JPS6131042B2 - - Google Patents

Info

Publication number
JPS6131042B2
JPS6131042B2 JP58018496A JP1849683A JPS6131042B2 JP S6131042 B2 JPS6131042 B2 JP S6131042B2 JP 58018496 A JP58018496 A JP 58018496A JP 1849683 A JP1849683 A JP 1849683A JP S6131042 B2 JPS6131042 B2 JP S6131042B2
Authority
JP
Japan
Prior art keywords
flow rate
hydrogen
pressure
raw material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58018496A
Other languages
Japanese (ja)
Other versions
JPS59146904A (en
Inventor
Toyofumi Usu
Norio Zenitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Yokogawa Hokushin Electric Corp filed Critical Nippon Mining Co Ltd
Priority to JP1849683A priority Critical patent/JPS59146904A/en
Publication of JPS59146904A publication Critical patent/JPS59146904A/en
Publication of JPS6131042B2 publication Critical patent/JPS6131042B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、出口側の負荷変動に応じて原料流量
を制御するようにした水素製造装置における水素
製造量の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of hydrogen produced in a hydrogen production apparatus in which the flow rate of raw material is controlled in accordance with load fluctuations on the outlet side.

石油精製及び石油化学工場では、多くの水素消
費装置を有しており、このための水素が、各種石
油精製及び石油化学装置から排出されるいわゆる
オフガス或いはナフサ等の炭化水素類を原料とし
たスチームリフオーミング法によつて製造されて
いる。
Oil refining and petrochemical plants have many hydrogen consuming equipment, and the hydrogen for this is either so-called off-gas discharged from various oil refining and petrochemical equipment, or steam made from hydrocarbons such as naphtha. Manufactured using the re-forming method.

この種の水素製造装置では、リフオーミング触
媒に悪影響を与える硫黄分を原料中より除去する
脱硫装置、触媒の存在下にスチームを加えて、原
料をスチーム改質する改質炉(リフオーマ)、及
び改質されたガス中の炭酸ガスを除去する脱炭酸
装置等が用いられている。水素の製造量は水素の
消費装置の負荷によつて決定されるものである
が、従来、消費装置の負荷変動状況によつて水素
製造装置はすぐに反応できず余剰水素はフレアに
放出していた。これは製品を捨てていることにな
り経済的損失である。また、負荷が逆に不足した
ときには原料及びスチームの調節弁を開いて負荷
増大に応じていたが、消費装置の運転状況は水素
製造装置側で事前に把握することはできず、しか
もその反応は各調節計の単ループ調整で行つてい
たので、熟練した経験者でないと操作が不可能で
あつた。
This type of hydrogen production equipment includes a desulfurization device that removes sulfur from the raw material that adversely affects the reforming catalyst, a reformer that adds steam to the raw material in the presence of a catalyst, and a reformer. A decarboxylation device or the like is used to remove carbon dioxide from the purified gas. The amount of hydrogen produced is determined by the load on the hydrogen consuming equipment, but in the past, due to load fluctuations on the consuming equipment, the hydrogen producing equipment could not react quickly and excess hydrogen was released into the flare. Ta. This means that the product is being thrown away, which is an economic loss. In addition, when the load was insufficient, the raw material and steam control valves were opened to respond to the increase in load, but the operating status of the consuming equipment could not be grasped in advance on the hydrogen production equipment side, and the reaction was unpredictable. Since each controller was adjusted in a single loop, only skilled and experienced personnel could operate it.

本発明は、このような点に鑑みてなされたもの
で、消費装置側の負荷変動を水素製造装置出口側
に設けられた圧力検出器により検出し、負荷変動
に応じて原料流量を制御するようにして、負荷に
応じた水素量を製造することができるようにした
ものである。
The present invention has been made in view of the above-mentioned problems, and is designed to detect load fluctuations on the consuming device side using a pressure detector installed at the outlet side of the hydrogen production device, and to control the raw material flow rate according to the load fluctuations. This makes it possible to produce an amount of hydrogen according to the load.

