合には、真空
封じした石英管にAg、Te、Se原料を入れ、この
管内で加熱溶解―凝固させる方法がとられる。 本発明に係る電極は、その性能及び製造の容易
さから、気孔率40〜50%のスケルトンに溶浸合金
を含浸させたものが極めて実用的である。 以下、実施例により本発明を一層詳細に説明す
る。 実施例 1 電解Fe1.5Kg及び電解Co1.5Kgを1〜5×
10-5torrの真空下に高周波溶解し、全型に鋳込ん
だ。この合金をとう砕して200メツシユアンダー
の粉末をつくつた。この粉末を径30mm×高さ30mm
の金型に入れて1.5〜2.0ton/cm2の圧力で圧縮成
形し、水素ガス中で900〜950℃の温度下に焼結し
たのち、950〜1000℃の温度で真空脱ガス処理し
た。得られたFe―50Co合金粉末成形体の残存気
孔率は約45%であつた。 一方、黒鉛るつぼに、AgとTeが9:1の重量
割合の合金を入れて真空下に高周波加熱溶融し
た。溶けおちを確認後、上記の成形スケルトンを
降下させて合金溶湯中に浸漬した。これにArガ
スを圧入して約20分保持したのち、上記スケルト
ンを上部へ引き上げ炉冷した。このようにして得
られたスケルトンの含浸成形体は、気孔の約98%
が溶浸合金で充てんされていた。 添付図面の第1図は、上記方法で得られたFe
―25Co―45Ag―5Te含浸成形体の表面の125倍の
顕微鏡組織写真である。写真において、灰白色の
大きい扁平状の粒子がFe―50Co粒で、白地がAg
であり、Agの周囲をとりまく黒色地の晶出物は
As2Te化合物である。 得られた電極材料は、さい断電流の最大値は
1.8A、平均値0.85Aで、しや断限界は170%であ
つた。 実施例2〜6及び比較例1〜6 実施例1と同様に操作するが、スケルトンと含
浸合金の金属組成又は構成量の異なる各種電極材
料を製造した。比較のために従来用いられている
電極材料とともに電気的性能を検べて、それらの
結果を下掲第1表にまとめて示す。 なお、電気的性能テストは、次の方法で行なつ
た。テトスに用いた電極形状は径20mm×高さ25mm
である。 〔さい断電流〕 100V回路で100回測定し、その中の最大のもの
を最大値として示し、100回の平均を算出して平
均値とした。 〔しや断限界〕 しや断電流が約500〜1000Aステツプで増加す
るように印加し、しや断限界となる電流を求め、
比較材料のAg―70Wcのしや断限界電流値を100
%(基準値)として、他の電極材料の限界値を%
で示した。 また、テスト雰囲気は真空バルブを模擬した真
空排気セツト中で行なつた。
The present invention relates to a vacuum shield breaker electrode, and more particularly to an improved vacuum shield breaker electrode for low surge use and a method for manufacturing the same. Conventionally, Cu or Cu-Co alloy with Bi,
Added a large amount of low melting point/high vapor pressure elements such as Pb, Te or Se, and manufactured by powder metallurgy.
Ag-Wc or Ag-Wc-Co materials are known. The former Cu alloy-based electrode is
In the initial state before the short-circuit current dies out, it exhibits low surge characteristics, but after the short-circuit current dies down, low-melting-point, high-vapor-pressure elements such as Bi and Pb seep out and evaporate, resulting in a decline in surge characteristics. It is not practical because it tends to have a tendency and is unreliable. On the other hand, the latter Ag-based material exhibits good low surge properties both before and after rupture, but its rupture performance is not very good, so there is a limit to increasing capacity, and the material is brittle, so machinability is poor. There is a manufacturing problem such as not being good. The present inventors conducted research to overcome the defects of the conventional products and proposed a new and improved low-surge type electrode (Japanese Patent Application No. 81425/1982). The proposed Co--Ag--Te or Se-based electrode not only has excellent low surge properties before and after shearing, but also has high large current shearing performance. However, Co-
Since Ag-based molten metal is of a two-liquid phase separation type, it cannot be manufactured by ordinary melting, so it is manufactured by means such as sintering and impregnation. is Co sintered body with Ag,
A method of impregnating Te, Se, etc. had to be adopted. However, the formability of Co powder is not so good, and disadvantages include extremely poor workability, such as ridge edges and corners being chipped, and inconvenient phenomena such as cracking occurring during sintering of the compact. There is. In addition, the base metal is pure Co.
If this method is used, the cost of raw materials will be too high, and it will be extremely disadvantageous industrially. The present inventors have conducted further research in order to eliminate such drawbacks, and have developed an improved electrode that has performance equivalent to or better than the Co-Ag-Te and Se-based electrodes described above, and that can be manufactured easily and at low cost. We have discovered an electrode and its manufacturing method. That is, an object of the present invention is to provide an electrode for a vacuum shield breaker having improved low surge properties and high surge resistance. Another object of the present invention is to provide a new method for manufacturing a vacuum shield or disconnection electrode that is easy to manufacture and inexpensive. Other objects and excellent effects of the present invention will become clearer from the following description. The present inventors have developed Fe
- As a result of research into electrodes based on the combination of Co and Co, we have arrived at the present invention. According to the invention, powdered Fe and Co mixture or
In the sintered compact of Fe-Co alloy powder, Ag-Te,
After forming a vacuum shield electrode impregnated with Ag-Se or Ag-Te-Se alloy and a powdered Fe and Co mixture or Fe-Co alloy powder dissolved in a non-oxidizing atmosphere, The molded body is fired in a non-oxidizing atmosphere, and a molten metal of Ag-Te, Ag-Se or Ag-Te-Se alloy, which has been previously melted in a non-oxidizing atmosphere, is infiltrated into the fired molded body. A manufacturing method is provided. In the present invention, the fired compact is produced by molding and firing a powder mixture of Fe and Co or Fe--Co alloy powder. However, it is more preferable for the electrode according to the present invention to have a skeleton made of a fired compact of an alloy. The skeleton composed of Fe and Co is
A material containing 25 to 75% by weight of Co is used. If the amount exceeds this range, the object of the present invention will not be achieved, which is disadvantageous. In the case of Fe-Co alloys, although the reason is unknown, the electrical resistivity value decreases in the range of about 26 to 76% by weight of Co, and in such materials, the Fe and Co It is thought that a regular lattice is formed and the regularity of atoms at the points of the sintered crystal lattice improves, resulting in less scattering of free electrons that govern electrical conduction, resulting in a lower specific resistance. In particular, a composition with a Co content of 50 to 76% by weight has a resistivity value lower than that of pure Fe or pure Co at room temperature, making it desirable as a so-called conductive material. Fe--Co alloys can be easily produced by heating and melting both metals, but it is more effective to heat and melt them in a non-oxidizing atmosphere. In the case of alloys, oxidation of Fe can be prevented, which is convenient for controlling the quality of the powder. In the present invention, for such a skeleton,
