JPS6131049B2 - - Google Patents

Info

Publication number
JPS6131049B2
JPS6131049B2 JP55158831A JP15883180A JPS6131049B2 JP S6131049 B2 JPS6131049 B2 JP S6131049B2 JP 55158831 A JP55158831 A JP 55158831A JP 15883180 A JP15883180 A JP 15883180A JP S6131049 B2 JPS6131049 B2 JP S6131049B2
Authority
JP
Japan
Prior art keywords
graphite
temperature
fluorine
specific gravity
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55158831A
Other languages
Japanese (ja)
Other versions
JPS5788015A (en
Inventor
Nobuatsu Watanabe
Yasushi Kida
Hisaharu Nakano
Shiro Moroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP55158831A priority Critical patent/JPS5788015A/en
Publication of JPS5788015A publication Critical patent/JPS5788015A/en
Publication of JPS6131049B2 publication Critical patent/JPS6131049B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、式(C2F)oで表わされるフツ化黒鉛
の製造方法に関する。更に詳細には、本発明は膨
張化黒鉛を炭素材料として用いる(C2F)oの改良
された製造方法に関する。 従来、炭素とフツ素とから合成されたフツ化黒
鉛として(CF)oの構造を有するものが知られて
おりかかるフツ化黒鉛(CF)oはその特異な諸性
質から電池の活物質、潤滑剤、防濡剤、防汚剤、
撥水撥油剤などとして広範な分野で工業的に高く
評価されている。更に最近新規な構造を有するフ
ツ化黒鉛として比較的安価に収率よく製造できる
(C2F)o型フツ化黒鉛が、そのユニークな化学
的、物理的特性から(CF)oと同様に工業材料と
して注目されている。 これら2種のフツ化黒鉛の生成反応は次式で表
わされる。 2nC(s)+nF2(g)→ 2(CF)o(s) …(1) 4nC(s)+nF2(g)→ 2(C2F)o(s) …(2) 上記の反応において、フツ素としては、フツ素
単独或は不活性ガスによる希釈フツ素ガスが使用
されるが、Cで表示される炭素の種類は極めて多
く、又構造が複雑であるため、反応条件も多岐に
亘り、生成物の組成、結晶度もそれらに伴つて多
少異なることは炭素や黒鉛の性質が構造と共に異
なることに類似している。 さらに、これらフツ化黒鉛はその製造過程にお
いて種々の技術的、経済的問題の欠点があり、そ
の一つは(CF)o型フツ化黒鉛においてはその熱
分解度がフツ化黒鉛の生成温度域に近接している
点である。例えば天然黒鉛を炭素材料として用い
た場合には500℃以上の高温と長時間の反応時間
を要し、例えば600℃付近でフツ素化反応を24時
間行うと(CF)o型フツ化黒鉛が得られるが、こ
うして得られた(CF)oは610℃で分解を起すた
め、その生成温度と熱分解温度との差は約10〜50
℃ときわめて近接している。更に加えてフツ化黒
鉛の生成反応と分解反応とはいずれも発熱反応で
あるため、生成反応段階で温度が上昇し生成した
フツ化黒鉛が一旦ある温度を超えると熱分解を起
し、更にこの熱分解によつてまた反応系の温度が
上昇するという困難な問題がある。このためフツ
化黒鉛の分解が促進され、時には反応系全体の温
度が生成したフツ化黒鉛の分解温度より高い温度
にまで上昇してしまうため、生成フツ化黒鉛は無
定形炭素とガス状フルオロカーボンとに分解して
しまうのである。かかる実情から、従来(CF)o
で表わされるフツ化黒鉛の収率は数10%と極めて
低いものでありこの収率を改善するための試みと
して反応系温度を常に生成フツ化黒鉛の温度に適
合するよう制御したり或は反応を幾つかの段階に
分けて行う方法が採られているが、前者はその温
度制御が難しく、また後者はその製造工程が複雑
となるため工業的実用性に乏しい。 一方(C2F)o型フツ化黒鉛は(CF)oに比べほ
ぼ同様の性質と用途を有しながら、その製造にあ
たつては高価なフツ素の量が著しく節減できると
共に、その新たな特性により新しい用途が開拓さ
れつつあるが、その製造法については本発明者ら
が特開昭53−102893号明細書に詳述しているが例
えば黒鉛を100〜760mmHgのフツ素圧下において
300〜500℃でフツ素化することにより製造するこ
とができる。しかし、(C2F)oを高い選択率をも
つて得るためには反応に付すべき炭素材料のフラ
ンクリンP−値が0に近いのが好ましいが、その
ような結晶度の高い黒鉛材料を原料とした場合、
原料黒鉛が完全にフツ素化されて(C2F)oを生成
するに要する時間は、特に(C2F)oを選択的に得
るために好ましいマイルドな反応条件下では、極
めて長く、例えば200〜250mesh(Tyler)のマダ
ガスカル産天然黒鉛を375℃、フツ素圧200mmHg
でフツ素と反応させた場合、その生成には120時
間もの長い時間を必要とする。 ここで、フランクリンP−値とは黒鉛の結晶化
度すなわち黒鉛化度を示すもので、次式より計算
して得ることができる。 d(002)=3.440−0.086(1−P2) (式中、d(002)はX線回折で測定される面間隔
(dd002)であり、PはフランクリンP−値を示
す)〔アール.イー.フランクリン,アクタクリ
スタログラフイ(R.E.Franklin,Acta Cryst.)