以下、図面を参照して本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明を説明するための水素製造装
置の一実施例を示す構成図である。図は、2系統
のオフガスが原料として用いられ、バツクアツプ
用のナフサが1系統追加されたシステム例を示し
ている。図において、A1,A2は各原料流路に設
置された分析計である。該分析計としては、例え
ばガスクロ分析計が用いられる。T1乃至T3は各
原料流路に設置された温度検出器、P1,P2は圧力
検出器、F1乃至F3は流量検出器、V1乃至V3は調
節弁、C1乃至C3は流量検出器F1〜F3の出力が一
定になるように調節弁V1〜V3を調節する流量調
節計である。CA1乃至CA3は、各原料流路に設置
された検出器出力を受けて補正されたカーボンモ
ル数、トータルモル数等を算出する演算器であ
る。これら演算器の出力をもとにスチームカーボ
ンモル比S/Cが算出され、S/Cが一定になる
ようにスチーム流量が制御される。或いは場合に
よつてはトータルモル数が一定になるような制御
も行われる。
FIG. 1 is a configuration diagram showing an embodiment of a hydrogen production apparatus for explaining the present invention. The figure shows an example of a system in which two systems of off-gas are used as raw materials and one system of backup naphtha is added. In the figure, A 1 and A 2 are analyzers installed in each raw material flow path. As the analyzer, for example, a gas chromatography analyzer is used. T 1 to T 3 are temperature detectors installed in each raw material flow path, P 1 and P 2 are pressure detectors, F 1 to F 3 are flow rate detectors, V 1 to V 3 are control valves, and C 1 to C3 is a flow rate controller that adjusts the control valves V1 to V3 so that the outputs of the flow rate detectors F1 to F3 are constant. CA 1 to CA 3 are computing units that calculate the corrected number of carbon moles, total number of moles, etc. in response to outputs from detectors installed in each raw material flow path. The steam carbon molar ratio S/C is calculated based on the outputs of these calculators, and the steam flow rate is controlled so that the S/C is constant. Alternatively, in some cases, control is performed so that the total number of moles remains constant.

各流路を通過した原料はA点で合流して加熱炉
1に入る。加熱炉1で加熱された原料は、脱硫塔
2で硫黄分が除去される。脱硫塔2で脱硫された
原料は、改質炉3でスチームと反応して水素
(H2)と炭酸ガス(CO2)とに改質される。改質さ
れたガスは、続く脱炭酸装置4に入つて炭酸ガス
が除去され製品水素となる。
The raw materials that have passed through each flow path join together at point A and enter the heating furnace 1. The sulfur content of the raw material heated in the heating furnace 1 is removed in the desulfurization tower 2. The raw material desulfurized in the desulfurization tower 2 reacts with steam in the reforming furnace 3 and is reformed into hydrogen (H 2 ) and carbon dioxide (CO 2 ). The reformed gas enters the subsequent decarboxylation device 4, where carbon dioxide gas is removed and it becomes product hydrogen.

P3は脱硫塔2の出口に設定された圧力検出器、
C4は該検出器の出力を受ける圧力調節計で、そ
の出力は切換スイツチSWを介して流量調節計C1
又はC2の何れか一方に設定値として印加される
ようになつている。V4は、改質炉3の入口部に
設けられた調節弁、Mは該調節弁を制御する操作
器、V5は改質炉3に供給するスチーム流量を制
御する調節弁である。調節弁V5は、スチーム流
量調節計(図示せず)により制御される。このよ
うなスチーム流量調節計の設定値は、例えば前述
したスチームカーボンモル比S/C演算やトータ
ルモル演算により決定される。
P 3 is a pressure detector set at the outlet of desulfurization tower 2;
C 4 is a pressure regulator that receives the output of the detector, and the output is sent to the flow regulator C 1 via a changeover switch SW.
or C2 as a set value. V 4 is a control valve provided at the inlet of the reforming furnace 3 , M is an operator that controls the control valve, and V 5 is a control valve that controls the flow rate of steam supplied to the reformer 3 . Regulating valve V5 is controlled by a steam flow regulator (not shown). The setting value of such a steam flow rate controller is determined, for example, by the steam carbon molar ratio S/C calculation or the total molar calculation described above.

