JPH07206401A - Control method of hydrogen producing apparatus and its device - Google Patents

Control method of hydrogen producing apparatus and its device

Info

Publication number
JPH07206401A
JPH07206401A JP1319594A JP1319594A JPH07206401A JP H07206401 A JPH07206401 A JP H07206401A JP 1319594 A JP1319594 A JP 1319594A JP 1319594 A JP1319594 A JP 1319594A JP H07206401 A JPH07206401 A JP H07206401A
Authority
JP
Japan
Prior art keywords
hydrogen
flow rate
raw material
steam
reforming furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1319594A
Other languages
Japanese (ja)
Other versions
JP3552064B2 (en
Inventor
Toshiyasu Endo
俊安 遠藤
Motoi Kishi
基 岸
Shuichi Yamada
修一 山田
Hiromitsu Ito
洋光 伊藤
Yasumasa Morita
泰正 森田
Takao Sakai
孝夫 酒井
Masaki Onozaki
正樹 小野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Mitsubishi Oil Engineering Co Ltd
Eneos Corp
Original Assignee
Chiyoda Corp
Mitsubishi Oil Co Ltd
Chiyoda Chemical Engineering and Construction Co Ltd
Mitsubishi Oil Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Mitsubishi Oil Co Ltd, Chiyoda Chemical Engineering and Construction Co Ltd, Mitsubishi Oil Engineering Co Ltd filed Critical Chiyoda Corp
Priority to JP01319594A priority Critical patent/JP3552064B2/en
Publication of JPH07206401A publication Critical patent/JPH07206401A/en
Application granted granted Critical
Publication of JP3552064B2 publication Critical patent/JP3552064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve stability and durability by setting the purity of hydrogen and controlling its production amt., raw material flow rate, steam quantity to a reforming furnace, outlet temp., etc., to produce hydrogen. CONSTITUTION:This hydrogen producing apparatus is obtd. by locating a raw material hydrocarbon supplying section 1, steam reforming section 3, flow lines L1, L2, etc. Next, (A) a desired hydrogen purity is set and the hydrogen production amt. is set according to the required amt. of the hydrogen having the desired purity. Next, (B) the raw material flow rate to the reforming furnace 3 is controlled in accordance with the production amt. of A by a raw material flow rate controller FCO0 and simultaneously, (C) the anticipated hydrogen producing amt. 6 anticipated by the flow rate of B is calculated. The steam quantity is then controlled by a steam flow rate controller FC1 in such a manner as to attain the steam/ carbon ratio meeting the (C) production amt. 6. Next, (D) the outlet temp. of reforming furnace is controlled by a controller TC2 so as to meet the anticipated hydrogen production quantity 6 described above an keep up hydrogen purity A at set value, by which the hydrogen is so controlled as to be delivered to a hydrogen consumption plant, etc., from the hydrogen supplying section 5 via the line L6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素製造装置の制御方法
及びその装置に関し、詳しくは原料炭化水素をスチーム
改質して水素を製造する水素製造装置において、所要の
水素量で所定の水素純度を保持する制御方法及びその装
置に関する。特に、所要の水素製造量に応じて、スチー
ム改質炉出口の温度及びスチーム/カーボン比を設定し
て改質炉に供給するスチーム量及び燃料の供給量を制御
することにより、水素純度を所定値に保持することを特
徴とする水素製造装置における制御方法及びその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a hydrogen production apparatus and the apparatus therefor, and more particularly to a hydrogen production apparatus for producing hydrogen by steam reforming a raw material hydrocarbon with a required amount of hydrogen and a predetermined hydrogen purity. And a device for controlling the same. In particular, the temperature of the steam reforming furnace outlet and the steam / carbon ratio are set according to the required hydrogen production amount to control the amount of steam and the amount of fuel to be supplied to the reforming furnace, thereby determining the hydrogen purity. The present invention relates to a control method and a device for a hydrogen production device, which is characterized by holding the value.

【0002】[0002]

【従来の技術】ナフサ、C4 留分炭化水素、回収ガス等
の炭化水素類を原料とし、スチーム改質して水素を製造
する方法はよく知られている。このスチーム改質による
水素製造は、主に、脱硫部、スチーム改質器、脱炭酸部
及びメタネーション部等から構成される水素製造装置を
用いて行われており、通常、石油精製プラント等の水素
を使用する各種プラントの需要先の要求に応じて水素製
品を供給することになる。この場合、需要先の必要量の
変動に対応して、即時に製造する水素量を変化させるこ
とが望ましい。一方、各種プラント等に設置される水素
製造装置は一般に大型であり、水素需要先の要求により
仕込み原料を増減させた後、その増減が製品の水素量の
変化として現れるまでには時間的な遅れが生じることは
必須である。この時間的遅れに対しては、以前は需要先
の水素消費量の変動幅を予測し、その最大量の水素を常
時製造し、余剰水素を外部に放出する等で対応してい
た。その後、コンピュータによる制御が提案され、例え
ば特開昭63−55102号公報等に記載されるような
外部放出水素を最小限に制御するブリード水素最小化方
法が提案された。現在稼働中の水素製造装置の殆どは、
このブリード水素最小化制御を採用している。この制御
方法は、需要先で消費される水素量の変動を、製造装置
から流出する水素圧力の変動として検出して、無駄時間
補償を組込み改質炉への原料流量を調節することにより
放出水素量を最小限に制御する方式である。
2. Description of the Related Art A method for producing hydrogen by steam reforming using hydrocarbons such as naphtha, C 4 fraction hydrocarbon, and recovered gas as a raw material is well known. Hydrogen production by this steam reforming is mainly carried out using a hydrogen producing apparatus composed of a desulfurization section, a steam reformer, a decarbonation section, a methanation section, etc. Hydrogen products will be supplied according to the demands of the customers of various plants that use hydrogen. In this case, it is desirable to immediately change the amount of hydrogen produced in response to changes in the required amount at the demand destination. On the other hand, hydrogen production equipment installed in various plants is generally large in size, and after increasing or decreasing the amount of raw materials to be supplied according to the demand of the hydrogen customer, there is a time delay before the increase or decrease appears as a change in the hydrogen content of the product. Is required to occur. Previously, this time lag was dealt with by predicting the fluctuation range of hydrogen consumption at the demand destination, constantly producing the maximum amount of hydrogen, and discharging surplus hydrogen to the outside. Thereafter, computer control was proposed, and a bleed hydrogen minimization method for controlling externally released hydrogen to a minimum as described in, for example, JP-A-63-55102 was proposed. Most of the hydrogen production equipment currently in operation are
This bleed hydrogen minimization control is adopted. This control method detects fluctuations in the amount of hydrogen consumed at the demand destination as fluctuations in the pressure of hydrogen flowing out of the production equipment, incorporates dead time compensation, and adjusts the raw material flow rate to the reforming furnace to release hydrogen. This is a method of controlling the amount to the minimum.

【0003】上記のブリード水素最小化制御方式におい
ては、以前の単に余剰水素放出方式に比し、無駄な水素
の製造を極力抑えることができる代わりに、改質炉への
原料流量が大きく変動することになった。原料流量が大
きく変動すると改質炉温度も大きく変動し、水素純度が
大幅に変動することになる。この原料流量の変動に対し
ては、スチーム/カーボン(S/C)比が一定となるよ
うに改質炉へのスチーム量をマニュアルで調整して制御
し、また、改質炉の出口温度が一定の設計値に保持され
るように燃料流量をマニュアルで調整して対応してい
る。また、特開昭60−90802号では、これらをコ
ンピュータで制御することが提案されている。しかし、
上記原料流量の変動に基づくスチーム量と燃料流量制御
においても、調整時間の遅れ等により水素純度の変動を
免れることはできず、水素純度を所定の値に保持するこ
とは難しい。
In the above-mentioned bleed hydrogen minimization control system, compared with the previous excess hydrogen release system, it is possible to suppress the production of useless hydrogen as much as possible, but the flow rate of the raw material to the reforming furnace fluctuates greatly. is what happened. If the raw material flow rate fluctuates greatly, the reforming furnace temperature also fluctuates greatly, and the hydrogen purity will fluctuate significantly. With respect to the fluctuation of the raw material flow rate, the steam amount to the reforming furnace is manually adjusted and controlled so that the steam / carbon (S / C) ratio becomes constant, and the outlet temperature of the reforming furnace is controlled. The fuel flow rate is manually adjusted to maintain a constant design value. Further, Japanese Patent Laid-Open No. 60-90802 proposes controlling these by a computer. But,
Even in the control of the steam amount and the fuel flow rate based on the fluctuation of the raw material flow rate, the fluctuation of the hydrogen purity cannot be avoided due to the delay of the adjustment time or the like, and it is difficult to maintain the hydrogen purity at a predetermined value.