第4巻235頁(1951)〕。 そこで生成時間を短くするための試みとして、
例えば、(1)小さい粒径の黒鉛を用いる方法、(2)反
応温度を上げる方法、(3)フツ素圧を高くする方法
などが行なわれているが、それぞれ(1)分解反応が
起こりやすくなること、(2)生成(C2F)oの純度が
下がること、(3)それ相応の効果が小さいという問
題があつた。 そこで本発明者らは(C2F)oを高い選択性をも
つて効率よく短時間に生成させる製造方法を開発
すべく種々研究を重ねた結果、炭素材料として膨
張化黒鉛を使用することで所期の目的を達成する
ことを知見し本発明を完成した。 しかして、本発明の一つの目的は、(C2F)o
表わされるフツ化黒鉛を短縮された反応時間で効
率よく製造する改善された製造方法を提供するこ
とにある。 本発明の他の一つの目的は、上記の製造方法に
して、化学工学的な面から更に改善し、秀れた反
応装置規模でその製造を実施する方法を提供する
ことにある。 上記及び他の諸目的、諸特徴及び諸利益は次に
述べる説明から明らかになろう。 基本的に、本発明によれば、炭素材料とフツ素
とを100〜760mmHgのフツ素圧下に300〜500℃の
温度で反応させることによる式(C2F)oで表わさ
れるフツ化黒鉛の製造方法において、炭素材料と
してフランクリンP−値が0〜0.4の黒鉛原材料
を嵩比重が0.01未満になるまで膨張させた膨張化
黒鉛を使用することを特徴とするフツ化黒鉛の製
造方法が提供される。 本発明による(C2F)oの製造方法に用いられる
膨張化黒鉛の原材料である黒鉛は、(C2F)oの選
択率及び必要な膨張性の点から、フランクリンP
−値が0〜0.4の範囲にあることが必須である。
膨張化黒鉛は天然黒鉛、人造黒鉛、キツシユ黒鉛
等の黒鉛層間化合物を急激に加熱して層間侵入化
合物層を瞬間的に分解させてガス化し、その圧力
で黒鉛層間隔を拡大させたもので、一般にその製
造方法としては、異方性の大きい黒鉛粉末を種々
の酸化剤および酸化性混合物(例えば硝酸、塩素
酸カリウム、クロム酸、過マンガン酸カリウム、
クロム酸カリウム、重クロム酸カリウム、過塩素
酸、または例えば硝酸および塩素酸カリウム、ク
ロム酸および燐酸、硫酸および硝酸の濃厚液、ま
た例えば、硫酸と過酸化水素の混合物など)で処
理して黒鉛層間化合物を生成させ、これを十分に
水洗乾燥した後、約500〜1000℃の高温で急激に
加熱処理する方法、或は黒鉛と反応して黒鉛層間
化合物を作る物質(硫酸等)を含む電解液中で黒
鉛を陽極として電解酸化処理して一旦黒鉛層間化
合物を生成させたのち、これを陰極として電解還
元し黒鉛層間化合物を分解させ、ついで膨張化の
ための約500〜1000℃での急激な加熱処理をする
方法などがある。この膨張化処理によつて得られ
る膨張化黒鉛の嵩比重は、層間侵入物質の種類、
加熱温度及び時間によつて変るが、本発明の方法
においては嵩比重が0.01未満、好ましくは0.003
〜0.007位にまで膨張させることにより、(C2F)o
への選択性を損うことなく、反応時間の著しい短
縮が果たされる。 本発明の他の態様によれば、炭素材料とフツ素
とを100〜760mmHgのフツ素圧下に300〜500℃の
温度で反応させることによる式(C2F)oで表わさ
れるフツ化黒鉛の製造方法において、炭素材料と
して、フランクリンP−値が0〜0.4の黒鉛原材
料を嵩比重が0.01未満になるまで膨張させた膨張
化黒鉛を嵩比重が0.01〜0.2の範囲になるまで比
重増加させたものを使用することを特徴とするフ
ツ化黒鉛の製造方法が提供される。 一般に、例えば濃硫酸(95〜98%)と過酸化水
素との混合液に天然黒鉛を浸漬して黒鉛層間化合
物を生成させ、水洗、乾燥後、800℃で数10秒間
熱処理すると嵩比重約0.004の膨張化黒鉛が得ら
れる。このものは、そのままでよく本発明の目的
を達成させる炭素原料であるが、これに例えば容
積比で1:1の割合で水を加えて湿式粉砕するこ
とにより、嵩比重は上がり、驚くべきことに、一
旦膨張したものを嵩比重が0.01〜0.2の範囲に高
めたものをフツ素化の炭素原料に用いても、その
効果は、嵩比重0.004のものを用いた場合と比べ
て殆んど変りなく、(C2F)oへの秀れた選択率を
維持しつつ、反応時間の短縮が果たされることを
知見した。これは、反応装置の大型化を防ぐとい
う点で、実際上極めて有利である。 嵩比重を高めるための方法としては、上述した
例えばスクリユー式ホモミキサーを用いた湿式粉
砕又は圧縮など適宜好ましい方法を採り得るが、
湿式的な上記方法が好ましく用いられる。それに
用いるのに好ましい液体は、水、メチルアルコー
ル、エチルアルコール、イソプロピルアルコール
などの水に易溶性であるアルコール類およびそれ
らの水溶液、エチレングリコール、プロピレング
リコール、ブチレングリコールなど水に易溶性の
ジオール類、四塩化炭素であり、特に水はその取
り扱かいも容易であり、経済性からも好ましい。 膨張化黒鉛を用いた炭素材料が通常の黒鉛材料
を用いたものよりも何故に低温下でも反応速度が
速いかは明確ではないが、膨張化した黒鉛はC軸
方向の結晶子の大きさが小さくなり、フツ化黒鉛
底面方向からの反応界面へのフツ素分子の供給が
容易となることや、黒鉛中の酸化物質等の残留物
が加熱により大気に放出されるときに黒鉛内部に
新たな格子欠陥や粒界を造りだし、これらの活性
点が新たなフツ素化反応の開始点になり反応が促
進するものと考えられる。 フツ素化反応により得られたフツ化黒鉛
(C2F)oは通常黒色乃至は灰黒色を呈するが、生
