JPH09110401A - Control method of hydrogen producing equipment and device therefor - Google Patents

Control method of hydrogen producing equipment and device therefor

Info

Publication number
JPH09110401A
JPH09110401A JP7297411A JP29741195A JPH09110401A JP H09110401 A JPH09110401 A JP H09110401A JP 7297411 A JP7297411 A JP 7297411A JP 29741195 A JP29741195 A JP 29741195A JP H09110401 A JPH09110401 A JP H09110401A
Authority
JP
Japan
Prior art keywords
pressure
hydrocarbon
flow rate
hydrogen gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7297411A
Other languages
Japanese (ja)
Inventor
Toshio Takano
敏雄 高野
Yasutaka Inoue
泰孝 井上
Fumisue Mimatsu
史季 三松
Takeshi Nakajima
猛 中島
Takaya Ooto
貴哉 大音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP7297411A priority Critical patent/JPH09110401A/en
Publication of JPH09110401A publication Critical patent/JPH09110401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain hydrogen of high purity by performing feedforward control of the flow rate of hydrocarbon for hydrodesulfurization and the flow rate of hydrocarbon for reforming in two stages to control the pressure of gaseous hydrogen to a prescribed value. SOLUTION: Sulfur in hydrocarbon feedstock is converted into H2 S by a hydrogenation reactor 2, and the H2 S is removed by a sulfur adsorption reactor 3 to turn the hydrocarbon into desulfurized hydrocarbon, and it is turned into reformed gas by steam in a reforming reactor 4 to form hydrogen by a CO shift reactor 5, and components other than gaseous hydrogen are absorbed and desorbed by a pressure swing adsorption/desorption device 6 and removed and discharged, to obtain gaseous hydrogen of high purity. A control signal for combining pressure displacement calculated by a hydrogen pressure controller PC1 with a time lag factor from a control system arithmetic unit 7 to which the flow rate value is inputted is sent to a flow controller FC1 to automatically change an operation load according to the quantity of gaseous hydrogen, allowing the flow rate of hydrocarbon for reforming to be controlled. Similarly, the flow rate of hydrocarbon for hydrodesulfurization is automatically controlled, and feedforward control is performed together to keep the pressure of gaseous hydrogen product constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水素製造装置の制御
方法及びその装置に関し、更に詳しくは水素ガス需要が
変動した場合でも製品水素圧を所定値に保持するため、
水添脱硫に供される水添脱硫用炭化水素流量と水添脱硫
後にスチーム改質反応に供される改質用炭化水素量との
2段で装置に供給される原料炭化水素供給量を調節する
ことにより製品水素ガス圧力を所定値にフィードフォワ
ード制御する水素製造装置の制御方法及びその装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a hydrogen production apparatus and the apparatus therefor, and more specifically, to keep the product hydrogen pressure at a predetermined value even when the demand for hydrogen gas fluctuates.
Adjusting the amount of feedstock hydrocarbons supplied to the equipment in two stages: the flow rate of hydrodesulfurization hydrocarbons used for hydrodesulfurization and the amount of reforming hydrocarbons used for steam reforming reaction after hydrodesulfurization The present invention relates to a method for controlling a hydrogen production device and a device for performing feedforward control of a product hydrogen gas pressure to a predetermined value.

【0002】[0002]