E1乃至E3は、改質炉3の出口部に設けられた
熱交換器である。P4は製品水素の出口側に設けら
れた圧力検出器、C5は該圧力検出器の出力を受
ける圧力調節計、V6は該調節計出力で駆動され
る調節弁、F4はフレアに放出される水素流量を
検出する流量検出器である。水素出口側流路の一
部は分岐し、調節弁V6を介して水素の一部がフ
レアに放出されるようになつている。即ち、製造
水素が供給される水素消費装置(図示せず)側の
消費量が減少して出口側圧力が増加したときに、
調節弁V6を開いて圧力を調節している。
E 1 to E 3 are heat exchangers provided at the outlet of the reforming furnace 3. P 4 is a pressure detector installed on the outlet side of the product hydrogen, C 5 is a pressure regulator that receives the output of the pressure detector, V 6 is a control valve driven by the output of the regulator, and F 4 is a flare valve. This is a flow rate detector that detects the flow rate of released hydrogen. A portion of the hydrogen outlet side flow path is branched so that a portion of the hydrogen is released to the flare via a control valve V6 . That is, when the consumption amount on the side of the hydrogen consumption device (not shown) to which produced hydrogen is supplied decreases and the pressure on the outlet side increases,
The pressure is regulated by opening the control valve V6 .

5は、圧力検出器P4及び流量検出器F4の出力
を受けて水素出口側圧力が一定になるような設定
値を操作器Mに与える演算制御装置である。該演
算制御装置としては、例えばマイクロコンピユー
タが用いられる。改質炉入口部の調節弁V4の開
度を変化させると、当然入口部の圧力も変化す
る。圧力検出器P3はこの圧力変化を圧力調節計
C4に伝える。圧力調節計C4はこの圧力変化を補
償するような制御信号を発生する。SWは、該調
節計の出力を設定値として原料流量調節計C1
いはC2の何れかに与える切換スイツチである。
このように構成された装置の動作を説明すれば、
以下のとおりである。
Reference numeral 5 denotes an arithmetic and control device that receives the outputs of the pressure detector P 4 and the flow rate detector F 4 and provides a set value to the operator M so that the hydrogen outlet side pressure becomes constant. As the arithmetic and control device, for example, a microcomputer is used. When the opening degree of the control valve V 4 at the inlet of the reformer is changed, the pressure at the inlet naturally changes. Pressure detector P 3 detects this pressure change as a pressure regulator.
Tell C4 . Pressure regulator C4 generates a control signal to compensate for this pressure change. SW is a changeover switch that applies the output of the controller as a set value to either the raw material flow rate controller C 1 or C 2 .
To explain the operation of the device configured in this way,
It is as follows.