【0004】一方、水素純度の変動は、消費側の後続プ
ラント等に与える影響も大きく、その変動を極力小さく
して安定化することが好ましい。従来、水素純度の変動
を極力抑止するように改質炉の反応温度を所定温度に維
持させるため、上記した改質炉出口温度を設定値にマニ
ュアル等で制御するのとは別に、各装置のオペレータが
運転操作上のノウハウとして、水素消費量の負荷変動に
応じて改質炉出口温度を監視しつつ、装置設計安全範囲
内で燃料流量を徐々に調整する等対処することも行われ
ていた。しかし、このような方法で安定して水素純度を
一定に保つことは、各オペレータの習熟度等により異な
り、更に、制御系の遅れや、水素純度を測定する分析計
の遅れ等装置及び機器の性能もあり事実上容易でない。
従って、実際上は水素純度をある値以下にならないよう
に、通常、製造される水素が最大流量のときに所定の水
素純度が保持されるように高純度操作し、多少の水素純
度の変動は許容するのが一般的である。
On the other hand, fluctuations in hydrogen purity have a great influence on subsequent plants on the consumption side, and it is preferable to stabilize the fluctuations by minimizing the fluctuations. Conventionally, in order to keep the reaction temperature of the reforming furnace at a predetermined temperature so as to suppress fluctuations in hydrogen purity as much as possible, in addition to manually controlling the above-mentioned reforming furnace outlet temperature to a set value, etc. As an operator's know-how in operation, it was also taken measures such as gradually adjusting the fuel flow rate within the device design safety range while monitoring the reforming furnace outlet temperature according to the load fluctuation of hydrogen consumption. . However, keeping the hydrogen purity constant by such a method varies depending on the proficiency level of each operator, and further delay of the control system, delay of analyzer for measuring hydrogen purity, etc. There is performance and it is practically not easy.
Therefore, in order to prevent the hydrogen purity from falling below a certain value in practice, normally, high purity operation is performed so that the predetermined hydrogen purity is maintained at the maximum flow rate of produced hydrogen, and some fluctuations in hydrogen purity may occur. It is common to allow.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記ブ
リード水素最少化制御方式等において、水素純度を必要
以上に高く設定することは、燃料の過剰消費や、温度上
昇により改質炉内の触媒寿命を短くする等の問題があ
る。特に、炭化水素のスチーム改質に用いる触媒は、高
温において劣化し易くできる限り低温で運転するのが好
ましい。従って、反応域の改質炉温度は、必要な反応率
を保持に要する最低限の範囲とするのが好ましい。特
に、スチーム改質炉の後流でガス中の二酸化炭素を除去
する脱炭酸装置を有する場合には、炭酸ガス以外の成分
は大部分製造された水素ガス中に残存し、スチーム改質
炉出口における二酸化炭素を除いた水素純度が、そのま
ま水素製造装置からの水素の純度となるため、改質炉出
口で制御できることが望まれる。
However, in the above bleed hydrogen minimization control method, etc., setting the hydrogen purity higher than necessary increases the catalyst life in the reforming furnace due to excessive fuel consumption and temperature rise. There are problems such as shortening. Particularly, the catalyst used for steam reforming of hydrocarbons is preferably deteriorated at high temperature and operated at the lowest temperature possible. Therefore, it is preferable that the reforming furnace temperature in the reaction zone is set to the minimum range required to maintain the required reaction rate. In particular, when a decarbonator for removing carbon dioxide in the gas is provided in the downstream of the steam reforming furnace, most of the components other than carbon dioxide remain in the produced hydrogen gas, and the steam reforming furnace outlet Since the purity of hydrogen excluding carbon dioxide in the above is the same as the purity of hydrogen from the hydrogen production apparatus, it is desired that it can be controlled at the reforming furnace outlet.

【0006】更に、水素純度が変動すると、後流に位置
する水素化分解装置、直接脱硫装置等の水素を消費する
プラントの運転にも影響を及ぼすことになる。即ち、こ
れらのプラント装置では、水素製造装置からの水素を循
環して用いてその大部分を反応により消費するものであ
り、循環する水素ガスの純度はそれらの反応面から一定
とする必要があり、水素純度の変動は好ましくない。更
にまた、後続の各種プラント装置における水素の消費量
は、石油等被処理物の処理量ばかりでなく、その性状に
よっても変化するもので、予め予測できないことが多
い。また、一つの水素製造装置でもって複数の水素消費
装置に水素を供給することも多く、水素消費量の予測は
より困難であり水素製造装置の設計段階で改質炉出口温
度を一律に設定して水素純度を制御することは極めて難
かしい。
Further, if the hydrogen purity fluctuates, it also affects the operation of hydrogen-consuming plants such as hydrocrackers and direct desulfurizers located downstream. That is, in these plant devices, most of the hydrogen from the hydrogen production device is circulated and consumed by the reaction, and the purity of the circulated hydrogen gas needs to be constant from the reaction side. However, fluctuations in hydrogen purity are not preferable. Furthermore, the amount of hydrogen consumed in the subsequent various plant devices varies not only with the amount of the object to be treated such as petroleum but also with its properties, and is often unpredictable in advance. In addition, hydrogen is often supplied to multiple hydrogen consumption devices by one hydrogen production device, and it is more difficult to predict the hydrogen consumption amount.Therefore, at the hydrogen production device design stage, the reformer outlet temperature is set uniformly. It is extremely difficult to control the hydrogen purity by using hydrogen.

【0007】本発明は、上記したように後流の需要先の
水素消費量に応じて、水素製造装置から流出する水素純
度が変動するという従来の運転操作及び制御の状況を鑑
み、更に、水素純度の変動が水素消費プラント側等にと
っても好ましくなく、むしろその安定化が望まれている
現況を考慮し、水素消費装置側に負荷変動があった場合
でも製造される水素純度を所定値に保持する水素製造装
置の制御方法の提供を目的とする。同時に、その装置を
提供することを目的とする。発明者らは、上記目的のた
めに、水素製造プロセス操作における原料流量、スチー
ム供給量及び改質炉出口温度等の各種操作変数につい
て、鋭意検討した結果本発明を完成するに到った。
In view of the conventional operation and control situation in which the purity of hydrogen flowing out from the hydrogen production apparatus fluctuates according to the hydrogen consumption of the downstream demand destination as described above, the present invention further Fluctuations in purity are not desirable for the hydrogen consuming plant side as well, and in consideration of the current situation where stabilization is desired, the hydrogen purity produced is maintained at a specified value even when there is a load variation on the hydrogen consuming device side. It is an object of the present invention to provide a method for controlling a hydrogen production device. At the same time, it aims to provide the device. The present inventors have completed the present invention as a result of earnestly studying various operating variables such as a raw material flow rate, a steam supply amount and a reforming furnace outlet temperature in a hydrogen production process operation for the above purpose.

