JPS6131138B2 - - Google Patents

Info

Publication number
JPS6131138B2
JPS6131138B2 JP6203177A JP6203177A JPS6131138B2 JP S6131138 B2 JPS6131138 B2 JP S6131138B2 JP 6203177 A JP6203177 A JP 6203177A JP 6203177 A JP6203177 A JP 6203177A JP S6131138 B2 JPS6131138 B2 JP S6131138B2
Authority
JP
Japan
Prior art keywords
weight
magnesium hydroxide
ethylene
less
random copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6203177A
Other languages
Japanese (ja)
Other versions
JPS53146749A (en
Inventor
Hiroshi Yui
Yoshihiro Sobashima
Shin Takayama
Hiroshige Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP6203177A priority Critical patent/JPS53146749A/en
Publication of JPS53146749A publication Critical patent/JPS53146749A/en
Publication of JPS6131138B2 publication Critical patent/JPS6131138B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、氎酞化マグネシりムを倚量に配合し
た自消性暹脂組成物に関する。詳しくは、ポリオ
レフむンに氎酞化マグネシりムを配合しおなる射
出成圢甚自消性暹脂組成物に関する。 埓来、難燃性暹脂ずしお、酞化アンチモンずハ
ロゲン化合物ずを配合したものが知られおいる。
この皮の組成物は、燃焌時の加熱によりハロゲン
化アンチモンが生成する。このハロゲン化アンチ
モンは重いガスで、これが自消性を䞎えるず考え
られおいる。 しかしながら、酞化アンチモン及び、倚くのハ
ロゲン化合物は、人䜓に有害であり、この皮の自
消性組成物は、火灜時に、かえ぀お、有害ガスに
よる危険が生じる。 䞀方、氎酞化アルミニりムなどの埮粉䜓をポリ
オレフむンに倧量に配合するこずによ぀お難燃性
のプラスチツクが埗られるこずが知られおいる。
しかしながら氎酞化アルミニりムの配合は、ポリ
オレフむンの融点が著しく䜎い堎合には良奜であ
るが、ポリプロピレン、高密床ポリ゚チレンの劂
く融点が倚少高い堎合、氎酞化アルミニりムの熱
分解が、ポリオレフむンの融点に近い200℃付近
から始たるため、混緎・成圢工皋で脱氎、発泡珟
象が生じ、実甚性胜を有する成圢品が埗られない
欠点があ぀た。 本発明者等は、さきに、氎酞化アルミニりムに
代る加熱時に熱分解しお氎分を発生する無機化合
物ずしお、各皮の氎酞化物、氎和化合物を怜蚎し
た結果、氎酞化マグネシりムのみが、混緎成圢時
の発泡珟象をずもなわず、所望の難燃性を付䞎す
るこずが可胜であるこずを芋出した。 これは、ほずんどの氎酞化物及び氎和物は、
100〜2550℃の枩床で熱分解による氎分の発生が
はじたり、ポリオレフむンの混和成圢時に脱氎、
発泡珟象が生じおしたうのに察しお氎酞化マグネ
シりムのみは、300℃皋床の高枩に達しおはじめ
お氎分を発生し、しかも、350℃ずいうポリオレ
フむンの分解枩床近くで氎分の発生が完了するた
めに、発生氎分が効率よくポリオレフむンの燃焌
防止に寄䞎するためであるず掚枬される。 しかしながら、氎酞化マグネシりムを配合した
ポリオレフむン組成物は、射出成圢に際しシルバ
ヌストリヌクが発生し、か぀、成圢品は耐衝撃性
および耐折匷床が充分に高くない欠点がある。 この点を改良する目的で、先に本発明者等は研
究を進めお、氎酞化マグネシりムを配合したポリ
オレフむン組成物に、特定粘床の゚チレン−プロ
ピレンランダム共重合䜓の添加および通垞の氎酞
化マグネシりムに代えお比衚面積を限定した氎酞
化マグネシりムの䜿甚が、成圢品の耐衝撃性およ
びシルバヌストリヌク等成圢品の倖芳の改良に有
効であるずいう結果を埗た特開昭52−21047お
よび同52−123442各号公報参照。しかし乍ら、