成温度よりも約50℃高い温度から約600℃までの
範囲の温度でフツ素雰囲気中にて加熱処理(結晶
化)を行えばその化学組成(フツ素含有率)は変
化せず、即ち(CF)oに変化することなく安定
で、色のみが白色となつて結晶度が高まる。 このように膨張化黒鉛を炭素材料として用いる
フツ素化反応で(C2F)oを製造すれば、通常の黒
鉛を用いたものに比べ少くとも2倍以上の反応速
度の向上が図れるのみならず、得られた(C2F)o
を結晶化する場合においても結晶性の高い即ち白
色度の向上したフツ化黒鉛(C2F)oを容易に得る
ことができるという利点がある。 このような膨張化黒鉛を用いる本発明方法に従
えば、低温でも短時間で容易に効率よく、しかも
高い選択率をもつて、(C2F)oで表わされるフツ
化黒鉛を製造することができるなど工業的価値は
極めて大きいものである。 以下実施例により本発明を更に詳細に説明する
が、本発明の範囲は実施例に限定されるものでは
ない。 実施例1及び比較例1〜2 48〜80mesh(Tyler)マダガスカル産天然黒鉛
(フランクリンP−値=0)100重量部に対し、98
%硫酸(300重量部)と過酸化水素(10重量部)
との混合液を添加して層間化合物を生成させ、水
洗、乾燥後、800℃で20秒間加熱処理することに
より、嵩比重0.004の膨張化黒鉛を得た。 反応装置には耐フツ素用熱天秤を用いた。上記
膨張化黒鉛30mgを熱天秤に採取し、まず500℃に
て真空下(10-2mmHg以上の真空度)で約30分加
熱し水分を除去した。次にフツ素ボンベからフツ
素を熱天秤内に導入し、フツ素圧760mmHgに保ち
ながら、反応温度380℃で反応させた。完全にフ
ツ素化が行なわれて(C2F)oを生成するに要した
時間は5時間という短時間で、しかもその収率は
黒鉛に対して100%であつた。膨張化黒鉛より得
たフツ化黒鉛のX線回折図においては2θ=9.8
゜にピークをもつ回折線があり、(C2F)o型フツ
化黒鉛が生成されているのを確認した。また生成
物の組成はCF0.66であつた。 比較のために、膨張化前の48〜80mesh天然黒
鉛(比較試料1)および400mesh以上の細かい天
然黒鉛(比較試料2)を、それぞれ、上記と同一
の条件下でフツ素化した。完全にフツ素化が行な
われて(C2F)oを生成するのに要した時間は、比
較試料1については200時間以上、比較試料2に
ついては3時間であつた。 実施例 2 実施例1と同様にして得た膨張化黒鉛の完全フ
ツ素化による(C2F)oの製造に於いて、反応条件
は反応温度以外は実施例1と同様にし、各反応温
度における生成時間と生成したフツ化黒鉛の組成
及び収率を表1に示す。便宜上、実施例1のデー
タも一緒に示す。
The present invention relates to a method for producing graphite fluoride represented by the formula (C 2 F) o . More particularly, the present invention relates to an improved method for producing (C 2 F) o using expanded graphite as the carbon material. Conventionally, graphite fluoride (CF ) has been known to have the structure synthesized from carbon and fluorine, and due to its unique properties, graphite fluoride (CF ) has been used as an active material in batteries and as a lubricant. agent, wetting agent, antifouling agent,
It is highly valued industrially in a wide range of fields, including as a water and oil repellent. Furthermore, recently, (C 2 F) o- type fluorinated graphite, which has a novel structure and can be produced at relatively low cost and with high yield, has become an industrially viable graphite similar to (CF) o due to its unique chemical and physical properties. It is attracting attention as a material. The reaction for producing these two types of fluorinated graphite is expressed by the following equation. 