【0008】[0008]

【課題を解決するための手段】本発明によれば、原料炭
化水素類をスチーム改質して水素を製造する水素製造装
置において、(1)製造する水素純度を予め設定し、当
該所定純度の水素所要量に応じて水素製造量を設定し、
(2)前記設定の水素製造量に基づき改質炉への原料流
量を制御すると同時に、(3)前記で制御された原料流
量により見込まれる見込水素製造量を算出し、(4)前
記見込水素製造量に見合うスチーム/カーボン比となる
ように改質炉へのスチーム量を制御し、且つ、(5)前
記見込水素製造量に見合うと共に、水素純度を所定の設
定値に維持するように改質炉出口温度を制御することを
特徴とする水素製造装置の制御方法が提供される。
According to the present invention, in a hydrogen production apparatus for producing hydrogen by steam reforming raw material hydrocarbons, (1) the purity of hydrogen to be produced is set in advance, and Set the hydrogen production amount according to the required hydrogen amount,
(2) At the same time as controlling the flow rate of the raw material to the reforming furnace based on the set hydrogen production rate, (3) calculating the expected hydrogen production rate from the raw material flow rate controlled in the above, and (4) the expected hydrogen production rate. The steam amount to the reforming furnace is controlled so that the steam / carbon ratio matches the production amount, and (5) the hydrogen purity is adjusted to maintain the hydrogen purity at a predetermined set value while matching the expected hydrogen production amount. Provided is a method for controlling a hydrogen production device, which comprises controlling the temperature of a quality furnace outlet.

【0009】更に、本発明は、原料炭化水素類をスチー
ム改質して水素を製造する水素製造装置において、
(1)原料炭化水素類供給部−脱硫部−スチーム改質炉
−脱炭酸部−水素供給部として各装置構成部が直列的に
流通ラインにより順次連通しており、脱硫部−スチー
ム改質炉の流通ラインには原料温度検出器、原料圧力検
出器及び流量調節弁が配設され、該スチーム改質炉に
は出口温度検出器、入口温度検出器、スチーム供給部か
らのスチーム流量調節弁を有するスチームライン、及
び、燃料供給部からの燃料流量調節弁を有する燃料ライ
ンが配設され、且つ、該水素供給部には水素圧力検出
器が配設されると共に、(2)該水素圧力検出器から
の指示によりスチーム改質炉入口の原料流量を制御する
改質炉原料流量制御系、該改質炉原料流量制御系、該
原料温度検出器及び該原料圧力検出器からの指示による
水素ガス製造見込量により設定されるスチーム/カーボ
ン比に基づきスチーム改質炉のスチーム供給量を制御す
る改質炉スチーム量制御系、及び水素ガス製造見込量
により設定される改質炉出口温度を制御するように燃料
供給部の燃料流量を制御する燃料供給量制御系が形成さ
れてなることを特徴とする水素製造装置を提供する。
Further, the present invention provides a hydrogen producing apparatus for producing hydrogen by steam reforming raw material hydrocarbons,
(1) Raw material hydrocarbons supply section-desulfurization section-steam reforming furnace-decarbonation section-hydrogen supply section are connected in series by means of a distribution line. The desulfurization section-steam reforming furnace A raw material temperature detector, a raw material pressure detector, and a flow rate control valve are installed in the distribution line of the steam reforming furnace, and an outlet temperature detector, an inlet temperature detector, and a steam flow rate control valve from the steam supply section are provided in the steam reforming furnace. A steam line is provided and a fuel line having a fuel flow rate control valve from the fuel supply unit is provided, and a hydrogen pressure detector is provided at the hydrogen supply unit, and (2) the hydrogen pressure detection is performed. Reformer raw material flow rate control system for controlling the raw material flow rate at the steam reforming furnace inlet according to instructions from the reformer, hydrogen gas according to instructions from the reformer raw material flow rate control system, the raw material temperature detector and the raw material pressure detector Set according to expected manufacturing volume The steam amount control system for the reforming furnace that controls the steam supply amount of the steam reforming furnace based on the steam / carbon ratio that is set, and the reforming furnace outlet temperature that is set by the expected hydrogen gas production amount Provided is a hydrogen production device characterized in that a fuel supply amount control system for controlling a fuel flow rate is formed.

【0010】[0010]

【作用】本発明は上記のように構成され、製造する水素
の純度を予め設定し、設定純度の水素の所要量に応じる
原料流量を決定し、その原料流量から水素製造量を見込
み、当該水素製造装置において見込んだ水素製造量を供
給するために必要なスチーム改質炉でのスチーム/カー
ボン(S/C)比を、当該水素製造装置の特性等から動
的に変動設定し、その設定値に基づきスチーム改質炉入
口での原料炭化水素に付加するスチーム量を決定する。
また、同時に見込んだ水素製造量を供給するために必要
なスチーム改質炉出口温度を同様に動的に変動設定し、
その設定の改質炉出口温度になるように、見込水素製造
量に応じて可変のコントローラーゲイン及び所要の水素
量に応じて決定された原料流量から定められるフィード
フォワード信号とを用いて改質炉への燃料流量を制御す
る。本発明は、上記の制御方式を採ることにより、需要
先の水素消費量の変動に応じて、改質炉のS/C比及び
出口温度を所定の水素純度を保持するように自動的に制
御することができる。
The present invention is configured as described above, sets the purity of hydrogen to be produced in advance, determines the raw material flow rate according to the required amount of hydrogen of the set purity, and estimates the hydrogen production amount from the raw material flow rate. The steam / carbon (S / C) ratio in the steam reforming furnace, which is necessary to supply the expected hydrogen production amount in the production equipment, is dynamically set based on the characteristics of the hydrogen production equipment, and the set value is set. Based on this, the amount of steam added to the raw material hydrocarbons at the steam reforming furnace inlet is determined.
At the same time, the steam reforming furnace outlet temperature required to supply the expected hydrogen production amount is also dynamically changed and set,
A reforming furnace using a controller gain that is variable according to the expected hydrogen production amount and a feedforward signal that is determined from the raw material flow rate that is determined according to the required hydrogen amount so that the preset reformer outlet temperature is reached. Control the fuel flow to the. According to the present invention, by adopting the above control method, the S / C ratio and the outlet temperature of the reforming furnace are automatically controlled so as to maintain a predetermined hydrogen purity according to the fluctuation of the hydrogen consumption amount of the demand destination. can do.

【0011】また、定常状態時に後流側の水素消費に小
幅の変動が生じた場合は、水素製造装置の出口側に設け
られた圧力検出器により検出した圧力と予め設定した圧
力値との変位値に、むだ時間補償を付加して求められる
スチーム改質炉入口側の原料流量が調整制御され、その
制御される原料流量から見込水素製造量を設定し、上記
と同様に自動制御して、所定の水素純度を保持すること
ができる。従って、本発明の水素製造装置においては、
水素消費量の変動に逐次追従して所要の水素製造量を見
込み、それに応じて改質炉でのS/C比及び改質炉出口
温度が連続して動的に設定されることで、改質炉に供給
するスチーム量及び燃料流量を常に所定の水素純度を維
持するように自動的に制御することができる。
Further, when there is a small fluctuation in the hydrogen consumption on the downstream side in the steady state, the displacement between the pressure detected by the pressure detector provided on the outlet side of the hydrogen production apparatus and the preset pressure value. To the value, the raw material flow rate on the steam reforming furnace inlet side, which is obtained by adding dead time compensation, is regulated and controlled, the expected hydrogen production amount is set from the controlled raw material flow rate, and is automatically controlled in the same manner as above, A predetermined hydrogen purity can be maintained. Therefore, in the hydrogen production device of the present invention,
By predicting the required hydrogen production amount by following changes in hydrogen consumption in sequence, the S / C ratio in the reforming furnace and the reforming furnace outlet temperature are continuously and dynamically set accordingly. The steam amount and fuel flow rate supplied to the quality furnace can be automatically controlled so as to always maintain a predetermined hydrogen purity.