こられの耇合物も耐折匷床には未だ問題を残し、
為に実甚範囲を狭めおいた特に、比范的枩床の
高い雰囲気では、耐折匷床が極端に䜎䞋し、䜿甚
に耐えられなか぀た。 本発明の目的は、成圢埌成圢品の衚面倖芳およ
び耐衝撃性ならびに耐折匷床が良奜な氎酞化マグ
ネシりム含有の自消性暹脂組成物の提䟛にある。 本発明は䞊蚘の目的、特に耐折匷床の向䞊を達
成せんずするものであ぀お、α−オレフむンの単
独重合䜓たたはα−オレフむンの共重合䜓64.5〜
重量ず比衚面積が25m2/以䞋の氎酞化マグ
ネシりム35〜75重量および゚チレンC2含量
が45〜85重量のゎム状゚チレン−プロピレンラ
ンダム共重合䜓0.1〜20重量配合されおいる組
成物においお、䞊蚘ゎム状゚チレン−プロピレン
ランダム共重合䜓が、分散された粒子寞法で平均
Ό以䞋になるように分散、配合されおいるこず
を特城ずする自消性暹脂組成物を提䟛するもので
ある。ここで分散された粒子寞法で平均Ό以䞋
ずは、分散された粒子の個数で80以䞋のものは
最倧郚寞法がΌ以䞋であり、Όを越える粒子
の個数は20未満のものを蚀うものである。 本発明に甚いるゎム状゚チレン−プロピレンラ
ンダム共重合䜓は、C2含量以䞋、このものに
぀いおは重量割合を衚す45〜85の範囲にある
ものであるが、ムヌニヌ粘床以䞋、このものに
぀いおはJIS−K6300に準拠しお枬定したML1+4
100℃の倀を瀺すは〜120の範囲にあるも
のが奜たしい。C2含量が45未満のものは補造
が極めお困難であり、85より倧きいものはゎム
的性胜が䞍足する。 たた、ムヌニヌ粘床が未満のものは柔軟性が
過倚ずなり、120より倧きいものは組成物の成圢
性を䜎䞋させる。 ゎム状゚チレン−プロピレンランダム共重合䜓
の配合量は0.1〜20重量であり、0.1重量未満
では耐折匷床の向䞊効果が小さく、衝撃匷床も充
分でなく、20重量より倧きいものは剛性が䜎䞋
する。 ゎム状゚チレン−プロピレンランダム共重合䜓
は、通垞のゎム架橋剀ずしお甚いられる゚チリデ
ンノルボヌネン、ゞシクロペンタゞ゚ン、−
ヘキサゞ゚ン等の成分を通垞甚いられる皋床の適
量を含んでいおも良い。 本発明に甚いるα−オレフむンの単独重合䜓た
たは共重合䜓は、゚チレン、プロピレン等のα−
オレフむンの単独重合䜓たたは、α−オレフむン
ず他のα−オレフむンずの結晶性のブロツクたた
はランダム共重合䜓たずえば、゚チレン−プロピ
レンランダム共重合䜓、結晶性プロピレン−゚チ
レンブロツク共重合䜓、゚チレン−ブテン−ラ
ンダム共重合䜓、プロピレン−ブテン−ランダ
ム共重合䜓たたは、α−オレフむンを䞻䜓ずする
酢酞ビニル、無氎マレむン酞、アクリル酞等の極
性モノマヌずの共重合䜓グラフト共重合䜓を含
むおよび、これらの混合物である。 特に、゚チレン含量が10以䞋のプロピレン−
゚チレンランダム共重合䜓が奜たしく、その䞭で
も゚チレンのランダム性が高いもの皋良奜な結果
を埗るこずが刀぀た。この様なランダム性の高い
共重合䜓ずしおは、次の劂きものが特に奜適であ
るこずが刀぀た。 すなわち、補造時においお、重合槜にプロピレ
ンず若干の゚チレンずを同時に混入しお重合反応
させ、赀倖吞収スペクトルで733cm-1付近にピヌ
ク匷床   ピヌクの吞光床枬定詊料の
厚さ   が0.2〜11.5mm-1C2含量にしお0.1
〜であり、重合の䞍均䞀等で生ずる埮少の
ブロツク゚チレンに由来する722cm-1付近のピヌ
ク匷床が0.06mm-1C2含量にしお0.3以䞋で
ある゚チレン−プロピレンランダム共重合䜓を甚
いるず、ゎム状゚チレン−プロピレンランダム共
重合䜓の埮现分散が容易であり、良奜な品質バラ
ンスを有する成圢䜓が埗られる。 なお、所望に応じお、各皮の酞化防止剀、玫倖
線吞収剀、垯電防止剀、䞭和剀、滑剀、顔料など
を配合するこずができる。 ポリオレフむンには、通垞、酞化防止剀を配合
する。酞化防止剀は通垞甚いられおいるプノヌ
ル系酞化防止剀、リン系酞化防止剀、硫黄系酞化
防止剀等のいづれを甚いおもよい。 α−オレフむンの単独重合䜓たたは共重合䜓の
配合量は〜64.9重量であり、重量未満で
は成圢性の賊䞎が困難ずなり、65重量以䞊では
難燃性の賊䞎が困難ずなる。 本発明に甚いる氎酞化マグネシりムは、比衚面
積25m2/以䞋、奜たしくはm2/以䞊、20m2/
以䞋のものを甚いる。比衚面積が25m2/より
倧きいものは流れ性、耐衝撃性、成圢品倖芳が䜎
い氎準に留る。 たた、ゎム状゚チレン−プロピレンランダム共
重合䜓が、分散された぀の粒子の倧きさで平均
Ό以䞋に分散させられる為にも、比衚面積が25