2nC(s)+nF 2 (g) → 2(CF) o (s) …(1) 4nC(s)+nF 2 (g)→ 2(C 2 F) o (s) …(2) In the above reaction As the fluorine, fluorine alone or fluorine gas diluted with an inert gas is used, but there are many types of carbon represented by C, and the structure is complex, so the reaction conditions are diverse. The fact that the composition and crystallinity of the products also vary somewhat is similar to the way that the properties of carbon and graphite vary along with their structures. Furthermore, these graphite fluorides have various technical and economical drawbacks during their manufacturing process, one of which is (CF) in the case of o- type graphite fluoride, whose degree of thermal decomposition is within the production temperature range of graphite fluoride. The point is that it is close to . For example, when natural graphite is used as a carbon material, it requires a high temperature of 500°C or more and a long reaction time. For example, if the fluorination reaction is carried out at around 600°C for 24 hours ( CF) However, since the (CF) o obtained in this way decomposes at 610℃, the difference between the generation temperature and the thermal decomposition temperature is about 10 to 50℃.
It is very close to ℃. In addition, both the production and decomposition reactions of fluorinated graphite are exothermic reactions, so once the temperature rises during the production reaction stage and the produced fluorinated graphite exceeds a certain temperature, thermal decomposition occurs, and furthermore, this Thermal decomposition also presents the difficult problem of increasing the temperature of the reaction system. This accelerates the decomposition of graphite fluoride, and sometimes the temperature of the entire reaction system rises to a temperature higher than the decomposition temperature of graphite fluoride. It decomposes into. Due to this fact, conventional (CF) o
The yield of fluorinated graphite expressed by Methods have been adopted in which the process is carried out in several stages, but the former is difficult to control the temperature of, and the latter has a complicated manufacturing process, so it is not industrially practical. On the other hand, (C 2 F) o -type fluorinated graphite has almost the same properties and uses as (CF) o , but the amount of expensive fluorine can be significantly reduced in its production, and the new New uses are being developed due to its characteristics, and the manufacturing method is described in detail by the present inventors in Japanese Patent Application Laid-Open No. 102893/1983.