The melting and infiltration of Ag-Te, Ag-Se or Ag-Te-Se alloys into the skeleton is highly desirable for achieving the objectives of the present invention, and that such molten alloys are also carried out in a non-oxidizing atmosphere. The infiltration step is also carried out in a non-oxidizing atmosphere. In the present invention, the above-mentioned Ag alloys melted and infiltrated into the skeleton are Ag alloys containing 3 to 70% Te and/or Se relative to Ag, and if it is less than 3% by weight, the low surge properties will be insufficient. Undesirable. 70 again
If the weight percentage is exceeded, Te or Se alone tends to be liberated and vapor is likely to be generated.Therefore, arcing is likely to occur and the vacuum capacity is reduced, which is disadvantageous. Ag and Te or
Se seems to be stabilized in the compound states of Ag 2 -Te and Ag 2 -Se. In the present invention, electrodes are manufactured by infiltrating the skeleton with the above-mentioned Ag-based alloy, but this is based on the fact that metal Co and metal Ag do not form a solid solution. Pressure impregnation can be advantageously used. Further, the amount of Ag-based alloy to be permeated and impregnated is 10 to 80% by weight based on the skeleton. If it is less than 10% by weight, the low surge property and vacuum shredding current effect will be poor, and if it exceeds 80% by weight, arcing will occur through the steam when the shriveling current occurs, making shredding impossible, which is disadvantageous. . The electrode according to the present invention has extremely low surge properties and high vacuum resistance, and is highly practical.
Fe-Co alloys generally have good conductivity at room temperature, but
It has the properties of a current-limiting material whose electrical resistance rapidly increases and its conductivity decreases at high temperatures. Therefore, the increase in electrical resistance at high temperatures causes the temperature of the electrode surface to rise. However, this property actually stabilizes the Ag-based infiltrated alloy,
It is presumed that the effect of reducing the cutting current can be obtained. In manufacturing the electrode according to the present invention, Fe--Co alloy powder can be easily made gas-free by reduction, degassing, etc., and has excellent formability and machinability. Furthermore, it was confirmed that the molten metal of the Ag-based infiltration alloy has good permeability, easily penetrating into the pores of the skeleton, and filling and impregnating approximately 96 to 98% of the pores with the molten metal. Although the porosity of the skeleton used for manufacturing the electrode of the present invention is not so important, it is generally 15 to 60%, preferably 30 to 55% for ease of manufacture. Porosity is the particle size of skeleton molding powder,
It can be easily controlled by molding temperature, especially molding pressure. In order to obtain a skeleton with high porosity, molding can be performed at low molding pressure;
It is more effective to add Ag powder to the skeleton molding powder in advance. Adding Ag powder is effective in increasing infiltration properties, but it is not a good idea. The infiltration alloy is preferably made into a master alloy in order to be gas-free. For example, mother alloying can be done by melting Ag in a vacuum, immediately filling it with Ar gas, and adding Te, Se, etc. in the Ar gas atmosphere.
This can be done while preventing their evaporation loss. This method is possible when the content of Te and Se relative to Ag is 10% or less; if the content exceeds 10%, the evaporation of the added metals is severe and difficult. If the amount is 10% or more, a method is used in which Ag, Te, and Se raw materials are placed in a vacuum-sealed quartz tube and heated and melted and solidified within the tube. The electrode according to the present invention, which has a skeleton with a porosity of 40 to 50% impregnated with an infiltration alloy, is extremely practical because of its performance and ease of manufacture. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Electrolytic Fe 1.5 kg and electrolytic Co 1.5 kg 1 to 5 times
It was high frequency melted under a vacuum of 10 -5 torr and cast into all molds. This alloy was ground into powder of 200 mesh under. This powder is 30mm in diameter x 30mm in height.
It was placed in a mold and compression molded at a pressure of 1.5 to 2.0 ton/cm 2 , sintered in hydrogen gas at a temperature of 900 to 950°C, and then vacuum degassed at a temperature of 950 to 1000°C. The residual porosity of the obtained Fe-50Co alloy powder compact was approximately 45%. On the other hand, an alloy containing Ag and Te in a weight ratio of 9:1 was placed in a graphite crucible and melted by high-frequency heating under vacuum. After confirming the melting point, the molded skeleton was lowered and immersed in the molten alloy. After pressurizing Ar gas and holding it for about 20 minutes, the skeleton was lifted to the top and cooled in the furnace. The skeleton impregnated molded body obtained in this way has approximately 98% of the pores.
was filled with infiltrated alloy. Figure 1 of the attached drawings shows Fe obtained by the above method.
This is a 125x microscopic photograph of the surface of a -25Co-45Ag-5Te impregnated molded body. In the photo, the large gray-white flat particles are Fe-50Co particles, and the white background is Ag.
The black crystallized substance surrounding Ag is
It is an As 2 Te compound. The obtained electrode material has a maximum breaking current of
The current was 1.8A, the average value was 0.85A, and the shearing limit was 170%. Examples 2 to 6 and Comparative Examples 1 to 6 Various electrode materials were manufactured in the same manner as in Example 1, but with different metal compositions or amounts of the skeleton and impregnated alloy. For comparison, the electrical performance was examined along with conventionally used electrode materials, and the results are summarized in Table 1 below. The electrical performance test was conducted in the following manner. The electrode shape used for Tetos is 20 mm in diameter x 25 mm in height.
It is. [Severing current] Measured 100 times with a 100V circuit, the largest value among them was shown as the maximum value, and the average of the 100 times was calculated and used as the average value. [Sheathing limit] Apply so that the shearing current increases in steps of about 500 to 1000A, find the current that reaches the shearing limit,
The shearing limit current value of comparison material Ag-70Wc is 100
% (reference value), limit value of other electrode materials as %
It was shown in The test atmosphere was an evacuation set that simulated a vacuum valve.