m2/以䞋の氎酞化マグネシりムを甚いるのが望
たしい。 䞊蚘氎酞化マグネシりムは次の劂き衚面凊理を
したものを甚いおも良い。即ち、衚面凊理の方法
ずしおは、極性基を持぀たモノマヌ又はポリマ
ヌ、䟋えば、ステアリン酞、オレむン酞、カプリ
ル酞、ラりリン酞、アクリル酞、アクリル酞誘導
䜓等のモノマヌ及びそれらの金属塩、ポリアクリ
ル酞、アクリル酞誘導䜓のポリマヌ及びそれらの
金属塩を甚いお衚面倉性すれば良い。 衚面倉性凊理方法は、化孊的反応法、衚面重合
法、メカノケミカル法等所望の倉性凊理を行な
う。 氎酞化マグネシりムの配合量は35〜75重量で
あり、35重量未満では難燃性の点で実甚に䟛し
埗ず、75重量より倧きいものは成圢時の流れ
性、耐衝撃性が劣぀お実甚に䟛し埗ない。 なお、成圢時の流れ性を調敎するために、氎酞
化マグネシりムに察しお〜重量、奜たしく
は〜3.5重量の脂肪酞金属塩を配合するこず
もできる。 脂肪酞金属塩ずしおは、特に、炭玠数〜20の
脂肪酞のアルミニりム、亜鉛、マグネシりム又は
カルシりムの金属塩を配合するず良奜である。 たた、脂肪酞金属塩ず共に朚玛等の有機セルロ
ヌス系充填剀を0.1〜重量配合するこずもで
きる。 曎にたた、成圢䜓の品質を損わない範囲内の適
量で、スチレン−ブタゞ゚ンゎム、ネオプレンゎ
ム等の他のゎム成分、炭酞カルシりム、れオラむ
ト、クレヌ、タルク、シリカ、アスベスト、ガラ
ス繊維、雲母等の氎酞化マグネシりム以倖の無機
充填剀、カヌボンブラツク等の顔料、その他消泡
剀、分散剀等を配合するこずもできる。 䞊蚘無機充填剀は氎酞化マグネシりムず同様の
衚面倉性を斜しお甚いるこずもできる。 本発明の組成物を埗るための混緎方法は、ロヌ
ル、バンバリヌミキサヌ、䞀軞抌出機、二軞抌出
機等を甚いた通垞の溶融混緎法が甚いられる。 混緎の枩床は、ポリオレフむンの融点以䞊300
℃以䞋の枩床領域で行なうこずが望たしい。 䞊蚘ゎム状゚チレン−プロピレンランダム共重
合䜓の速やかな分散を容易にする為に、予め、ゎ
ム状゚チレン−プロピレンランダム共重合䜓を最
倧郚寞法で10mm以䞋のビヌズ状、ペレツト状、ク
ラム状等の圢状にしおおくこずず共に、匷混緎型
抌出機を甚いるこずが奜たしく、たた、混緎時間
も暹脂の品質劣化を䌎なわない範囲である皋床長
くするこずが望たしい。その他の混緎方法ずしお
は、予めゎム状゚チレン−プロピレンランダム共
重合䜓をヘキサン等の溶媒䞭に溶解し、その䞭に
氎酞化マグネシりムを添加撹拌しながら溶媒を蒞
発陀去しお、氎酞化マグネシりムの衚面にゎム状
゚チレン−プロピレンランダム共重合䜓を付着さ
せ、それを該α−オレフむンの単独重合䜓又は共
重合䜓ず共に溶融混緎する方法を甚いるこずもで
きる。 䞊蚘の劂き方法によ぀お埗られる組成物䞭のゎ
ム状゚チレン−プロピレンランダム共重合䜓は、
マトリツクスポリマヌであるα−オレフむンの単
独重合䜓又は共重合䜓の比范的非晶性の匷に郚分
を䞭心にしお、分散された粒子寞法で平均Ό以
䞋に均䞀に分散する。而しお、補造された組成物
は、良奜な耐衝撃匷床および自消性を保有しなが
ら、著しく向䞊した耐折匷床を有するものであ
る。 以䞋、実斜䟋によ぀お本発明の態様を説明す
る。 実斜䟋  第衚に瀺す各皮成分を混合噚䞭で分間撹拌
し、曎に、スクリナヌ二軞抌出機を甚いお匷混緎
造粒枩床260℃した。 埗られた組成物を非ベント型スクリナヌむンラ
むン匏射出成圢機各機補䜜所補SJ−35型−成
圢枩床220℃、射出圧力1000Kg/cm2を甚いお、ゎ
ム状゚チレン−プロピレンランダム共重合䜓の分
散単䜍枬定甚詊片、耐折匷床枬定甚詊片、耐衝撃
性評䟡甚詊片および、組成物100重量郚に察しお
1.5重量郚のカヌボンブラツク粉末を添加し黒色
化した難燃性評䟡甚詊片UL芏栌甚−長さ127
mm、幅12.7mm、厚さ3.18mm及びBS芏栌甚−長さ
100mm、幅25mm、厚さ3.0mmを成圢し、評䟡を行
な぀た。 この結果を第衚に瀺す。 ただし、ゎム状゚チレン−プロピレンランダム
共重合䜓の分散単䜍の枬定は、詊片長さ50mm、
幅50mm、厚さmmを−195℃で砎断し、その砎
断面を垞枩の塩酞に30分間浞しお゚ツチング凊理
を斜した埌、その郚分を走査型電子顕埮鏡にお芳
察し、砎断面芳察個所は個所以䞊のΌ×
Όの面積䞭に分散された粒子の最倧郚分寞法を
枬定し、䞊蚘文䞭で定矩した平均倀の考えに基づ
いお刀定した。 耐折匷床の枬定は20℃および50℃の空気雰囲気
䞭で、JIS−K7203での枬定法に準拠しお行な぀
たが、詊片寞法は長さ80mm、幅10mm、厚さmm、
支点間距離30mm、加圧くさび半埄mm、支持台の