【0012】[0012]

【実施例】本発明の実施例を図面を参照にして、更に詳
細に説明する。但し、本発明は、下記の実施例に制限さ
れるものでない。図1は、本発明の制御方法及びその装
置の一実施例の構成を示すための水素製造装置の概要説
明図である。図1において、回収ガス及びナフサを混合
含有させたブタン(C4 )ガスを主成分とする原料炭化
水素類は、原料炭化水素類供給部1からラインL1を流
通して加熱炉(図示せず)を経て脱硫部2に流入して、
原料炭化水素類中に含有される硫黄分が除去された後、
ラインL2を流通してスチーム改質部3に供給される。
スチーム改質部3においては、所定量のスチームがライ
ンL3を経由して供給され、ラインL1から供給された
上記原料をスチーム改質して水素を製造する。この場
合、吸熱反応の改質反応に必要な熱エネルギーはライン
L4を経由して改質炉バーナに送入される燃料を燃焼さ
せることにより供給される。スチーム改質部3にて製造
された水素は、ラインL5を経て脱炭酸部4にてスチー
ム改質により生成含有される炭酸ガスを除去し、その
後、ラインL6を経て水素供給部5から需要先の水素消
費プラント等に送出される。
Embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is a schematic explanatory diagram of a hydrogen production apparatus for showing the configuration of an embodiment of the control method and apparatus of the present invention. In FIG. 1, raw material hydrocarbons containing butane (C 4 ) gas containing a mixture of recovered gas and naphtha as a main component are circulated from a raw material hydrocarbons supply unit 1 through a line L1 and heated by a heating furnace (not shown). ) To flow into the desulfurization section 2,
After the sulfur content contained in the raw material hydrocarbons is removed,
It is supplied to the steam reforming section 3 through the line L2.
In the steam reforming unit 3, a predetermined amount of steam is supplied via the line L3, and the raw material supplied from the line L1 is steam-reformed to produce hydrogen. In this case, the thermal energy required for the reforming reaction of the endothermic reaction is supplied by burning the fuel fed into the reforming furnace burner via the line L4. The hydrogen produced in the steam reforming unit 3 removes carbon dioxide gas generated by steam reforming in the decarbonation unit 4 via a line L5, and then, from the hydrogen supply unit 5 to a demand destination via a line L6. It will be sent to the hydrogen consuming plant, etc.

【0013】次いで、上記水素製造装置において、所定
の定常状態にて運転されている状態から需要先プラント
の水素消費量が変動した場合の各操作部及びラインにお
ける制御方法について説明する。先ず、定常状態の運転
時の水素消費装置での小幅な水素消費の変動に応じる制
御方法について説明する。図1において、圧力検出器P
1 により脱炭酸部4から水素供給部5へのラインL6
での水素圧を検出し、検出水素圧を水素圧制御計PC1
に入力して所定圧(設計の定常状態水素圧)との変位が
算出される。その算出された変位値にむだ時間補償を付
加した上で、その出力をラインL2に配設された原料流
量制御計FC0 に入力する。原料流量制御計FC0 は、
水素圧力制御計PC1 から入力された原料流量設定値と
原料流量検出器FI0 からの入力値に基づき原料流量調
節弁V0 を作動させ脱硫後の原料流量を、変動した消費
水素量に対応して調節制御する。上記のようにして、後
続の水素消費プラント等での水素消費の変動に基づく原
料流量を制御する改質炉原料流量制御系C0 が形成され
る。
Next, a description will be given of a control method in each operation unit and line when the hydrogen consumption amount of the demand destination plant fluctuates from the state in which the hydrogen production apparatus is operated in a predetermined steady state. First, a control method according to small fluctuations in hydrogen consumption in the hydrogen consumption device during steady-state operation will be described. In FIG. 1, the pressure detector P
Line L6 from the decarbonation unit 4 to the hydrogen supply unit 5 by I 1.
The hydrogen pressure at the PC is detected and the detected hydrogen pressure is detected by the hydrogen pressure controller PC 1
And the displacement with respect to a predetermined pressure (designed steady-state hydrogen pressure) is calculated. After the dead time compensation is added to the calculated displacement value, the output is input to the raw material flow rate controller FC 0 arranged on the line L2. The raw material flow controller FC 0 is
The raw material flow rate control valve V 0 is operated based on the raw material flow rate set value input from the hydrogen pressure controller PC 1 and the input value from the raw material flow rate detector FI 0, and the raw material flow rate after desulfurization corresponds to the changed hydrogen consumption amount. To adjust and control. As described above, the reformer raw material flow rate control system C 0 for controlling the raw material flow rate based on the fluctuation of hydrogen consumption in the subsequent hydrogen consuming plant or the like is formed.

【0014】一方、改質炉原料流量検出器FI0 からの
改質炉原料流量検出値F0 、ラインL2に配設された改
質炉原料温度検出器TI0 及び改質炉原料圧力検出器P
0からそれぞれ検出される改質炉原料温度検出値T0
及び改質炉原料圧力検出値P0 に基づく各検出値F0
0 及びP0 を演算制御装置6に入力し、上記により調
節制御された改質炉3へ供給される原料流量の設定値か
ら製造が見込まれる見込製造水素量H0 を算出する。こ
の場合、C4 留分、回収ガス、ナフサ等の複数成分から
構成される原料炭化水素においては、各構成成分の流量
比率から求まる物性値が加味されて見込製造水素量H0
が算出される。また、当該水素製造装置やプロセス等に
基づく特性データを予め演算制御装置6に入力し、上記
の算出見込水素製造量H0 と、予め入力済の特性データ
とから、見込水素製造量H0 に対応するS/C比の設定
値を算出する。得られたS/C比の設定値と演算器6に
おいて計算されたS/C比とを、S/C制御計XC1
入力し、それらに基づく値をスチーム流量制御計FC1
に入力する。スチーム流量制御計FC1 は、入力された
値に基づきスチーム流量調節弁V1 を作動させ、ライン
L3から改質炉3に供給するスチーム量を調節制御す
る。上記のようにして、後続の水素消費プラント等での
水素消費の変動に基づく改質炉へのスチーム供給量を制
御する改質炉供給スチーム量制御系C1 が形成される。
[0014] On the other hand, the reformer feedstock flow rate detection value F 0, the reformer is arranged in the line L2 the material temperature detector TI 0 and reformer feed pressure detector from the reformer feed flow detector FI 0 P
I reformer feedstock detected temperature value T 0 is detected respectively from 0
And the detection values F 0 based on reformer feed pressure detection value P 0,
By inputting T 0 and P 0 to the arithmetic and control unit 6, the expected production hydrogen amount H 0 expected to be produced is calculated from the set value of the raw material flow rate supplied to the reforming furnace 3 which is regulated and controlled as described above. In this case, in the case of the raw material hydrocarbon composed of a plurality of components such as C 4 fraction, recovered gas, and naphtha, the expected production hydrogen amount H 0 is obtained by adding the physical property value obtained from the flow rate ratio of each constituent component.
Is calculated. Further, the characteristic data based on the hydrogen production device, the process and the like are inputted in advance to the arithmetic and control unit 6, and the calculated hydrogen production amount H 0 and the previously inputted characteristic data are used as the expected hydrogen production amount H 0 . The set value of the corresponding S / C ratio is calculated. The obtained set value of the S / C ratio and the S / C ratio calculated by the calculator 6 are input to the S / C controller XC 1 , and the value based on them is input to the steam flow controller FC 1
To enter. The steam flow controller FC 1 operates the steam flow control valve V 1 based on the input value to control and control the steam amount supplied to the reforming furnace 3 from the line L3. As described above, the reforming furnace supply steam amount control system C 1 for controlling the steam supply amount to the reforming furnace based on the fluctuation of hydrogen consumption in the subsequent hydrogen consumption plant or the like is formed.