【従来の技術】従来から水素ガスは、ナフサ、C4 留分
炭化水素、回収ガス等の炭化水素類を原料としてスチー
ム改質して水素を製造する方法はよく知られている。こ
の水素製造方法は、主に、原料炭化水素類の水添脱硫工
程、脱硫精製された炭化水素のスチーム改質工程、改質
ガスのCOシフト工程、メタネーション工程及び脱炭酸
処理等の水素精製工程から構成される水素製造装置を用
いて行われており、通常、石油精製プラント等水素を使
用する各種プラントの需要先の要求に応じて製品水素ガ
スを供給する。この場合、需要先の水素ガス必要量は比
較的変動し易く、その変動に応じて水素ガスの流通路の
バルブの開閉が行われるため水素製造装置の流出側の圧
力が増減することになる。一方、次のような理由により
製品水素ガスの圧力は一定に保持されること必要であ
る。即ち、製品水素ガスの圧力が変動をそのままに放
置する場合には、逆に需要先の水素化処理装置や水素化
分解装置等での水素分圧に影響を及ぼし反応性にも影響
し好ましくない。また、製油所や化学工場では、水素
ガスは各種の装置で使用され用役としての性格が強い
が、各装置での負荷変動でそれぞれ製品水素ガスの圧力
が変動することになると、工場等の全体の操業に影響を
与えるおそれがあり好ましくない。更に、需要先へ供
給する水素ガスは、一般にコンプレッサを用いて行わ
れ、送入圧は通常一定とされ圧力変動は好ましくない。
2. Description of the Related Art Conventionally, there has been well known a method of steam-reforming hydrogen gas using hydrocarbons such as naphtha, C4 fraction hydrocarbon, and recovered gas as raw materials to produce hydrogen. This hydrogen production method is mainly used for hydrogen purification such as hydrodesulfurization process of raw material hydrocarbons, steam reforming process of desulfurized and refined hydrocarbons, CO shift process of reformed gas, methanation process and decarbonation process. It is carried out by using a hydrogen production device composed of steps, and normally, product hydrogen gas is supplied in accordance with the demands of customers of various plants using hydrogen such as an oil refining plant. In this case, the required amount of hydrogen gas at the demand destination is relatively variable, and the valve of the flow path of the hydrogen gas is opened / closed according to the variation, so that the pressure on the outflow side of the hydrogen production device increases or decreases. On the other hand, it is necessary to keep the pressure of the product hydrogen gas constant for the following reasons. That is, if the product hydrogen gas pressure is left to fluctuate as it is, it adversely affects the hydrogen partial pressure in the hydrotreating device or hydrocracking device of the customer, which also affects the reactivity, which is not preferable. . Also, in refineries and chemical plants, hydrogen gas is used in various devices and has a strong character as a utility, but if the pressure of the product hydrogen gas changes due to load fluctuations in each device, such as in factories, etc. It is not preferable because it may affect the overall operation. Further, the hydrogen gas supplied to the demand destination is generally carried out by using a compressor, and the feed pressure is usually constant, and the pressure fluctuation is not preferable.

【0003】そのため、水素製造装置においては、従来
から需要先の水素消費量の変動に対して原料炭化水素類
の供給量を手動操作で調節して対応していた。一方、各
種プラント等に設置される水素製造装置は一般に大型で
あり、需要先の水素量の変動により仕込み原料炭化水素
類を増減させた後、その増減が製品の水素量の変化とし
て顕れるまでには時間的な遅れが生じることは必須であ
る。この時間的遅れに対しては、以前は需要先の水素消
費量の変動幅を予測し、その最大量の水素を常時製造
し、余剰水素を外部に放出する等で対応していた。その
後、例えば特開昭63−55102号公報等に記載され
るように、需要先で消費される水素量の変動を、製造装
置から流出する水素圧力の変動として検出して、無駄時
間補償を組込み改質炉への原料流量を調節することによ
り放出水素量を最小限に制御する方式であるブリード水
素最小化方法が提案された。このブリード水素最小化制
御方式では、改質反応器への改質用炭化水素流量が大き
く変動するため、改質用炭化水素の流量変動に対応し
て、スチーム/カーボン(S/C)比が一定となるよう
に改質反応器へのスチーム量をマニュアルで調整して制
御し、また、改質反応器の出口温度が一定の設計値に保
持されるように燃料流量をマニュアルで調整して制御さ
れており、特開昭60−90802号公報では、これら
をコンピュータで制御することが提案された。更に、特
開平7−206401号公報には、水素純度を所定値に
維持するため、改質器の出口側温度を遅れ時間補償を付
加してコンピュータ制御で調節する水素製造装置の制御
方式が提案されている。
Therefore, in the hydrogen production apparatus, conventionally, the supply amount of the raw material hydrocarbons has been manually adjusted to cope with the fluctuation of the hydrogen consumption amount of the demand destination. On the other hand, hydrogen production equipment installed in various plants is generally large in size, and after increasing or decreasing the feedstock hydrocarbons due to fluctuations in the amount of hydrogen at the demand destination, the increase or decrease will become apparent as a change in the amount of hydrogen in the product. It is essential that there be a time delay. Previously, this time lag was dealt with by predicting the fluctuation range of hydrogen consumption at the demand destination, constantly producing the maximum amount of hydrogen, and discharging surplus hydrogen to the outside. After that, as described in, for example, Japanese Patent Laid-Open No. 63-55102, fluctuations in the amount of hydrogen consumed at the demand destination are detected as fluctuations in the hydrogen pressure flowing out of the manufacturing apparatus, and dead time compensation is incorporated. A bleed hydrogen minimization method has been proposed in which the amount of released hydrogen is controlled to a minimum by adjusting the flow rate of the raw material to the reforming furnace. In this bleed hydrogen minimization control method, since the reforming hydrocarbon flow rate to the reforming reactor fluctuates greatly, the steam / carbon (S / C) ratio corresponds to the fluctuation of the reforming hydrocarbon flow rate. The steam amount to the reforming reactor is manually adjusted and controlled so that it remains constant, and the fuel flow rate is manually adjusted so that the outlet temperature of the reforming reactor is maintained at a constant design value. It is controlled, and in JP-A-60-90802, it has been proposed to control these with a computer. Further, Japanese Patent Application Laid-Open No. 7-206401 proposes a control system for a hydrogen production device that adjusts the temperature on the outlet side of the reformer by computer control with delay time compensation in order to maintain the hydrogen purity at a predetermined value. Has been done.