【表】 第1表より、Fe―Co―Ag―Te、Se系電極は、
本発明外の比較電極材に比して低いさい断電流特
性を有し且つ高しや断性能を有することがわか
る。とくに、(Fe―25Co)スケルトンにAg―
Te、Seを溶浸したものは、しや断性能は従来の
比較材とほぼ同等であるが、さい断電流の最大値
及び平均値とも低く、従つて低サージ性が優れて
いる。 本発明の電極は、更に耐電圧特性、耐溶着特
性、耐消耗性なども優れ、されに機械加工性も良
好である。またスケルトンとして鉄を大量に使用
でき、コバルトを半分あるいはそれ以下におさえ
ることができるので工業的に極めて有利である。
また、本発明の電極に用いる金属粉末は、成形性
がよく、還元・脱ガス処理によつて容易にガスフ
リー化ができる特長を有する。なお、溶浸成形体
中のAg―Te、Seの溶浸量は10重量%以上で効果
を発揮し、80重量%程度までがよく、また、Ag
―Te、Se合金におけるTe、Se量はいずれか1種
以上を3重量%以上、70重量%以下の範囲含有さ
せることにより、低サージ性及び高しや断性を併
有させることができる。
[Table] From Table 1, Fe-Co-Ag-Te and Se-based electrodes are
It can be seen that the material has lower cutting current characteristics and higher height and cutting performance than comparative electrode materials other than those of the present invention. In particular, Ag- in the (Fe-25Co) skeleton
Materials infiltrated with Te and Se have approximately the same shearing performance as conventional comparative materials, but both the maximum and average values of shearing current are low, and therefore have excellent low surge properties. The electrode of the present invention also has excellent voltage resistance, welding resistance, abrasion resistance, etc., and also has good machinability. In addition, it is extremely advantageous industrially because a large amount of iron can be used as the skeleton and the amount of cobalt can be reduced to half or less.
Further, the metal powder used in the electrode of the present invention has good moldability and has the feature that it can be easily made gas-free by reduction and degassing treatment. In addition, the infiltration amount of Ag-Te and Se in the infiltration molded product is effective when it is 10% by weight or more, and up to about 80% by weight is good.
- By containing one or more of Te and Se in the Te, Se alloy in a range of 3% by weight or more and 70% by weight or less, it is possible to have both low surge properties and high breakability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の電極の1例の金属組織を示
す部分的顕微鏡写真である。 写真において、灰白色部はFe―50Co粒、白色
部はAg粒及び黒色部はAg2Te化合物である。
FIG. 1 is a partial micrograph showing the metal structure of one example of the electrode of the present invention. In the photo, the gray areas are Fe-50Co particles, the white areas are Ag particles, and the black areas are Ag 2 Te compounds.