【0015】また、上記と同様に演算制御装置6に入力
された改質炉原料流量等から算出された見込水素製造量
0 及び改質炉入口温度検出値T1 と予め入力済の特性
データから、見込水素製造量H0 に対応し、且つ、予め
設定した水素純度に対応する改質炉3の出口温度T2
算出する。得られた改質炉出口温度設定値T2 を改質炉
出口温度制御計TC2 に入力し、同時に改質器出口温度
検出器TI2 からの検出出口温度測定値T’2 を改質炉
出口温度制御計TC2 に入力し、その入力に基づいて改
質炉出口温度制御計TC2により制御される改質炉出口
温度制御値に、更に予め演算制御装置6に入力された特
性データにより演算された当該水素製造装置における見
込水素製造量に応じ可変のコントローラーゲインXを付
加し、その値を燃料流量制御計FC2 に入力する。
Further, similarly to the above, the expected hydrogen production amount H 0 and the reforming furnace inlet temperature detected value T 1 calculated from the reforming furnace raw material flow rate input to the arithmetic and control unit 6 and the characteristic data already input From this, the outlet temperature T 2 of the reforming furnace 3 corresponding to the expected hydrogen production amount H 0 and corresponding to the preset hydrogen purity is calculated. The obtained reformer outlet temperature set value T 2 is input to the reformer outlet temperature controller TC 2, and at the same time, the detected outlet temperature measured value T ′ 2 from the reformer outlet temperature detector TI 2 is input to the reformer. It is input to the outlet temperature control meter TC 2 , and based on the input, the reforming furnace outlet temperature control value controlled by the reforming furnace outlet temperature control meter TC 2 is further calculated by the characteristic data previously input to the arithmetic and control unit 6. A variable controller gain X is added according to the calculated expected hydrogen production amount in the hydrogen production apparatus, and the value is input to the fuel flow controller FC 2 .

【0016】上記の改質炉出口温度制御計TC2 及びコ
ントローラーゲインXからの入力と同時に、燃料流量制
御計FC2 には、上記の算出された出口温度T2 に対応
し、且つ、演算制御装置6に入力された改質炉原料流
量、改質炉入口温度検出値T1等により必要な燃料流量
を算出し、その必要燃料流量算出値を燃料流量制御計F
2 に入力する。燃料流量制御計FC2 は、出口温度制
御計TC2 とコントローラーゲインXによるフィードバ
ック制御と上記必要燃料流量算出値に基づくフィードフ
ォワード制御との双方の値、及び、燃料流量検出器FI
2 からの検出値に基づき燃料流量調節弁V2 を作動さ
せ、ラインL4から改質炉バーナーへの燃料流量を調節
制御する。上記のようにして、後続の水素消費プラント
等での水素消費の変動に基づく改質炉における温度を制
御する改質炉出口温度制御系C2 が形成される。
Simultaneously with the inputs from the reforming furnace outlet temperature controller TC 2 and the controller gain X, the fuel flow controller FC 2 corresponds to the calculated outlet temperature T 2 and has arithmetic control. The required fuel flow rate is calculated based on the reforming furnace raw material flow rate, the reforming furnace inlet temperature detection value T 1 and the like input to the device 6, and the required fuel flow rate calculation value is used as the fuel flow rate controller F
Enter in C 2 . The fuel flow rate controller FC 2 has both the values of the feedback control by the outlet temperature controller TC 2 and the controller gain X and the feedforward control based on the above-mentioned required fuel flow rate calculated value, and the fuel flow rate detector FI.
The fuel flow rate control valve V 2 is operated based on the detected value from 2 to control the fuel flow rate from the line L4 to the reformer burner. As described above, the reforming furnace outlet temperature control system C 2 for controlling the temperature in the reforming furnace based on the fluctuation of the hydrogen consumption in the subsequent hydrogen consuming plant or the like is formed.

【0017】上記の定常状態から水素消費量の小幅な変
動とは異なり、大幅な変動や計画的に水素製造量を変化
させたい場合は、その変動による所要の水素製造量設定
値を原料流量制御計FC0 に直接入力して、上記の定常
状態時の小幅変動の制御と同様に制御することができ
る。また、上記の小幅変動と同様に、所定の水素純度及
び所要水素製造量のデータを演算制御装置に入力し、そ
の入力値に対応してスチーム改質炉への原料炭化水素類
の流量値を原料流量制御系FC0 に入力し、その後は、
上記の定常状態時の小幅変動の制御と同様に、S/C値
及び改質炉出口温度を変動設定し、それらに基づき改質
炉供給スチーム量及び燃料流量をそれぞれ制御すること
により、水素消費先の所望の水素量を、予め設定した水
素純度で供給することができる。
Unlike the above-mentioned slight fluctuations in the hydrogen consumption amount from the steady state, when it is desired to change the hydrogen production amount drastically or systematically, the required hydrogen production amount set value due to the fluctuation is used as the raw material flow rate control. It can be directly input to the total FC 0 and can be controlled in the same manner as the above-described control of the small fluctuation in the steady state. In addition, similar to the above-mentioned slight fluctuation, the data of the predetermined hydrogen purity and the required hydrogen production amount are input to the arithmetic and control unit, and the flow rate value of the raw material hydrocarbons to the steam reforming furnace is corresponding to the input value. Input into the raw material flow rate control system FC 0 , then
Similar to the above-mentioned control of small fluctuations in the steady state, the S / C value and the reforming furnace outlet temperature are variably set, and the reforming furnace supply steam amount and the fuel flow rate are respectively controlled based on them, thereby reducing the hydrogen consumption. The desired amount of hydrogen can be supplied with a preset hydrogen purity.

【0018】本発明は上記のように、C0 、C1 及びC
2 の3つの制御系が組み込まれ、常時、変動する水素消
費量に対応し、制御系C0 において原料炭化水素類の流
量を制御すると同時に、その原料炭化水素類の流量から
水素製造量を計算し、C1 制御系においてその予定水素
製造量に対応し、且つ、予め設定された所定の水素純度
を満たすためのS/C比に対応するための改質炉へのス
チーム量を制御する。また、同時に、制御系C2 におい
て、計算された水素製造量に対応し、且つ、予め設定さ
れた所定の水素純度を満たすため改質炉出口温度を制御
する。従って、水素消費側の変動に基づく原料流量の変
化に応じ、常に、予め設定した水素純度の水素製造量を
見込みながら、S/C比と改質炉出口温度を連続的、且
つ動的に制御するものであり、これらの制御系は、下記
するように現在の制御計装技術において容易に、且つ、
簡便に自動制御できる方式であり、前記した従来の水素
製造装置におけるような運転員による煩雑なマニュアル
制御をすることなく水素純度を所定の設定値に維持する
ことができる。
The present invention, as described above, provides for C 0 , C 1 and C
Incorporating three control systems ( 2 ), the control system C 0 controls the flow rate of the feedstock hydrocarbons at the same time, and at the same time controls the flowrate of the feedstock hydrocarbons, the hydrogen production amount is calculated from the feedstock hydrocarbons flow rate. Then, in the C 1 control system, the steam amount to the reforming furnace is controlled so as to correspond to the planned hydrogen production amount and to correspond to the S / C ratio for satisfying the preset predetermined hydrogen purity. At the same time, in the control system C 2 , the reforming furnace outlet temperature is controlled so as to correspond to the calculated hydrogen production amount and satisfy the preset predetermined hydrogen purity. Therefore, the S / C ratio and the reformer outlet temperature are continuously and dynamically controlled while always anticipating the hydrogen production amount of the preset hydrogen purity according to the change of the raw material flow rate based on the fluctuation on the hydrogen consumption side. These control systems are easy to use in the current control and instrumentation technology as described below, and
It is a system that can be automatically controlled easily, and hydrogen purity can be maintained at a predetermined set value without complicated manual control by an operator as in the above-described conventional hydrogen production apparatus.