半埄mm、加圧くさび䞋降速床500mm分で詊隓
し、詊片が著しい倉圢を生じる際の最倧応力を枬
定した。 衝撃匷床はJIS−K7110ノツチ付きアむゟツ
トおよび難燃性はUL芏栌No.94及びBS芏栌
No.415により詊隓した。 たた、氎酞化マグネシりムの衚面凊理を次の方
法に䟝぀た。 即ち、氎酞化マグネシりムに察しお重量の
ステアリン酞マグネシりム塩を80℃のベンれンに
溶解し、それに氎酞化マグネシりムを添加し、ベ
ンれンを蒞発陀去しお、氎酞化マグネシりムの衚
面を倉性凊理した。 氎酞化マグネシりムの比衚面積は匏によ぀お
蚈算した。 ×−×××
××  匏 ここで、は比衚面積単䜍cm2/。nは氎
酞化マグネシりム衚面ぞの気䜓吞着量枬定実隓に
よ぀お求めた数倀であ぀お、氎酞化マグネシりム
の衚面を単分子吞着局でおおうに必芁な気䜓の暙
準状態273゜、気圧での容積単䜍cm3。
はnを求める実隓の際に詊料ずしお甚いた恒
量也燥した氎酞化マグネシりムの重量単䜍
である。 nの枬定は、以䞋に述べる方法によ぀お埗た
吞着等枩線暪軞は吞着平衡ずな぀たずきの吞着
気䜓の圧力単䜍mmHg、瞊軞は吞着平衡ずな぀
たずきの吞着気䜓の暙準状態での容積単䜍
cm3においお盎線になる郚分の最も䜎圧の点を
求め、この点をも぀お単分子吞着局が完成するず
考え昭和45幎産業図曞発行「粉䜓の枬定」135
頁23行〜26行に基づく、この点の瞊軞数倀をも
぀おnずする。 吞着等枩線を埗る実隓方法は、先ず、恒量也燥
した氎酞化マグネシりム〜皋床が奜たし
いを䞀般に䜜られお䜿甚される䜎枩気䜓吞着装
眮に付いおいる䞀定容量の詊料容噚に入れ、100
℃以䞊に熱しながら20分間加熱排気しお、倧気䞭
から吞着しおいる気䜓を陀去した埌、−195℃の状
態にし、吞着気䜓ずしお甚いる也燥窒玠を圧力20
mmHg皋床流入しお吞着平衡氎銀目盛が動かな
る迄させる。吞着前后での圧力の倉化は氎酞化
マグネシりム衚面の也燥窒玠の吞着によるものず
考えられるので、ボむルの法則より、吞着気䜓の
容積を求め、暙準状態での容積に換算する。吞着
平衡に達した時の気䜓圧力を暪軞にし、そのずき
の吞着容量暙準状態を瞊軞にしお点をプロツ
トする。 䞊蚘操䜜を回毎に吞着気䜓の流入量を少しづ
぀増しお400mmHg以䞋の範囲繰り返し点をプ
ロツトし、吞着等枩線を埗る。 この吞着等枩線を埗る操䜜を回以䞊繰り返し
お、倫々のnを求め、それらの平均倀をも぀お
匏で甚いるnずした。 比范䟋  第衚に瀺す各皮成分を混合噚䞭で分間撹拌
し、曎にスクリナヌ二軞抌出機を甚いお匷混緎造
粒枩床260℃した。埗られた組成物を実斜䟋
ず同様の方法で、実斜䟋ず同じ詊片を成圢
し、評䟡した。 この結果を第衚に、実斜䟋の比范䟋ずしお
瀺す。 この結果より、ゎム状゚チレン−プロピレンラ
ンダム共重合䜓が、分散された粒子寞法で平均
Ό以䞋のものは高い耐折匷床ならびに衝撃匷床を
有しおいるこずが認められた。 実斜䟋  第衚に瀺す各皮成分を混合噚䞭で分間撹拌
し、曎にブラベンダヌプラストグラフPL−3S
BRABENDER OHG DUISBURG補を甚いお
匷混緎造粒枩床260℃した。埗られた組成物
を実斜䟋ず同様の方法で、実斜䟋ず同じ詊片
を成圢し、評䟡した。 この結果を第衚に瀺す。 比范䟋  第衚に瀺す各皮成分を混合噚䞭で分間撹拌
し、曎にブランダヌプラストグラフPL−3Sを甚
いお混緎造粒枩床260℃した。埗られた組成
分を実斜䟋ず同様の方法で、実斜䟋ず同じ詊
片を成圢し、評䟡した。この結果を第衚に、実
斜䟋の比范䟋ずしお瀺す。 この結果より、本発明の組成物は、比范䟋ず比
范しお、優れた耐折匷床および耐衝撃性の品質バ
ランスを有しおいた。
The present invention relates to a self-extinguishing resin composition containing a large amount of magnesium hydroxide. Specifically, the present invention relates to a self-extinguishing resin composition for injection molding, which is made by blending magnesium hydroxide with polyolefin. Conventionally, flame-retardant resins containing antimony oxide and halogen compounds have been known.