水素製造装置が正常に運転されている状態で
は、圧力検出器P4より検出される圧力は圧力調節
計C5の設定値よりも低い。従つて、該調節計で
駆動される調節弁V6は閉状態になつている。こ
のとき、流量検出器F4の出力は当然0である。
今、水素消費装置側負荷がさがり従つて水素消費
量が下がつたものとすると、圧力調節計C5の圧
力測定値は除々に上昇し最終的には設定値をオー
バーする。これにより、調節計C5は調節弁V6
駆動信号を与えて弁を開く。この状態で、演算制
御装置5は圧力検出器P4及び流量検出器F4の出
力を受けて条件を満足した段階で、操作器Mへの
設定信号MVを一定値αだけ差引き新たな設定値
MV′とする。即ち、 MV′=MV−α (1) となるような新たな設定値MV′を操作器Mに与え
る。設定値がMVからMV′に変化するとそれに応
じて調節弁V4を閉じる。V4が閉じられると改質
炉3出口のガス圧は低下する。
When the hydrogen production device is operating normally, the pressure detected by the pressure detector P4 is lower than the set value of the pressure regulator C5 . Therefore, the control valve V6 driven by the controller is in a closed state. At this time, the output of the flow rate detector F4 is naturally 0.
Now, assuming that the load on the hydrogen consuming device is lowered and the amount of hydrogen consumed is accordingly lowered, the pressure measurement value of the pressure regulator C5 gradually increases and eventually exceeds the set value. Thereby, the controller C5 gives a drive signal to the regulating valve V6 to open the valve. In this state, the arithmetic and control unit 5 receives the outputs of the pressure detector P 4 and the flow rate detector F 4 and, when the conditions are satisfied, subtracts a certain value α from the setting signal MV to the operating device M to set a new setting. value
Let it be MV′. That is, a new set value MV' such that MV'=MV-α (1) is given to the operating device M. When the set value changes from MV to MV′, control valve V 4 is closed accordingly. When V 4 is closed, the gas pressure at the reformer 3 outlet decreases.

この状態で、演算制御装置5に内蔵のタイマが
起動し系の安定を待つて再び検出器P4,F4をチ
エツクする。このような操作の繰り返しによつ
て、負荷減少による原料流量の制御を行う。な
お、上述の操作によつて原料流量の制御が行える
が、調節弁V4によつて流量が絞られる結果それ
より前段部の圧力が上昇する。この圧力上昇分を
補正してやるため、圧力調節計C4は圧力検出器
P3の出力を受けて原料流路側の調節計に制御信号
を送り調節計C1或いはC2の設定値を変化させ、
装置入口部でオフガスの流入量を絞るようにす
る。これにより、脱硫塔2の出口部の圧力が正常
な値に保たれることになる。なお、切換スイツチ
SWは2つの原量流路のうち何れをベース負荷用
にするか変動用にするかを選択するためのもの
で、負荷変動が生じたら変動用の流路側に切換わ
つて脱硫塔出口圧力が一定になるような流量制御
を行うようになつている。
In this state, a timer built into the arithmetic and control unit 5 starts, waits for the system to stabilize, and then checks the detectors P 4 and F 4 again. By repeating such operations, the raw material flow rate is controlled by reducing the load. Although the flow rate of the raw material can be controlled by the above-described operation, the flow rate is throttled by the control valve V4 , and as a result, the pressure in the earlier stage increases. In order to compensate for this pressure increase, pressure regulator C 4 is a pressure detector.
Upon receiving the output of P 3 , a control signal is sent to the controller on the raw material flow path side to change the set value of controller C 1 or C 2 ,
The inflow of off-gas should be restricted at the inlet of the device. As a result, the pressure at the outlet of the desulfurization tower 2 is maintained at a normal value. In addition, the changeover switch
The SW is used to select which of the two flow paths is used for base load or variable flow, and when a load fluctuation occurs, it is switched to the flow path for variable flow to increase the desulfurization tower outlet pressure. The flow rate is controlled to be constant.

負荷が減少したときの流量制御動作については
前述したが、設定器Mの設定値の減少分αは通常
数%の値をもつており一挙にαだけ下げると制御
系に大きな外乱を与えることになり、正常な運転
状態の維持が困難になる。そこで、本発明では、
1回あたりの変化量αに対して単位時間あたりの
変化量αを定義し、α,αを外部より設定で
きるようにしている。α,αは、演算制御装置
5に入力する。α,αによつて内蔵タイマのセ
ツト時間nは自動的に計算される。これらの間に
は次式で示されるような関係が成立する。
The flow rate control operation when the load decreases has been described above, but the decrease α in the setting value of the setting device M usually has a value of several percent, and if α is lowered all at once, it will cause a large disturbance to the control system. This makes it difficult to maintain normal operating conditions. Therefore, in the present invention,
A change amount α 0 per unit time is defined for the change amount α per time, and α and α 0 can be set from the outside. α, α0 are input to the arithmetic and control unit 5. The set time n of the built-in timer is automatically calculated from α and α0 . A relationship as shown in the following equation is established between these.