【0019】次に、見込水素製造量からS/C比及び改
質炉出口温度を設定することにより水素製造装置を上記
のように自動制御する方式の基本的構成を説明する。図
2は、運転負荷量(水素製造量)とスチーム改質器出口
温度(実線)及び改質反応管出口部温度(点線)の関係
の一例を示す関係図である。この場合、運転負荷量、即
ち、水素製造量とは、図1において水素供給部ラインL
6に設置される水素圧力検出器PI1 からの測定値と、
水素圧制御計PC1に設定されている水素圧との変位値
により算出される値であり、また、スチーム改質器出口
温度とは、ラインL5に配設される改質器出口温度検出
器TI2 により検出される値である。
Next, the basic structure of the system for automatically controlling the hydrogen production apparatus as described above by setting the S / C ratio and the reforming furnace outlet temperature from the expected hydrogen production amount will be described. FIG. 2 is a relationship diagram showing an example of the relationship between the operating load amount (hydrogen production amount), the steam reformer outlet temperature (solid line), and the reforming reaction tube outlet temperature (dotted line). In this case, the operation load amount, that is, the hydrogen production amount is the hydrogen supply line L in FIG.
6, the measured value from the hydrogen pressure detector PI 1 installed at 6,
The steam reformer outlet temperature is a value calculated by a displacement value with respect to the hydrogen pressure set in the hydrogen pressure controller PC 1 , and the steam reformer outlet temperature is a reformer outlet temperature detector arranged in the line L5. This is the value detected by TI 2 .

【0020】一般に、スチーム改質器の内部には、触媒
を充填した管状の反応管が多数設置され、原料である炭
化水素類は供給されるスチームと共に各反応管の上端か
ら流入する。各反応管は、改質炉バーナーに供給される
燃料の燃焼ガスにより管の外側から直接加熱され、炭化
水素類は下方へ流通しつつスチームと改質反応し、水素
と一酸化炭素ガスとなって反応管下端から流出する。こ
れら改質炉の多数の反応管下端の出口配管は集合し、通
常、一本の配管となってスチーム改質器の外部に取り出
される。上記スチーム改質器出口温度は、スチーム改質
器の下流において測定された温度である。スチーム改質
器内部の反応管出口部からスチーム改質器出口温度測定
部までの配管で外部放熱されるため、測定検出されるス
チーム改質器出口温度は、改質反応管出口部における現
実の改質反応温度より低くなる。しかしながら、スチー
ム改質器出口温度と改質反応管出口部温度との温度差
は、放熱量及びその時点での水素製造量等を推測して推
算可能である。従って、改質炉出口温度をTI2 におい
て測定することにより、そのときの運転負荷量との関係
が推測可能となり、制御される原料流量からの見込水素
製造量との変位を算出することができ、その変位値に基
づき改質炉出口温度が制御できる。
In general, a large number of tubular reaction tubes filled with a catalyst are installed inside the steam reformer, and hydrocarbons as a raw material flow in from the upper end of each reaction tube together with the supplied steam. Each reaction tube is directly heated by the combustion gas of the fuel supplied to the reforming furnace burner from the outside of the tube, and hydrocarbons are reformed with steam while flowing downward to form hydrogen and carbon monoxide gas. Flow out from the lower end of the reaction tube. A large number of outlet pipes at the lower end of the reaction tubes of these reforming furnaces are gathered together to form a single pipe, which is taken out of the steam reformer. The steam reformer outlet temperature is a temperature measured downstream of the steam reformer. External heat is radiated through the pipe from the reaction tube outlet inside the steam reformer to the steam reformer outlet temperature measurement unit, so the steam reformer outlet temperature measured and detected is the actual temperature at the reformer reaction tube outlet. It becomes lower than the reforming reaction temperature. However, the temperature difference between the steam reformer outlet temperature and the reforming reaction tube outlet temperature can be estimated by estimating the heat radiation amount and the hydrogen production amount at that time. Therefore, by measuring the reforming furnace outlet temperature at TI 2 , the relationship with the operating load at that time can be estimated, and the displacement from the controlled raw material flow rate with the expected hydrogen production amount can be calculated. The outlet temperature of the reforming furnace can be controlled based on the displacement value.

【0021】図3は改質反応管出口部温度とS/C比の
関係の一例を示す関係図である。この場合、改質反応管
出口部温度は上記のようにスチーム改質器出口温度から
推算される値であり、また、S/C比は所定の改質炉出
口温度におけ運転負荷(見込み水素製造量)における原
料炭化水素類が含有する炭素原子のモル流量に対するス
チーム改質器入口側に供給するスチームのモル流量の比
率である。原料炭化水素類に単位流量当たり含まれる炭
素原子の量は、オフラインで定期的に分析した値を、所
定の演算制御装置に定期的に入力することにより求めら
れる。この単位流量当たりに含まれる炭素原子量に原料
流量を掛け合わせることにより、原料炭化水素類が含有
する炭素原子のモル流量を得ることができる。上記のよ
うにして負荷変動、即ち、水素消費量の変動に基づく原
料流量の変動に対応して供給するスチーム量は、所定の
原料炭化水素類が含有する炭素原子のモル流量に、図3
におけるS/C比を掛け合せることにより求めることが
できる。従って、改質炉出口温度をTI2 において測定
することにより、S/Cが決定され、制御される原料流
量との積によりスチーム流量を制御できる。
FIG. 3 is a relationship diagram showing an example of the relationship between the reforming reaction tube outlet temperature and the S / C ratio. In this case, the reforming reaction tube outlet temperature is a value estimated from the steam reformer outlet temperature as described above, and the S / C ratio is the operating load (expected hydrogen) at a predetermined reforming furnace outlet temperature. It is the ratio of the molar flow rate of steam supplied to the steam reformer inlet side to the molar flow rate of carbon atoms contained in the raw material hydrocarbons in the production amount). The amount of carbon atoms contained in the raw material hydrocarbons per unit flow rate can be obtained by periodically inputting a value analyzed off-line periodically to a predetermined arithmetic and control unit. By multiplying the amount of carbon atoms contained per unit flow rate by the flow rate of the raw material, the molar flow rate of carbon atoms contained in the raw material hydrocarbons can be obtained. As described above, the amount of steam supplied in response to the load fluctuation, that is, the fluctuation of the raw material flow rate based on the fluctuation of the hydrogen consumption amount, is the molar flow rate of the carbon atoms contained in the predetermined raw material hydrocarbons, as shown in FIG.
It can be obtained by multiplying the S / C ratio at. Therefore, by measuring the reforming furnace outlet temperature in TI 2 , the steam flow rate can be controlled by the product of the S / C and the controlled raw material flow rate.

【0022】なお、図2及び図3に示した関係は、水素
純度97モル%に対する一実施例におけるものであり、
これらの関係は、それぞれの操作において設定する水素
純度により変化することは勿論であるが、また使用する
装置及び充填する触媒の種類や活性等の各種操作条件に
より変化するものである。また、図2及び図3に示した
関係は、水素純度が所定の設定値となるように、改質炉
における原料炭化水素類とスチームからなる反応系の反
応平衡により設定される反応管出口温度と供給スチーム
量に、更に次の種々の要因を付加して示すことができ
る。即ち、水素製造量が低下した状態では、反応平衡よ
り触媒層の温度を下げることができる。また、水素製造
量が少ない場合にはスチーム改質器内の触媒管に原料炭
化水素とスチームを均一に配分するためにS/C比を高
めに設定しなければならない。更に、触媒活性低下に対
処した反応平衡率、スチーム改質器の後流に設置される
各種脱炭酸プロセスにおける熱バランス等に適用すべき
水素製造装置の特性、原料特性、反応特性、触媒特性等
各種条件を考慮して最終的データとして、負荷量と改質
炉出口温度との関係、負荷量とS/C比との関係、負荷
量とプロセスコントローラーゲインとの関係等の特性デ
ータを演算制御装置に入力して用いることができる。
The relationships shown in FIG. 2 and FIG. 3 are in one embodiment for hydrogen purity of 97 mol%,
These relationships naturally change according to the hydrogen purity set in each operation, but also change according to various operating conditions such as the apparatus used and the type and activity of the catalyst to be charged. Further, the relationship shown in FIGS. 2 and 3 is that the reaction tube outlet temperature set by the reaction equilibrium of the reaction system composed of the raw material hydrocarbons and steam in the reforming furnace so that the hydrogen purity becomes a predetermined set value. The following various factors can be added to the amount of steam to be supplied and shown. That is, when the hydrogen production amount is reduced, the temperature of the catalyst layer can be lowered from the reaction equilibrium. Further, when the amount of hydrogen produced is small, the S / C ratio must be set high in order to evenly distribute the raw material hydrocarbons and steam in the catalyst tubes in the steam reformer. Furthermore, the reaction equilibrium rate to cope with the catalyst activity reduction, the characteristics of the hydrogen production device, the material characteristics, the reaction characteristics, the catalyst characteristics, etc., which should be applied to the heat balance in various decarbonation processes installed in the downstream of the steam reformer Characteristic data such as the relationship between the load and the reformer outlet temperature, the relationship between the load and the S / C ratio, and the relationship between the load and the process controller gain are calculated and controlled as final data considering various conditions. It can be used by inputting it to the device.