In this type of composition, antimony halides are produced by heating during combustion. This antimony halide is a heavy gas, which is thought to give it self-extinguishing properties. However, antimony oxide and many halogen compounds are harmful to the human body, and self-extinguishing compositions of this type pose the risk of harmful gases in the event of a fire. On the other hand, it is known that a flame-retardant plastic can be obtained by blending a large amount of fine powder such as aluminum hydroxide with polyolefin.
However, the blending of aluminum hydroxide is good when the melting point of the polyolefin is extremely low, but when the melting point is somewhat high, such as polypropylene or high-density polyethylene, the thermal decomposition of aluminum hydroxide occurs at 200°C, which is close to the melting point of the polyolefin. Since the process starts from a nearby point, dehydration and foaming phenomena occur during the kneading and molding process, which has the disadvantage that molded products with practical performance cannot be obtained. The present inventors previously investigated various hydroxides and hydrated compounds as inorganic compounds that thermally decompose and generate moisture during heating in place of aluminum hydroxide, and found that only magnesium hydroxide It has been found that it is possible to impart desired flame retardancy without causing foaming during molding. This means that most hydroxides and hydrates are
Moisture begins to be generated due to thermal decomposition at temperatures of 100 to 2550°C, and dehydration occurs during blend molding of polyolefin.
In contrast, magnesium hydroxide only generates moisture when it reaches a high temperature of about 300℃, and the generation of moisture is completed at 350℃, which is close to the decomposition temperature of polyolefin. It is presumed that this is because the generated moisture efficiently contributes to preventing combustion of the polyolefin. However, polyolefin compositions containing magnesium hydroxide have the disadvantage that silver streaks occur during injection molding, and the molded products do not have sufficiently high impact resistance and folding strength. In order to improve this point, the present inventors conducted research and added an ethylene-propylene random copolymer of a specific viscosity to a polyolefin composition containing magnesium hydroxide. Instead, the use of magnesium hydroxide with a limited specific surface area was found to be effective in improving the impact resistance of molded products and the appearance of molded products such as silver streaks (JP-A-52-21047 and JP-A No. 52-21047). 123442). However,
These composites still have problems with folding strength,
Therefore, its practical range was narrowed (particularly in an atmosphere with a relatively high temperature, the folding strength was extremely reduced, making it unusable). An object of the present invention is to provide a magnesium hydroxide-containing self-extinguishing resin composition that provides a molded article with good surface appearance, impact resistance, and folding strength after molding. The present invention aims to achieve the above-mentioned object, in particular, to improve the folding strength.
5% by weight and 35-75% by weight of magnesium hydroxide with a specific surface area of 25 m 2 /g or less and 0.1-20% by weight of rubbery ethylene-propylene random copolymer with an ethylene (C 2 ) content of 45-85% by weight. A self-extinguishing resin composition characterized in that the rubbery ethylene-propylene random copolymer is dispersed and blended so that the average dispersed particle size is 2Ό or less. This is what we provide. Here, the average size of dispersed particles of 2Ό or less means that 80% or less of the dispersed particles have a maximum size of 2Ό or less, and the number of particles exceeding 2Ό is less than 20%. It is something. The rubbery ethylene-propylene random copolymer used in the present invention has a C 2 content (hereinafter referred to as weight percentage) in the range of 45 to 85%, and has a Mooney viscosity {hereinafter referred to as weight percentage). ML 1+4 measured in accordance with JIS-K6300
(100°C)} is preferably in the range of 5 to 120. Those with a C 2 content of less than 45% are extremely difficult to manufacture, and those with a C 2 content of more than 85% lack rubber performance. Furthermore, if the Mooney viscosity is less than 5, the flexibility will be excessive, and if it is greater than 120, the moldability of the composition will be reduced. The blending amount of the rubbery ethylene-propylene random copolymer is 0.1 to 20% by weight; if it is less than 0.1% by weight, the effect of improving folding strength will be small and the impact strength will not be sufficient, and if it is more than 20% by weight, the rigidity will be lowered. decreases. The rubbery ethylene-propylene random copolymer is made of ethylidenenorbornene, dicyclopentadiene, 1-4, which are commonly used as rubber crosslinking agents.
It may contain an appropriate amount of a component such as hexadiene or the like that is normally used. The α-olefin homopolymer or copolymer used in the present invention is an α-olefin such as ethylene or propylene.