α=nxα (2) 第2図は、αの変化モードを示す図である。縦
軸は負荷変動量、横軸は時間である。図でT1
変化許容時間、T2は安定時間である。このよう
にαを小刻みに変化させる結果、制御系に大きな
外乱を与えることなく負荷減少に応じた水素を発
生させることができる。なお、1回あたりの変化
量αをこのようにαのステツプで漸減させる
と、圧力検出器P4、調節計C4及び調節計C1(又
はC2)で構成される圧力調節系の制御動作も、当
然にこれに引きずられることになる。
α=nxα 0 (2) FIG. 2 is a diagram showing the change mode of α. The vertical axis is the amount of load fluctuation, and the horizontal axis is time. In the figure, T 1 is the allowable change time and T 2 is the stability time. As a result of changing α in small increments in this way, hydrogen can be generated in accordance with the load reduction without causing a large disturbance to the control system. Incidentally, if the amount of change α per time is gradually decreased in steps of α 0 in this way, the pressure regulation system consisting of pressure detector P 4 , controller C 4 and controller C 1 (or C 2 ) will be reduced. Naturally, control operations will also be affected by this.

次に、負荷が上昇する場合について説明する。
負荷が上昇すると水素出口側の圧力は低下する。
調節計C5は、圧力検出器P4の出力を受けて圧力
低下を検出すると、調節弁V6が開いていた場合
には該弁を閉じる。演算制御装置5は、圧力検出
器P4の出力を受けて一定の条件が満たされている
かどうかを確認する。条件が満たされた場合、操
作器Mの設定値を変更して弁開度を上げ、圧力調
節を行う。この場合は、負荷が減少した場合の操
作を逆にたどる。即ち、設定値MVに変化量αを
加算して新たな設定値MV′とする。このとき
MV′とMVの関係は次式のとおりである。
Next, a case where the load increases will be explained.
As the load increases, the pressure on the hydrogen outlet side decreases.
Upon receiving the output of the pressure detector P4 and detecting a pressure drop, the controller C5 closes the control valve V6 if it is open. The arithmetic and control unit 5 receives the output of the pressure detector P4 and checks whether certain conditions are met. If the conditions are met, the setting value of the operating device M is changed to increase the valve opening and the pressure is adjusted. In this case, the operations performed when the load decreased are reversed. That is, the change amount α is added to the set value MV to obtain a new set value MV'. At this time
The relationship between MV′ and MV is as shown in the following equation.

MV′=MV+α (3) そして、変化量αはステツプαずつの小刻み
な変化で増加するので、制御系に外乱を与えない
で負荷増加に応じた水素を製造することができ
る。
MV'=MV+α (3) Since the amount of change α increases in small increments of step α0 , hydrogen can be produced in accordance with the increase in load without causing any disturbance to the control system.

ところで、原料側については後段部の変更にも
拘らず一定量を供給しているので後段部に応じて
脱硫塔2までの圧力が増減する。そこで、本発明
ではオフガス1,2及びナフサの3種類の原料に
対してベース負荷用及び変動負荷用を区別するス
イツチSWによつて、負荷増加時には圧力調節計
C4の設定値出力を変動負荷側の調節計に持続し
て、負荷増に応じて供給オフガスを増加させるよ
うにしている。
By the way, as for the raw material side, a constant amount is supplied regardless of the change in the rear stage, so the pressure up to the desulfurization tower 2 increases or decreases depending on the rear stage. Therefore, in the present invention, when the load increases, the pressure regulator is
The set value output of C4 is maintained to the controller on the variable load side, and the supplied off gas is increased as the load increases.