Claims (1)

【特許請求の範囲】 1 粉末状Fe及びCo混合物又はFe―Co合金粉末
焼結体中にAg―Te、Ag―Se又はAg―Te―Se
合金が含浸されて成ることを特徴とする真空しや
断器用電極。 2 粉末状Fe及びCo混合物又は非酸化性雰囲気
中で溶解したFe―Co合金の粉末を成形したのち、
非酸化性雰囲気中で焼結し、該焼結体に、あらか
じめ非酸化性雰囲気中で溶解したAg―Te、Ag
―Se又はAg―Te―Se合金溶湯を浸透させること
を特徴とする真空しや断器用電極の製造方法。 3 焼結体が、25〜75重量%のCoを含むFe―Co
合金より成り、かつFe及び(又は)Se3〜70重量
%を含むAg合金を溶湯成形体に対する溶浸量が
10〜80重量%の範囲内となるように、上記焼結体
に含浸されて成ることを特徴とする特許請求の範
囲第2項記載の真空しや断器用電極の製造方法。 4 Fe−Co焼結体のAg合金溶湯の浸透を、非酸
化性ガスを用いて強制加圧含浸させることにより
行なうことを特徴とする特許請求の範囲第2項又
は第3項記載の真空しや断器用電極の製造方法。
[Claims] 1 Ag-Te, Ag-Se or Ag-Te-Se in powdered Fe and Co mixture or Fe-Co alloy powder sintered body
An electrode for vacuum insulation and disconnection, characterized by being impregnated with an alloy. 2. After molding powdered Fe and Co mixture or Fe-Co alloy powder dissolved in a non-oxidizing atmosphere,
The sintered body is sintered in a non-oxidizing atmosphere, and Ag--Te, Ag which has been previously dissolved in the non-oxidizing atmosphere is added to the sintered body.
- A method for manufacturing a vacuum shield or disconnection electrode characterized by infiltrating a molten Se or Ag-Te-Se alloy. 3 The sintered body is Fe-Co containing 25 to 75% by weight of Co.
The amount of infiltration of the Ag alloy containing Fe and/or Se3 to 70% by weight into the molten compact is
3. The method of manufacturing a vacuum shield electrode for a breakout according to claim 2, wherein the sintered body is impregnated with the sintered body in an amount ranging from 10 to 80% by weight. 4. The vacuum chamber according to claim 2 or 3, characterized in that the penetration of the molten Ag alloy into the Fe-Co sintered body is carried out by forced pressure impregnation using a non-oxidizing gas. and a method for manufacturing disconnector electrodes.
JP8096981A 1981-05-29 1981-05-29 Electrode for vacuum breaker and method of producing same Granted JPS57196425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096981A JPS57196425A (en) 1981-05-29 1981-05-29 Electrode for vacuum breaker and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096981A JPS57196425A (en) 1981-05-29 1981-05-29 Electrode for vacuum breaker and method of producing same