Homopolymers of olefins or crystalline block or random copolymers of α-olefins and other α-olefins, such as ethylene-propylene random copolymers, crystalline propylene-ethylene block copolymers, ethylene-butene -1 random copolymer, propylene-butene-1 random copolymer, or a copolymer mainly composed of α-olefin with polar monomers such as vinyl acetate, maleic anhydride, and acrylic acid (including graft copolymers) ) and mixtures thereof. In particular, propylene with an ethylene content of less than 10%
Ethylene random copolymers are preferred, and it has been found that among them, the higher the randomness of ethylene, the better the results. It has been found that the following copolymers are particularly suitable as such copolymers with high randomness. That is, during production, propylene and some ethylene are simultaneously mixed into a polymerization tank to cause a polymerization reaction, and the infrared absorption spectrum has a peak intensity of around 733 cm -1 (peak absorbance)/(thickness of measurement sample). )...... is 0.2 to 11.5 mm -1 (0.1 as C2 content)
~5%), and the peak intensity around 722 cm -1 derived from minute amounts of blocked ethylene caused by non-uniform polymerization is 0.06 mm -1 (0.3% in terms of C2 content) or less. When a polymer is used, the rubbery ethylene-propylene random copolymer can be easily finely dispersed, and a molded article having a good quality balance can be obtained. In addition, various antioxidants, ultraviolet absorbers, antistatic agents, neutralizing agents, lubricants, pigments, etc. can be added as desired. Antioxidants are usually added to polyolefins. As the antioxidant, any of commonly used phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. may be used. The blending amount of the α-olefin homopolymer or copolymer is 5 to 64.9% by weight. If it is less than 5% by weight, it will be difficult to impart moldability, and if it is 65% by weight or more, it will be difficult to impart flame retardancy. . The magnesium hydroxide used in the present invention has a specific surface area of 25 m 2 /g or less, preferably 4 m 2 /g or more, and 20 m 2 /g.
Use one with a weight of less than g. If the specific surface area is larger than 25 m 2 /g, the fluidity, impact resistance, and appearance of the molded product remain at a low level. In addition, because the rubbery ethylene-propylene random copolymer is dispersed with an average particle size of 2Ό or less, the specific surface area is 25
It is preferable to use magnesium hydroxide of m 2 /g or less. The above magnesium hydroxide may be subjected to the following surface treatment. That is, surface treatment methods include monomers or polymers having polar groups, such as stearic acid, oleic acid, caprylic acid, lauric acid, acrylic acid, acrylic acid derivatives, metal salts thereof, polyacrylic acid, etc. The surface may be modified using polymers of acrylic acid derivatives and metal salts thereof. As the surface modification treatment method, a desired modification treatment such as a chemical reaction method, a surface polymerization method, a mechanochemical method, etc. is performed. The blending amount of magnesium hydroxide is 35 to 75% by weight. If it is less than 35% by weight, it cannot be put to practical use in terms of flame retardancy, and if it is more than 75% by weight, it will have poor flowability and impact resistance during molding. Therefore, it cannot be put to practical use. In addition, in order to adjust the flowability during molding, a fatty acid metal salt can be added in an amount of 1 to 6% by weight, preferably 2 to 3.5% by weight based on magnesium hydroxide. As the fatty acid metal salt, it is particularly preferable to include aluminum, zinc, magnesium or calcium metal salts of fatty acids having 8 to 20 carbon atoms. Furthermore, 0.1 to 5% by weight of an organic cellulose filler such as wood powder can be blended together with the fatty acid metal salt. Furthermore, other rubber components such as styrene-butadiene rubber and neoprene rubber, calcium carbonate, zeolite, clay, talc, silica, asbestos, glass fiber, mica, etc. may be added in appropriate amounts within a range that does not impair the quality of the molded product. Inorganic fillers other than magnesium hydroxide, pigments such as carbon black, other antifoaming agents, dispersants, etc. can also be blended. The above-mentioned inorganic filler can also be used after being subjected to surface modification similar to magnesium hydroxide. As a kneading method for obtaining the composition of the present invention, a usual melt kneading method using a roll, a Banbury mixer, a single screw extruder, a twin screw extruder, etc. is used. The kneading temperature is 300℃ above the melting point of polyolefin.