なお、安全性を確保するため、演算制御装置5
は水素出口部の検出器P4及びF4の出力を受け、
双方が所定の条件を満たしていないときには設定
器Mに設定信号を与えず、CRT(図示せず)に
表示することにより装置の運転員にその旨通知す
る。
In addition, in order to ensure safety, the arithmetic and control unit 5
receives the output of detectors P 4 and F 4 at the hydrogen outlet,
If both do not satisfy the predetermined conditions, no setting signal is given to the setting device M, and the operator of the device is notified of this by displaying it on a CRT (not shown).

第3図は、本発明の他の実施例を示す構成図で
第1図と構成に変化のない部分は省略してある。
図において、第1図と同一のものは同一の番号を
付して示す。第1図に示す装置は、負荷変動が生
じると先ず操作器Mの設定値を変えて改質炉3に
供給される原料量を変えて水素出口部の圧力調整
を行い、調節弁V4の開度が変わることによる脱
硫塔出口側の圧力調整は原料流路側の流量調節で
行うという2段がまえの方式を採つている。これ
に対して、第3図に示す装置は、このような2段
がまえの構成をとるかわりに、遅れ時間分を補償
するための遅れ時間要素を付加し、水素出口部の
圧力変化を受ける調節計で直に原料流路側の原料
流量を調節するようにしたものである。図におい
て、C10はC5と並列に圧力検出器P4の出力を受け
る圧力調節計で、C10の設定値はC5の設定値より
若干低い圧力に設定されている。通常運転の圧力
はC10の設定値によつて調節動作が行われ、C10
設定値を越えかつC5の設定値を越えたときのみ
水素がフレアへ放出される。Xは該圧力調節計と
組んで無駄時間補償付調節計を構成する遅れ要素
である。該遅れ要素としては、例えばスミスの無
駄時間補償が用いられる。
FIG. 3 is a block diagram showing another embodiment of the present invention, and parts that are the same as those in FIG. 1 are omitted.
In the figure, the same parts as in FIG. 1 are designated by the same numbers. In the apparatus shown in Fig. 1, when a load change occurs, first, the set value of the operating device M is changed to change the amount of raw material supplied to the reforming furnace 3, and the pressure at the hydrogen outlet is adjusted . A two-stage system is adopted in which the pressure on the desulfurization tower outlet side is adjusted by changing the opening degree by adjusting the flow rate on the raw material flow path side. On the other hand, the device shown in Fig. 3 adds a delay time element to compensate for the delay time, instead of having such a two-stage configuration, and receives pressure changes at the hydrogen outlet. The flow rate of the raw material on the raw material flow path side is directly adjusted using a controller. In the figure, C10 is a pressure regulator that receives the output of pressure detector P4 in parallel with C5 , and the set value of C10 is set to a slightly lower pressure than the set value of C5 . The normal operating pressure is regulated by the C 10 setpoint, and hydrogen is released to the flare only when the C 10 setpoint is exceeded and the C5 setpoint is exceeded. X is a delay element that is combined with the pressure regulator to form a regulator with dead time compensation. For example, Smith's dead time compensation is used as the delay element.

上述の説明では、オフガス2系統の場合を例に
とつたが、これに限ることなく任意の数の系統で
あつてよい。又、原料は、炭化水素類であればオ
フガスに限定されず、プロパン、ブタン等のガス
或いはナフサ等でもよい。
In the above description, the case of two off-gas systems is taken as an example, but the present invention is not limited to this, and any number of systems may be used. Further, the raw material is not limited to off-gas as long as it is a hydrocarbon, and gases such as propane and butane, naphtha, etc. may be used.