It can be produced by fluorination at 300-500°C. However, in order to obtain (C 2 F) o with high selectivity, it is preferable that the Franklin P-value of the carbon material to be subjected to the reaction is close to 0; If
The time required for the raw graphite to be completely fluorinated to produce (C 2 F) o is extremely long, especially under mild reaction conditions favorable for selectively obtaining (C 2 F) o , e.g. 200~250mesh (Tyler) natural graphite from Madagascar at 375℃, fluorine pressure 200mmHg
When reacted with fluorine, it takes as long as 120 hours for its formation. Here, the Franklin P-value indicates the degree of crystallinity of graphite, that is, the degree of graphitization, and can be obtained by calculating from the following formula. d (002) = 3.440−0.086 (1−P 2 ) (wherein, d (002) is the interplanar spacing (dd 002 ) measured by X-ray diffraction, and P indicates the Franklin P value) [R .. E. REFranklin, Acta Cryst.
Volume 4, p. 235 (1951)]. Therefore, in an attempt to shorten the generation time,
For example, (1) using graphite with a small particle size, (2) increasing the reaction temperature, and (3) increasing the fluorine pressure have been used, but each method (1) tends to cause decomposition reactions. (2) the purity of the produced (C 2 F) o decreases, and (3) the corresponding effect is small. Therefore, the inventors of the present invention have conducted various researches to develop a production method that efficiently produces (C 2 F) o with high selectivity in a short period of time. The present invention was completed after discovering that the intended purpose could be achieved. Therefore, one object of the present invention is to provide an improved production method for efficiently producing graphite fluoride represented by (C 2 F) o in a shortened reaction time. Another object of the present invention is to further improve the above-mentioned production method from the viewpoint of chemical engineering, and to provide a method for carrying out the production on an excellent reactor scale. These and other objects, features and advantages will become apparent from the following description. Basically, according to the present invention, fluorinated graphite expressed by the formula (C 2 F) o is produced by reacting a carbon material and fluorine under a fluorine pressure of 100 to 760 mmHg at a temperature of 300 to 500 °C. There is provided a method for producing graphite fluoride, characterized in that the method uses, as a carbon material, expanded graphite obtained by expanding a graphite raw material with a Franklin P-value of 0 to 0.4 until its bulk specific gravity becomes less than 0.01. Ru. Graphite, which is the raw material for the expanded graphite used in the method for producing (C 2 F) o according to the present invention , is a Franklin P.
- The value must be in the range 0 to 0.4.
Expanded graphite is made by rapidly heating a graphite intercalation compound such as natural graphite, artificial graphite, or hardwood graphite to instantaneously decompose the interlayer compound layer and gasify it, and the resulting pressure expands the distance between the graphite layers. Generally, the manufacturing method involves using graphite powder with high anisotropy in a mixture of various oxidizing agents and oxidizing mixtures (e.g. nitric acid, potassium chlorate, chromic acid, potassium permanganate,
Graphite by treatment with potassium chromate, potassium dichromate, perchloric acid, or concentrated solutions of e.g. nitric acid and potassium chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, and also e.g. mixtures of sulfuric acid and hydrogen peroxide. A method of generating an intercalation compound, washing it thoroughly with water, drying it, and then rapidly heating it at a high temperature of approximately 500 to 1000℃, or electrolysis containing a substance (such as sulfuric acid) that reacts with graphite to create a graphite intercalation compound. After electrolytic oxidation treatment in a liquid using graphite as an anode to generate a graphite intercalation compound, electrolytic reduction is performed using this as a cathode to decompose the graphite intercalation compound, and then rapid oxidation at approximately 500 to 1000℃ for expansion. There are various methods such as heat treatment. The bulk specific gravity of the expanded graphite obtained by this expansion treatment depends on the type of interlayer intercalating substance,
Although it varies depending on the heating temperature and time, in the method of the present invention, the bulk specific gravity is less than 0.01, preferably 0.003.