It is desirable to carry out the test in a temperature range below ℃. In order to facilitate rapid dispersion of the rubbery ethylene-propylene random copolymer, the rubbery ethylene-propylene random copolymer is prepared in advance into beads, pellets, crumbs, etc. with a maximum dimension of 10 mm or less. In addition to shaping the resin, it is preferable to use a strong kneading type extruder, and it is also desirable to extend the kneading time to a certain extent without deteriorating the quality of the resin. Another kneading method is to dissolve the rubbery ethylene-propylene random copolymer in advance in a solvent such as hexane, add magnesium hydroxide therein, and evaporate the solvent while stirring to remove the solvent from the surface of the magnesium hydroxide. It is also possible to use a method in which a rubbery ethylene-propylene random copolymer is adhered to the polymer and then melt-kneaded with the α-olefin homopolymer or copolymer. The rubbery ethylene-propylene random copolymer in the composition obtained by the above method is
The matrix polymer, α-olefin homopolymer or copolymer, is uniformly dispersed with an average particle size of 2 Όm or less, centered on the relatively amorphous portion. Thus, the produced composition has significantly improved folding strength while retaining good impact strength and self-extinguishing properties. Hereinafter, aspects of the present invention will be explained with reference to Examples. Example 1 The various components shown in Table 1 were stirred for 5 minutes in a mixer, and then intensively kneaded and granulated using a twin screw extruder (temperature: 260°C). The resulting composition was molded into a rubber-like ethylene-propylene random copolymer using a non-vented screw-in-line injection molding machine (Model SJ-35 manufactured by Kakaki Seisakusho, molding temperature 220°C, injection pressure 1000 Kg/cm 2 ). Test piece for measuring dispersion unit of coalescence, test piece for measuring folding strength, test piece for impact resistance evaluation, and 100 parts by weight of the composition
Flame retardant evaluation specimen blackened by adding 1.5 parts by weight of carbon black powder (for UL standard - length 127
mm, width 12.7mm, thickness 3.18mm and for BS standard - length
100mm, width 25mm, thickness 3.0mm) was molded and evaluated. The results are shown in Table 1. However, the measurement of the dispersion unit of the rubbery ethylene-propylene random copolymer is performed using a sample (length 50 mm,
The fractured surface (width 50mm, thickness 4mm) was fractured at -195℃, and the fractured surface was immersed in hydrochloric acid at room temperature for 30 minutes to perform etching treatment.The fractured surface was then observed with a scanning electron microscope. (4 or more locations) 8Ό×
The maximum partial size of the particles dispersed in an area of 8Ό was measured and judged based on the concept of average value defined in the text above. The bending strength was measured in an air atmosphere at 20°C and 50°C in accordance with the measurement method of JIS-K7203, and the specimen dimensions were 80 mm in length, 10 mm in width, 4 mm in thickness,
The test was conducted with a distance between fulcrums of 30 mm, a pressure wedge radius of 2 mm, a support base radius of 2 mm, and a pressure wedge descending speed of 500 mm/min, and the maximum stress at which the specimen was significantly deformed was measured. Impact strength is JIS-K7110 (notched isot) and flame retardancy is UL standard No.94 and BS standard.
Tested according to No.415. Furthermore, the surface treatment of magnesium hydroxide was carried out by the following method. That is, 3% by weight of magnesium stearate based on magnesium hydroxide was dissolved in benzene at 80°C, magnesium hydroxide was added thereto, the benzene was removed by evaporation, and the surface of the magnesium hydroxide was modified. The specific surface area of magnesium hydroxide was calculated using Equation 1. S=1.54×10 −15 ×6.02×10 23 ×V n
/2.24×10 4 ×W...Formula 1 Here, S is the specific surface area (unit: cm 2 /g). V n is a value determined by an experiment to measure the amount of gas adsorbed on the surface of magnesium hydroxide, and is the standard state of gas required to cover the surface of magnesium hydroxide with a monomolecular adsorption layer (273°K, 1 atm). ) in cm3 .
W is the weight (unit: g) of constant weight dry magnesium hydroxide used as a sample in the experiment to find V n
It is. V n was measured using an adsorption isotherm obtained by the method described below (the horizontal axis is the pressure of the adsorbed gas (unit: mmHg) when adsorption equilibrium is reached, and the vertical axis is the adsorption gas pressure when adsorption equilibrium is reached). Volume under standard conditions (unit:
cm 3 )) and found the point of lowest pressure in the straight line section, and considered that the monomolecular adsorption layer was completed at this point (``Measurement of Powder'' published by Sangyo Tosho in 1971, 135).
(based on pages 23 to 26), and the vertical axis value at this point is V n . The experimental method for obtaining the adsorption isotherm is to first place a constant weight of dried magnesium hydroxide (preferably about 1 to 3 g) into a sample container with a constant capacity attached to a commonly made and used low-temperature gas adsorption device.
After removing the adsorbed gas from the atmosphere by heating the air to a temperature above ℃ for 20 minutes, the temperature is brought to -195℃, and the dry nitrogen used as the adsorption gas is heated to a pressure of 20℃.
Inject about mmHg to achieve adsorption equilibrium (until the mercury scale moves). Since the change in pressure before and after adsorption is thought to be due to adsorption of dry nitrogen on the surface of magnesium hydroxide, the volume of adsorbed gas is determined from Boyle's law and converted to the volume under standard conditions. Points are plotted with the horizontal axis representing the gas pressure when adsorption equilibrium is reached and the vertical axis representing the adsorption capacity (standard state) at that time. Repeat the above operation by increasing the inflow amount of adsorbed gas little by little (within a range of 400 mmHg or less) each time, and plot the points to obtain an adsorption isotherm. This operation for obtaining the adsorption isotherm was repeated four or more times to obtain each V n , and the average value thereof was taken as the V n used in Equation 1. Comparative Example 1 The various components shown in Table 1 were stirred for 5 minutes in a mixer, and then intensively kneaded and granulated using a twin-screw extruder (temperature: 260°C). The obtained composition was molded into the same test pieces as in Example 1 in the same manner as in Example 1, and evaluated. The results are shown in Table 1 as a comparative example of Example 1. This result shows that the rubbery ethylene-propylene random copolymer has an average dispersed particle size of 2
It was recognized that those having a Ό or less have high bending strength and impact strength. Example 2 The various components shown in Table 2 were stirred in a mixer for 5 minutes, and then mixed with Brabender Plastograph PL-3S.