以上、詳細に説明したように、本発明によれば
脱硫装置側の負荷変動を水素製造装置出口側に設
けられた圧力検出器により検出し、負荷変動に応
じて原料流量を所定の方法で制御するようにした
ので、制御系に外乱を与えることなく負荷に応じ
た水素量を製造することもできる。
As described above in detail, according to the present invention, load fluctuations on the desulfurization equipment side are detected by a pressure detector installed at the exit side of the hydrogen production equipment, and the raw material flow rate is controlled in a predetermined manner according to the load fluctuations. This makes it possible to produce an amount of hydrogen according to the load without causing any disturbance to the control system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図は変化量αの変化モードを示す図、第3図は本
発明の他の実施例を示す構成図である。 1……加熱炉、2……脱硫塔、3……改質炉、
4……脱炭酸装置、5……演算制御装置、A1
A2……分析計、T1〜T3……温度検出器、P1〜P4
……圧力検出器、F1〜F4……流量検出器、C1
C5……調節計、M……操作器、V1〜V6……調節
弁、SW……切換スイツチ、E1〜E3……熱交換
器。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure shows a mode of change in the amount of change α, and FIG. 3 is a configuration diagram showing another embodiment of the present invention. 1... Heating furnace, 2... Desulfurization tower, 3... Reforming furnace,
4... Decarboxylation device, 5... Arithmetic control device, A 1 ,
A 2 ... Analyzer, T 1 ~ T 3 ... Temperature detector, P 1 ~ P 4
...Pressure detector, F 1 ~ F 4 ...Flow rate detector, C 1 ~
C5 ...controller, M...operator, V1 to V6 ...control valve, SW...changeover switch, E1 to E3 ...heat exchanger.

Claims (1)

【特許請求の範囲】 1 炭化水素類を原料とし、少なくとも当該炭化
水素類を脱硫する脱硫装置、脱硫された炭化水素
類をスチーム改質する改質炉及び改質されたガス
から炭酸ガスを除去する脱炭酸装置より成る水素
製造装置における水素製造量の制御方法におい
て、製造された水素を消費する消費装置の負荷変
動を前記水素製造装置の出口側に設けられた圧力
検出器により検出し、負荷変動に応じて原料流量
を制御するに際し、あらかじめ設定された変化量
に達するまで、細分化された変化量で変化させ、
所定時間経過後に前記圧力検出器により検出して
原料流量を制御することを特徴とする水素製造装
置における水素製造量の制御方法。 2 前記原料流量の制御が水素製造装置出口側の
圧力を圧力検出器により検出し脱硫装置出口のガ
ス流量を調節するとともに、当該脱硫装置出口ガ
スの圧力変化により、脱硫装置入口側の原料流量
を制御するものであることを特徴とする特許請求
の範囲第1項の水素製造装置における水素製造量
の制御方法。 3 説明流量の制御が遅れ時間要素を付加した脱
硫装置入口側の流量の制御であることを特徴とす
る特許請求の範囲第1項の水素製造装置における
水素製造量の制御方法。
[Claims] 1. A desulfurization device that uses hydrocarbons as a raw material and desulfurizes at least the hydrocarbons, a reformer that steam-reforms the desulfurized hydrocarbons, and removes carbon dioxide from the reformed gas. In a method for controlling the amount of hydrogen produced in a hydrogen production device comprising a decarboxylation device, a pressure sensor installed on the outlet side of the hydrogen production device detects changes in the load of a consuming device that consumes the produced hydrogen, and When controlling the raw material flow rate in response to fluctuations, the flow rate is changed in subdivided amounts until a preset amount of change is reached.
A method for controlling the amount of hydrogen produced in a hydrogen production apparatus, characterized in that the flow rate of the raw material is controlled by detecting it with the pressure detector after a predetermined period of time has elapsed. 2 The control of the raw material flow rate detects the pressure on the hydrogen production equipment outlet side with a pressure detector and adjusts the gas flow rate at the desulfurization equipment outlet, and also controls the raw material flow rate on the desulfurization equipment inlet side by changing the pressure of the desulfurization equipment outlet gas. 2. A method for controlling the amount of hydrogen produced in a hydrogen production apparatus according to claim 1. 3. A method for controlling the amount of hydrogen produced in a hydrogen production apparatus according to claim 1, characterized in that the control of the flow rate is control of the flow rate on the inlet side of the desulfurization apparatus with an added delay time element.
JP1849683A 1983-02-07 1983-02-07 Method for controlling amount of hydrogen to be produced in hydrogen producing device Granted JPS59146904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1849683A JPS59146904A (en) 1983-02-07 1983-02-07 Method for controlling amount of hydrogen to be produced in hydrogen producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1849683A JPS59146904A (en) 1983-02-07 1983-02-07 Method for controlling amount of hydrogen to be produced in hydrogen producing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11855687A Division JPS6355102A (en) 1987-05-15 1987-05-15 Control of production amount of hydrogen in hydrogen production device