Publications (2)

Publication Number Publication Date
JPS57196425A JPS57196425A (en) 1982-12-02
JPS6316849B2 true JPS6316849B2 (en) 1988-04-11

Family

ID=13733335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096981A Granted JPS57196425A (en) 1981-05-29 1981-05-29 Electrode for vacuum breaker and method of producing same

Country Status (1)

Country Link
JP (1) JPS57196425A (en)

Also Published As

Publication number Publication date
JPS57196425A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
US3957453A (en) Sintered metal powder electric contact material
US4032301A (en) Composite metal as a contact material for vacuum switches
US5480472A (en) Method for forming an electrical contact material
US4014659A (en) Impregnated compound metal as contact material for vacuum switches and method for its manufacture
JP2908073B2 (en) Manufacturing method of contact alloy for vacuum valve
US3721550A (en) Process for producing a heterogenous penetration-bonded metal
JPS6212610B2 (en)
US3985512A (en) Telluride containing impregnated electric contact material
JPS59163726A (en) Vacuum breaker
JP2001158901A (en) Alloy for electric contact and electrode and producing method therefor
EP0460680B1 (en) Contact for a vacuum interrupter
JPH0554208B2 (en)
JPS6316849B2 (en)
US2818633A (en) Electrical contact
US3811939A (en) Method for the manufacture of heterogeneous penetration compound metal
US3505037A (en) Hypereutectic silicon alloys
JPS634615B2 (en)
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPS6131172B2 (en)
JPH08209268A (en) Copper-chromium-nickel composite material and its production
JPS62116736A (en) Production of electrode for vacuum valve circuit breaker
JPH07192565A (en) Contact material and its manufacture
KR100283915B1 (en) Manufacturing method of contact material for vacuum breaker
JPH056291B2 (en)
JPH0145171B2 (en)