【0023】[0023]

【発明の効果】本発明の制御方法及びその装置は、上記
のように需要先の水素消費装置の水素消費量が変動して
も、それに追随して自動的に水素純度を所定に維持する
ようにS/C比、及び、改質炉出口温度即ち改質反応温
度を、連続的に変動させるものであり、製造される水素
の純度を一定に制御することができる。従って、水素消
費装置への影響を最少にすることができる。また、所定
純度の水素を所要量供給するように制御すると同時に、
その供給水素量を製造するための必要最低の温度に、改
質炉温度を常時制御することができ、従来法での燃料の
過剰消費及び触媒の劣化等の問題も生じることなく、水
素製造装置の安定性や耐久性が極めて向上し、工業的実
用性に優れる。更にまた、水素消費装置側での大幅、ま
たは計画的な水素所要量の変更に対しても、所定の純度
を維持して所望量の水素を供給することができる。
As described above, the control method and the apparatus thereof according to the present invention automatically keep the hydrogen purity at a predetermined level even if the hydrogen consumption amount of the demanded hydrogen consuming device fluctuates. In addition, the S / C ratio and the reforming furnace outlet temperature, that is, the reforming reaction temperature are continuously varied, and the purity of hydrogen produced can be controlled to be constant. Therefore, the influence on the hydrogen consuming device can be minimized. At the same time as controlling to supply the required amount of hydrogen of a predetermined purity,
The temperature of the reforming furnace can be constantly controlled to the minimum required temperature for producing the supplied hydrogen amount, and the hydrogen producing apparatus does not cause problems such as excessive fuel consumption and catalyst deterioration in the conventional method. The stability and durability of are significantly improved, and they have excellent industrial practicality. Furthermore, a desired amount of hydrogen can be supplied while maintaining a predetermined purity even when the hydrogen consumption device side largely or intentionally changes the required hydrogen amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のの一実施例の構成を示すための水素製
造装置の概要説明図である。
FIG. 1 is a schematic explanatory view of a hydrogen production device for showing a configuration of an embodiment of the present invention.

【図2】本発明の一実施例に用いた運転負荷量(水素製
造量)とスチーム改質器出口温度及び改質反応管出口部
温度の関係の一例を示す関係図である。
FIG. 2 is a relationship diagram showing an example of a relationship between an operation load amount (hydrogen production amount), a steam reformer outlet temperature, and a reforming reaction tube outlet temperature used in one embodiment of the present invention.

【図3】本発明の一実施例に用いた改質反応管出口部温
度とS/C比の関係の一例を示す関係図である。
FIG. 3 is a relationship diagram showing an example of the relationship between the reforming reaction tube outlet temperature and the S / C ratio used in one example of the present invention.

【符号の説明】[Explanation of symbols]