(manufactured by BRABENDER OHG DUISBURG) was used for intense kneading and granulation (temperature 260°C). The obtained composition was molded into the same test pieces as in Example 1 in the same manner as in Example 1, and evaluated. The results are shown in Table 2. Comparative Example 2 The various components shown in Table 2 were stirred in a mixer for 5 minutes, and then kneaded and granulated using a Blunder Plastograph PL-3S (temperature: 260°C). The obtained composition was molded into the same sample as in Example 1 in the same manner as in Example 1, and evaluated. The results are shown in Table 2 as a comparative example of Example 2. From this result, the composition of the present invention had an excellent quality balance of folding strength and impact resistance compared to the comparative example.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  α−オレフむンの単独重合䜓たたは共重合䜓
64.9〜重量ず比衚面積が25m2/以䞋の氎酞
化マグネシりム35〜75重量および゚チレン含量
が45〜85重量のゎム状゚チレン−プロピレンラ
ンダム共重合䜓0.1〜20重量配合されおいる組
成物においお、䞊蚘ゎム状゚チレン−プロピレン
ランダム共重合䜓が、分散された粒子寞法で平均
Ό以䞋になるように分散、配合されおいるこず
を特城ずする自消性暹脂組成物。
1 Homopolymer or copolymer of α-olefin
64.9 to 5% by weight, 35 to 75% by weight of magnesium hydroxide with a specific surface area of 25 m 2 /g or less, and 0.1 to 20% by weight of rubbery ethylene-propylene random copolymer with an ethylene content of 45 to 85% by weight. A self-extinguishing resin composition, characterized in that the rubbery ethylene-propylene random copolymer is dispersed and blended so that the dispersed particle size is 2 ÎŒm or less on average.
JP6203177A 1977-05-27 1977-05-27 Self-extinguishing resin composition Granted JPS53146749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6203177A JPS53146749A (en) 1977-05-27 1977-05-27 Self-extinguishing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6203177A JPS53146749A (en) 1977-05-27 1977-05-27 Self-extinguishing resin composition

Publications (2)

Publication Number Publication Date
JPS53146749A JPS53146749A (en) 1978-12-20
JPS6131138B2 true JPS6131138B2 (en) 1986-07-18

Family

ID=13188379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6203177A Granted JPS53146749A (en) 1977-05-27 1977-05-27 Self-extinguishing resin composition

Country Status (1)

Country Link
JP (1) JPS53146749A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817139A (en) * 1981-07-23 1983-02-01 Sumitomo Chem Co Ltd Novel polypropylene resin composition
JPS61254646A (en) * 1985-05-07 1986-11-12 Nippon Petrochem Co Ltd Flame-retardant ethylene polymer composition
JPS62115048A (en) * 1985-11-13 1987-05-26 Idemitsu Petrochem Co Ltd Polyolefin resin composition
JPS62148546A (en) * 1985-12-23 1987-07-02 Mitsui Petrochem Ind Ltd Flame retardant olefin polymer composition

Also Published As

Publication number Publication date
JPS53146749A (en) 1978-12-20

Similar Documents

Publication Publication Date Title
US4918127A (en) Filled elastomer blends
US4088714A (en) Cross-linked melt-flowable thermoplastic elastomer blend comprising EPR or EPDM, polyethylene and polypropylene
KR101143749B1 (en) Flame Retardant Polypropylene Composition with Enhanced Long Term Heat Resistance
US20060089444A1 (en) Flame retardant polymer compositions comprising a particulate clay mineral
JP2003518540A (en) Flame retardant polyolefin composition
EP0274888A1 (en) Filled elastomer blends
US20070010600A1 (en) Particulate clay materials and polymer compositions incorporating the same
Toure et al. Fire resistance and mechanical properties of a huntite/hydromagnesite/antimony trioxide/decabromodiphenyl oxide filled PP-PE copolymer
US4626565A (en) Preparation process for polypropylene-base resin compositions
JP2013018969A (en) Method for producing thermoplastic elastomer composition
JP3358228B2 (en) Resin composition and insulated wire and insulated tube therefrom
JPS6131138B2 (en)
JPS6363573B2 (en)
JPH01217050A (en) Flame retardant thermoplastic elastomer composition
JP2007538124A (en) Synthetic resin foam material and use thereof
JPS59184237A (en) Propylene polymer composition
JPS5845459B2 (en) Self-extinguishing resin composition
Green The flame retardation of polyolefins
JPH10195254A (en) Flame-retardant polyolefin composition
JP2665373B2 (en) Partially crosslinked thermoplastic elastomer foam and method for producing the same
JPS59219352A (en) Propylene polymer composition
CA2516415C (en) Moisture-crosslinkable polymeric composition
JPS624420B2 (en)
EP0405982A1 (en) Filler-incorporated thermoplastic resin composition
JP3035010B2 (en) Talc-containing propylene polymer composition