By expanding to ~0.007, (C 2 F) o
A significant reduction in reaction time is achieved without compromising the selectivity to . According to another aspect of the present invention, fluorinated graphite expressed by the formula (C 2 F) o is produced by reacting a carbon material and fluorine under a fluorine pressure of 100 to 760 mmHg at a temperature of 300 to 500°C. In the manufacturing method, the carbon material is expanded graphite obtained by expanding graphite raw material with a Franklin P value of 0 to 0.4 until the bulk specific gravity becomes less than 0.01, and the specific gravity is increased until the bulk specific gravity is in the range of 0.01 to 0.2. Provided is a method for producing graphite fluoride, which comprises using a method of producing graphite fluoride. Generally, if natural graphite is immersed in a mixed solution of concentrated sulfuric acid (95-98%) and hydrogen peroxide to generate a graphite intercalation compound, washed with water, dried, and then heat-treated at 800°C for several tens of seconds, the bulk specific gravity is approximately 0.004. of expanded graphite is obtained. This is a carbon raw material that can accomplish the purpose of the present invention as it is, but by wet-pulverizing it by adding water at a volume ratio of 1:1, the bulk specific gravity increases, which is surprising. Even if a carbon material that has been expanded and has a bulk specific gravity in the range of 0.01 to 0.2 is used as a carbon raw material for fluorination, the effect is almost not as great as when using one with a bulk specific gravity of 0.004. It was found that the reaction time was shortened while maintaining the excellent selectivity to (C 2 F) o . This is extremely advantageous in practice in that it prevents the reactor from increasing in size. As a method for increasing the bulk specific gravity, any suitable method such as the above-mentioned wet grinding or compression using a screw type homomixer can be used, but
The above wet method is preferably used. Preferred liquids for use therein include water, alcohols that are easily soluble in water such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and their aqueous solutions, diols that are easily soluble in water such as ethylene glycol, propylene glycol, and butylene glycol; Carbon tetrachloride, especially water, is easy to handle and is preferred from the economic point of view. It is not clear why carbon materials using expanded graphite have a faster reaction rate than those using normal graphite materials, even at low temperatures, but expanded graphite has a larger crystallite size in the C-axis direction. This makes it easier to supply fluorine molecules from the bottom of graphite fluoride to the reaction interface, and when residuals such as oxidized substances in graphite are released into the atmosphere by heating, new molecules are created inside graphite. It is thought that lattice defects and grain boundaries are created, and these active sites serve as starting points for new fluorination reactions, promoting the reaction. Fluorinated graphite (C 2 F ) obtained by fluorination reaction usually exhibits a black or gray-black color, but it is exposed to a fluorine atmosphere at a temperature ranging from about 50°C higher than the formation temperature to about 600°C. If heat treatment (crystallization) is performed inside, the chemical composition (fluorine content) will not change, that is, it will remain stable without changing to (CF) o , and only the color will become white and the crystallinity will increase. . If (C 2 F) o is produced by the fluorination reaction using expanded graphite as a carbon material in this way, the reaction rate can be improved by at least twice as much as that using ordinary graphite. (C 2 F) o
Even when crystallizing fluorinated graphite (C 2 F), there is an advantage that graphite fluoride (C 2 F) with high crystallinity, that is, with improved whiteness, can be easily obtained. According to the method of the present invention using such expanded graphite, it is possible to easily and efficiently produce graphite fluoride represented by (C 2 F) o even at low temperatures in a short time and with high selectivity. The industrial value is extremely large. The present invention will be explained in more detail with reference to Examples below, but the scope of the present invention is not limited to the Examples. Example 1 and Comparative Examples 1 to 2 48 to 80 mesh (Tyler) 98 to 100 parts by weight of natural graphite from Madagascar (Franklin P-value = 0)
% sulfuric acid (300 parts by weight) and hydrogen peroxide (10 parts by weight)
An intercalation compound was produced by adding a mixed solution of the mixture, washed with water, dried, and then heat-treated at 800°C for 20 seconds to obtain expanded graphite with a bulk specific gravity of 0.004. A fluorine-resistant thermobalance was used as the reaction apparatus. 30 mg of the expanded graphite was collected in a thermobalance, and first heated at 500° C. under vacuum (degree of vacuum of 10 -2 mmHg or more) for about 30 minutes to remove moisture. Next, fluorine was introduced into the thermobalance from the fluorine cylinder and reacted at a reaction temperature of 380°C while maintaining the fluorine pressure at 760 mmHg. The time required for complete fluorination to produce (C 2 F) o was as short as 5 hours, and the yield was 100% based on graphite. In the X-ray diffraction diagram of fluorinated graphite obtained from expanded graphite, 2θ = 9.8.