Publications (2)

Publication Number Publication Date
JPS59146904A JPS59146904A (en) 1984-08-23
JPS6131042B2 true JPS6131042B2 (en) 1986-07-17

Family

ID=11973225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1849683A Granted JPS59146904A (en) 1983-02-07 1983-02-07 Method for controlling amount of hydrogen to be produced in hydrogen producing device

Country Status (1)

Country Link
JP (1) JPS59146904A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355102A (en) * 1987-05-15 1988-03-09 Nippon Mining Co Ltd Control of production amount of hydrogen in hydrogen production device
DE102019218972A1 (en) * 2019-12-05 2021-06-10 Thyssenkrupp Ag Method for the stable operation of a steam reforming plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742830A (en) * 1980-06-30 1982-03-10 Bendix Corp Pressure sensing capsule
JPS583189A (en) * 1981-06-29 1983-01-08 Fujitsu Ltd Refresh method for dynamic memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742830A (en) * 1980-06-30 1982-03-10 Bendix Corp Pressure sensing capsule
JPS583189A (en) * 1981-06-29 1983-01-08 Fujitsu Ltd Refresh method for dynamic memory

Also Published As

Publication number Publication date
JPS59146904A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
EP0266985B1 (en) Automatic control for gas fractionation apparatus
US20020119087A1 (en) Method for operation of a catalytic reactor
CA1222863A (en) Control system for ethylene polymerization reactor
US3979183A (en) Heat exchange and flow control system for series flow reactors
JPS6131042B2 (en)
JP3552064B2 (en) Method for controlling hydrogen production apparatus and apparatus therefor
SU295317A1 (en) Method of automatic control of furnace-reactor unit of hydrocracking plant
US4251248A (en) Method and apparatus for automatic change of operations in air separation plant
US7637970B1 (en) Method and apparatus for recovery and recycling of hydrogen
JPH0516361B2 (en)
WO2013124627A1 (en) Reactor temperature control system and method
US11505752B2 (en) Regulatory controller for usage in a catalytic olefins unit
US4477413A (en) Utility conservation in hydrogen recycle processes
JPS6131043B2 (en)
US4261719A (en) Method of and apparatus for controlling rate of material air supply to air separation plant
US4551235A (en) Utility conservation in hydrogen recycle conversion processes
Li et al. Dynamic modeling and control of industrial crude terephthalic acid hydropurification process
WO2003085320A1 (en) Catalytic combustion unit
US4099962A (en) Method and apparatus for measuring and controlling the percentage reduction of ore in a moving bed gaseous reduction reactor
SU1284593A1 (en) Method of controlling gas and phase catalytic process
JP3934188B2 (en) Gas transformation device
US5846340A (en) Process for preparing a heat treatment atmosphere and method for regulating said process
JP2597932B2 (en) Automatic operation method of catalyst test equipment
JPS59146907A (en) Controlling method of steam amount in hydrogen producing device
JPH09110401A (en) Control method of hydrogen producing equipment and device therefor