1 原料炭化水素類供給部 2 脱硫部 3 スチーム改質部 4 脱炭酸部 5 水素供給部 L1、L2、L3、L4、L5、L6 流通ライン C0 原料流量制御系 C1 改質炉供給スチーム量制御系 C2 改質炉出口温度制御系 PI0 改質炉原料圧力検出器 PI1 水素圧検出器 TI0 改質炉原料温度検出器 TI1 改質炉入口温度検出器 TI2 改質炉出口温度検出器 FI0 改質炉原料流量検出器 FI1 スチーム流量検出器 FI2 燃料流量検出器 PC1 水素圧制御計 FC0 原料流量制御計 FC1 スチーム流量制御計 FC2 燃料流量制御計 TC2 改質炉出口温度制御計 XC1 S/C比制御計 X コントローラーゲイン1 Raw material hydrocarbons supply part 2 Desulfurization part 3 Steam reforming part 4 Decarbonation part 5 Hydrogen supply part L1, L2, L3, L4, L5, L6 Distribution line C 0 Raw material flow control system C 1 Reformer supply steam amount Control system C 2 Reformer outlet temperature control system PI 0 Reformer raw material pressure detector PI 1 Hydrogen pressure detector TI 0 Reformer raw material temperature detector TI 1 Reformer inlet temperature detector TI 2 Reformer outlet Temperature detector FI 0 Reforming furnace raw material flow rate detector FI 1 Steam flow rate detector FI 2 Fuel flow rate detector PC 1 Hydrogen pressure controller FC 0 Raw material flow rate controller FC 1 Steam flow rate controller FC 2 Fuel flow rate controller TC 2 Reformer outlet temperature controller XC 1 S / C ratio controller X controller gain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 基 岡山県倉敷市北畝五丁目23番56号 (72)発明者 山田 修一 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 伊藤 洋光 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 森田 泰正 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 酒井 孝夫 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 小野崎 正樹 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Moto Kishi 5-23-56 Kitaune, Kurashiki-shi, Okayama (72) Inventor Shuichi Yamada 2-12-1, Tsurumi-chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Corporation In-house (72) Inventor Hiromitsu Ito 2-12-1 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) In-house Yasumasa Morita 2-12-1 Tsurumi-chu, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd. (72) Inventor Takao Sakai 12-12 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Masaki Onozaki 2-chome, Tsurumi-ku, Tsurumi-ku, Yokohama-shi, Kanagawa No. 12 No. 1 Chiyoda Kako Construction Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原料炭化水素類をスチーム改質して水素
を製造する水素製造装置において、(1)製造する水素
純度を予め設定し、当該所定純度の水素所要量に応じて
水素製造量を設定し、(2)前記設定の水素製造量に基
づき改質炉への原料流量を制御すると同時に、(3)前
記で制御された原料流量により見込まれる見込水素製造
量を算出し、(4)前記見込水素製造量に見合うスチー
ム/カーボン比となるように改質炉へのスチーム量を制
御し、且つ、(5)前記見込水素製造量に見合うと共
に、水素純度を所定の設定値に維持するように改質炉出
口温度を制御することを特徴とする水素製造装置の制御
方法。
1. In a hydrogen production apparatus for producing hydrogen by steam reforming raw material hydrocarbons, (1) the hydrogen purity to be produced is set in advance, and the hydrogen production amount is adjusted according to the required hydrogen amount of the given purity. And (2) control the flow rate of the raw material to the reforming furnace based on the hydrogen production rate set as described above, and (3) calculate the expected hydrogen production rate expected from the raw material flow rate controlled in the above, (4) The steam amount to the reforming furnace is controlled so that the steam / carbon ratio matches the expected hydrogen production amount, and (5) the hydrogen purity is maintained at a predetermined set value while satisfying the expected hydrogen production amount. A method for controlling a hydrogen production apparatus, comprising controlling the reforming furnace outlet temperature as described above.
【請求項2】 該水素製造装置からの水素流量と前記
(1)で設定した水素製造量との変位にむだ時間補償を
付加して改質炉への原料流量を制御する請求項1記載の
水素製造装置の制御方法。
2. The raw material flow rate to the reforming furnace is controlled by adding dead time compensation to the displacement between the hydrogen flow rate from the hydrogen production apparatus and the hydrogen production rate set in (1) above. Control method for hydrogen production device.
【請求項3】 前記(2)で制御された改質炉への原料
流量と改質炉入口温度とから算出される所要燃料のフィ
ードフォワード制御信号と、前記(5)で制御される改
質炉出口温度設定値と改質炉出口温度との変位に基づく
フィードバック制御信号を前記見込水素製造量によりゲ
イン補正したものとを加算して改質炉燃料流量を制御す
る請求項1または2記載の水素製造装置の制御方法。
3. A feedforward control signal of the required fuel calculated from the flow rate of the raw material to the reforming furnace controlled in (2) and the reforming furnace inlet temperature, and the reforming controlled in (5). 3. The reformer fuel flow rate is controlled by adding a feedback control signal based on a displacement between a furnace outlet temperature set value and a reformer outlet temperature, which is gain-corrected by the expected hydrogen production amount, to control the reformer fuel flow rate. Control method for hydrogen production device.
【請求項4】 原料炭化水素類をスチーム改質して水素
を製造する水素製造装置において、 (1)原料炭化水素類供給部−脱硫部−スチーム改質炉
−脱炭酸部−水素供給部として各装置構成部が直列的に
流通ラインにより順次連通しており、 該脱硫部−スチーム改質炉の流通ラインには原料温度
検出器、原料圧力検出器及び流量調節弁が配設され、 該スチーム改質炉には出口温度検出器、入口温度検出
器、スチーム供給部からのスチーム流量調節弁を有する
スチームライン、及び、燃料供給部からの燃料流量調節
弁を有する燃料ラインが配設され、且つ、 該水素供給部には水素圧力検出器が配設されると共
に、 (2)該水素圧力検出器からの指示によりスチーム改
質炉入口の原料流量を制御する改質炉原料流量制御系、 該改質炉原料流量制御系、該原料温度検出器及び該原
料圧力検出器からの指示による水素ガス製造見込量によ
り設定されるスチーム/カーボン比に基づきスチーム改
質炉のスチーム供給量を制御する改質炉スチーム量制御
系、及び 水素ガス製造見込量により設定される改質炉出口温度
を制御するように燃料供給部の燃料流量を制御する燃料
供給量制御系が形成されてなることを特徴とする水素製
造装置。
4. A hydrogen production apparatus for producing hydrogen by steam reforming a raw material hydrocarbons, comprising: (1) a raw material hydrocarbons supply section-desulfurization section-steam reforming furnace-decarbonation section-hydrogen supply section. Each device constituent part is serially connected in series by a distribution line, and a raw material temperature detector, a raw material pressure detector and a flow control valve are arranged in the distribution line of the desulfurization section-steam reforming furnace, The reforming furnace is provided with an outlet temperature detector, an inlet temperature detector, a steam line having a steam flow rate control valve from the steam supply section, and a fuel line having a fuel flow rate control valve from the fuel supply section, and A hydrogen pressure detector is provided in the hydrogen supply unit, and (2) a reforming furnace raw material flow rate control system for controlling the raw material flow rate at the steam reforming furnace inlet according to an instruction from the hydrogen pressure detector, Reformer raw material flow rate control Control system, control of the steam supply amount of the steam reforming furnace based on the steam / carbon ratio set by the expected amount of hydrogen gas production according to the instructions from the raw material temperature detector and the raw material pressure detector A hydrogen production system comprising a system and a fuel supply amount control system for controlling a fuel flow rate of a fuel supply section so as to control a reforming furnace outlet temperature set by a hydrogen gas production expected amount.
JP01319594A 1994-01-11 1994-01-11 Method for controlling hydrogen production apparatus and apparatus therefor Expired - Lifetime JP3552064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01319594A JP3552064B2 (en) 1994-01-11 1994-01-11 Method for controlling hydrogen production apparatus and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01319594A JP3552064B2 (en) 1994-01-11 1994-01-11 Method for controlling hydrogen production apparatus and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH07206401A true JPH07206401A (en) 1995-08-08
JP3552064B2 JP3552064B2 (en) 2004-08-11

Family

ID=11826384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01319594A Expired - Lifetime JP3552064B2 (en) 1994-01-11 1994-01-11 Method for controlling hydrogen production apparatus and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3552064B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179404A (en) * 2000-12-08 2002-06-26 Toho Gas Co Ltd Operation control system for fuel reformer
JP2003238112A (en) * 2003-01-10 2003-08-27 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
JP2004026596A (en) * 2002-06-27 2004-01-29 Nippon Soken Inc Fuel reformer
JP2005047791A (en) * 2003-04-24 2005-02-24 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
JP2010155781A (en) * 2010-04-12 2010-07-15 Panasonic Corp Hydrogen generator
US8303848B2 (en) 2008-03-31 2012-11-06 Japan Oil, Gas And Metals National Corporation Operation method of synthesis gas reformer in GTL plant
WO2016067589A1 (en) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 Hydrogen generation device, method for operating same, and fuel cell system
JP2020027714A (en) * 2018-08-10 2020-02-20 アイシン精機株式会社 Fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179404A (en) * 2000-12-08 2002-06-26 Toho Gas Co Ltd Operation control system for fuel reformer
JP2004026596A (en) * 2002-06-27 2004-01-29 Nippon Soken Inc Fuel reformer
JP2003238112A (en) * 2003-01-10 2003-08-27 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
JP2005047791A (en) * 2003-04-24 2005-02-24 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP4500092B2 (en) * 2003-04-24 2010-07-14 パナソニック株式会社 HYDROGEN GENERATOR, ITS OPERATION METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2006273619A (en) * 2005-03-28 2006-10-12 Aisin Seiki Co Ltd Reformer
US8303848B2 (en) 2008-03-31 2012-11-06 Japan Oil, Gas And Metals National Corporation Operation method of synthesis gas reformer in GTL plant
JP2010155781A (en) * 2010-04-12 2010-07-15 Panasonic Corp Hydrogen generator
WO2016067589A1 (en) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 Hydrogen generation device, method for operating same, and fuel cell system
JP2020027714A (en) * 2018-08-10 2020-02-20 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3552064B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
US20120078408A1 (en) Advanced Control System For Steam Hydrocarbon Reforming Furnaces
JP2006299869A (en) Method and device for controlling fuel gas calorie
US4097218A (en) Means and method for controlling excess air inflow
JPH07206401A (en) Control method of hydrogen producing apparatus and its device
US3972804A (en) Control of hydrogen/hydrocarbon mole ratio in hydrogen-consuming process
PL82832B1 (en)
CN101449224A (en) Pressure setting method for gas pipeline
US4144997A (en) Control of multiple fuel streams to a burner
US4717396A (en) Floating pressure control for a gas distribution system
US7637970B1 (en) Method and apparatus for recovery and recycling of hydrogen
US4477413A (en) Utility conservation in hydrogen recycle processes
US4479189A (en) Utility and hydrogen conservation in hydrogen recycle processes
JP2006256928A (en) Control system for hydrogen production plant
US20050244681A1 (en) Method and system for controlling fluid flow in a fuel processing system
JP7272042B2 (en) Methane production device and control method for methane production device
JPH09110401A (en) Control method of hydrogen producing equipment and device therefor
JPS6131043B2 (en)
Alatiqi Online quality control methods for steam-gas reformers
JP3820012B2 (en) Reaction temperature control method for alkylation device
US5846340A (en) Process for preparing a heat treatment atmosphere and method for regulating said process
SU1247075A1 (en) Method of automatic control of production process with recirculation of gaseous reagent
SU653287A1 (en) Device for automatic control of pyrlysis process
JPS6131042B2 (en)
JP3557904B2 (en) Operating method of fuel reformer and fuel cell power generation system
JP3807788B2 (en) Gas balance control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040406

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130514

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term