There was a diffraction line with a peak at °, confirming that (C 2 F) o- type graphite fluoride was produced. The composition of the product was CF 0.66 . For comparison, 48 to 80 mesh natural graphite before expansion (Comparative Sample 1) and fine natural graphite of 400 mesh or more (Comparative Sample 2) were each fluorinated under the same conditions as above. The time required for complete fluorination to produce (C 2 F) o was over 200 hours for Comparative Sample 1 and 3 hours for Comparative Sample 2. Example 2 In the production of (C 2 F) o by complete fluorination of expanded graphite obtained in the same manner as in Example 1, the reaction conditions were the same as in Example 1 except for the reaction temperature. Table 1 shows the production time, composition and yield of the produced graphite fluoride. For convenience, the data of Example 1 is also shown.

【表】 実施例 3 実施例1で用いた嵩比重0.004の膨張化黒鉛に
容積比で1:1の割合で水を加え、スクリユー式
ホモミキサーを用いて湿式粉砕することによつて
膨張化黒鉛の嵩比重を0.04にまで高めた後、150
℃で乾燥したものをフツ素化に用いた以外は、実
施例2と同様に行なつて各温度で(C2F)oを得
た。その結果は、表1に示すものと実質的に同一
であつた。 実施例 4 実施例1と同様に、膨張化黒鉛を用いて、380
℃、フツ素圧760mmHg、5時間で生成したフツ化
黒鉛を引き続き反応温度を加熱速度5℃/分、で
昇温させ表2に示す所定の条件で結晶化した。生
成物の白色度は反射率計(日本電色CP6−1D)
でもとめた反射率により比較した。また空気雰囲
気中での熱分解開始温度はDTA(島津、DT−
20B)により加熱速度10℃/分、空気雰囲気にて
もとめた。表2に平均粒径10μの天然黒鉛を380
℃、フツ素圧:760mmHg、30時間で生成させたフ
ツ化黒鉛の反射率及び分解開始温度の結果と併せ
て示す。 表2より膨張化黒鉛のフツ素化により生成され
たフツ化黒鉛を引き続き高温、フツ素雰囲気にお
いて結晶化すると、天然黒鉛を原料とした場合と
比べ、容易に熱安定性のよいしかも白色度の高い
フツ化黒鉛を得ることができた。
[Table] Example 3 Water was added to the expanded graphite with a bulk specific gravity of 0.004 used in Example 1 at a volume ratio of 1:1, and the mixture was wet-pulverized using a screw-type homomixer to produce expanded graphite. After increasing the bulk specific gravity to 0.04, 150
(C 2 F) o was obtained at each temperature in the same manner as in Example 2, except that the product dried at °C was used for fluorination. The results were substantially the same as those shown in Table 1. Example 4 Similarly to Example 1, using expanded graphite, 380
℃, fluoride pressure of 760 mmHg for 5 hours, the reaction temperature was raised at a heating rate of 5° C./min, and crystallized under the predetermined conditions shown in Table 2. The whiteness of the product was measured using a reflectance meter (Nippon Denshoku CP6-1D).
A comparison was made based on the reflectance measured. In addition, the thermal decomposition onset temperature in an air atmosphere is DTA (Shimadzu, DT-
20B) at a heating rate of 10°C/min in an air atmosphere. Table 2 shows 380 natural graphite with an average particle size of 10μ.
℃, Fluorine pressure: 760 mmHg, and the results of the reflectance and decomposition onset temperature of fluorinated graphite produced for 30 hours are also shown. Table 2 shows that when fluorinated graphite produced by fluorinating expanded graphite is subsequently crystallized at high temperature in a fluorine atmosphere, it easily becomes more thermally stable and has lower whiteness than when natural graphite is used as a raw material. We were able to obtain high-quality graphite fluoride.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素材料とフツ素とを100〜760mmHgのフツ
素圧下に300〜500℃の温度で反応させることによ
る式(C2F)oで表わされるフツ化黒鉛の製造方法
において、炭素材料としてフランクリンP−値が
0〜0.4の黒鉛原材料を嵩比重が0.01未満になる
まで膨張させた膨張化黒鉛を使用することを特徴
とするフツ化黒鉛の製造方法。 2 炭素材料とフツ素とを100〜760mmHgのフツ
素圧下に300〜500℃の温度で反応させることによ
る式(C2F)oで表わされるフツ化黒鉛の製造方法
において、炭素材料として、フランクリンP−値
が0〜0.4の黒鉛原材料を嵩比重が0.01未満にな
るまで膨張させた膨張化黒鉛を嵩比重が0.01〜
0.2の範囲になるまで比重増加させたものを使用
することを特徴とするフツ化黒鉛の製造方法。 3 該膨張化黒鉛が黒鉛層間化合物を約500〜約
1000℃の温度で急速加熱することによつて得られ
ることを特徴とする前記第1項又は第2項請求の
方法。
[Claims] 1. A method for producing fluorinated graphite represented by the formula (C 2 F) o by reacting a carbon material and fluorine under a fluorine pressure of 100 to 760 mmHg at a temperature of 300 to 500°C. . A method for producing fluorinated graphite, characterized in that expanded graphite obtained by expanding a graphite raw material having a Franklin P-value of 0 to 0.4 until its bulk specific gravity becomes less than 0.01 is used as the carbon material. 2 In a method for producing graphite fluoride represented by the formula (C 2 F) o by reacting a carbon material and fluorine under a fluorine pressure of 100 to 760 mmHg at a temperature of 300 to 500°C, Franklin Expanded graphite, which is obtained by expanding graphite raw material with a P-value of 0 to 0.4 until the bulk specific gravity becomes less than 0.01, has a bulk specific gravity of 0.01 to 0.01.
A method for producing graphite fluoride, characterized by using graphite whose specific gravity has been increased to a range of 0.2. 3 The expanded graphite contains a graphite intercalation compound of about 500 to about
3. A method according to claim 1 or 2, characterized in that it is obtained by rapid heating at a temperature of 1000°C.
JP55158831A 1980-11-13 1980-11-13 Manufacture of graphite fluoride Granted JPS5788015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55158831A JPS5788015A (en) 1980-11-13 1980-11-13 Manufacture of graphite fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55158831A JPS5788015A (en) 1980-11-13 1980-11-13 Manufacture of graphite fluoride

Publications (2)

Publication Number Publication Date
JPS5788015A JPS5788015A (en) 1982-06-01
JPS6131049B2 true JPS6131049B2 (en) 1986-07-17

Family

ID=15680338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55158831A Granted JPS5788015A (en) 1980-11-13 1980-11-13 Manufacture of graphite fluoride

Country Status (1)

Country Link
JP (1) JPS5788015A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551709A (en) * 1978-10-13 1980-04-15 Oyo Kagaku Kenkyusho Production of graphite fluoride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551709A (en) * 1978-10-13 1980-04-15 Oyo Kagaku Kenkyusho Production of graphite fluoride

Also Published As

Publication number Publication date
JPS5788015A (en) 1982-06-01

Similar Documents

Publication Publication Date Title
EP2176163B1 (en) Highly efficient process for manufacture of exfoliated graphene
EP1807354B1 (en) Process for producing manganese fluoride
JPH0677458B2 (en) Battery active material
JPS6220127B2 (en)
JPS6071503A (en) Manufacture of nf3
US5286471A (en) Graphite flouride from iodine intercalated graphitized carbon
EP0816288B1 (en) Preparation of lithiumhexafluorometallates
US5582811A (en) Stable blister free flexible graphite and method
US4082839A (en) Preparation of sulfur fluorides
JP5299943B2 (en) Fluorine storage material
JPS61151024A (en) Production of high purity lithium fluoride complex salt
JPS6131049B2 (en)
CN114751458B (en) Manganese trifluoride material with non-edge fused body structure and preparation method thereof
JP5043836B2 (en) Method for recycling zirconium tetrafluoride to form zirconia
JPH0366252B2 (en)
US3687626A (en) Process for the production of sulfuryl fluoride
JPS6261572B2 (en)
KR100490771B1 (en) Process for producing carbonyl difluoride
CN110395717A (en) A kind of preparation method of fold graphene
JPS611662A (en) Manufacture of (trifluoromethyl)pyridine
JP3880301B2 (en) Method for producing hexafluoroaluminum ammonium
JPS61268641A (en) Production of 3,3',5,5'-tetramethyl-4,4'-dihydroxydiphenyl
US2615232A (en) Production of metallic fluorides
JPS6135123B2 (en)
JPS6345108A (en) Production of potassium 6-fluorophosphate