【0004】[0004]

【発明が解決しようとする課題】上記ブリード水素最小
化制御方式では、従前の単なる余剰水素放出方式に比
し、無駄な水素ガス製造を極力抑えることができ、現在
稼働中の水素製造装置の殆どが基本的にこの方式を採用
しているといえる。しかし、少量といえ定常的に製品水
素ガスを外部に放出することは生産性を低下させ好まし
くない。また、特に、近年、粗水素ガス中の不純物除去
工程として、従来の化学的吸収方式による脱炭酸工程に
替わり圧力スイング吸脱着方式(PSA)が採用され、
製品水素ガスがPSA工程を経て流出されるプロセスに
変換されつつある。このPSA方式においては、粗水素
ガス中のメタン、CO、炭酸ガス、スチーム等の不純物
ガスを、粗水素ガス圧と排出する不純物ガス圧との差に
より物理的に吸着分離するものであり、操作圧力が変動
すると、特に、水素ガス圧力が低下すると、水素回収
率、製品水素純度等のPSAの分離性能に影響を及ぼす
ことになる。従って、製品水素ガスの精製にPSA方式
を採用する水素製造装置においては、従前の化学的吸収
脱炭酸処理の水素ガス精製方式にも増して水素ガスの流
出圧力を厳密に管理して、需要側の水素必要量の変動に
よって流出側の水素ガス圧力を変動させることなく所定
値に維持する必要があり、需要側で水素ガス消費量の変
動が生じた場合でも、水素製造装置からの流出水素ガス
の流量を迅速に対応させて流出水素ガス圧力の変動がな
いようにすると共に、通常の運転時には水素ガスの損失
もゼロとするような制御方式が望まれる。
In the above bleed hydrogen minimization control method, useless hydrogen gas production can be suppressed as much as possible compared with the conventional excess hydrogen release method, and most of the hydrogen production apparatuses currently in operation. Can basically be said to have adopted this method. However, even if it is a small amount, it is not preferable to constantly release the product hydrogen gas to the outside because it lowers the productivity. Further, in particular, in recent years, as a step for removing impurities in crude hydrogen gas, a pressure swing adsorption / desorption method (PSA) has been adopted instead of a decarbonation step by a conventional chemical absorption method,
Product hydrogen gas is being converted into a process that is discharged through the PSA process. In this PSA method, impurity gases such as methane, CO, carbon dioxide gas, and steam in crude hydrogen gas are physically adsorbed and separated by the difference between the crude hydrogen gas pressure and the discharged impurity gas pressure. When the pressure fluctuates, particularly when the hydrogen gas pressure decreases, the PSA separation performance such as hydrogen recovery rate and product hydrogen purity will be affected. Therefore, in the hydrogen production equipment that adopts the PSA method for refining the product hydrogen gas, the outflow pressure of the hydrogen gas must be controlled more strictly than in the conventional hydrogen gas refining method of the chemical absorption decarboxylation treatment, and the demand side It is necessary to maintain the hydrogen gas pressure on the outflow side at a predetermined value without fluctuating due to fluctuations in the hydrogen required amount, and even if fluctuations in hydrogen gas consumption occur on the demand side, the hydrogen gas flowing out from the hydrogen production equipment It is desirable to control the flow rate of the hydrogen gas so that the outflowing hydrogen gas pressure does not fluctuate and the hydrogen gas loss is zero during normal operation.

【0005】本発明は、上記した水素精製の不純物除去
にPSA方式を採用する水素製造装置における流出水素
ガス圧力を所定値とし、且つ、水素ガスの放出をゼロに
する制御方法及びその装置の提供を目的とする。発明者
らは、上記目的のために、水素製造プロセス操作におけ
る流出水素ガス流量、改質反応器に供給する脱硫改質用
炭化水素流量、水素製造装置へ供給される原料炭化水素
流量等の各種操作変数について、鋭意検討した結果本発
明を完成するに到った。
The present invention provides a control method and an apparatus for controlling the outflow hydrogen gas pressure in a hydrogen production apparatus adopting the PSA method for removing impurities in the above hydrogen purification to a predetermined value and releasing the hydrogen gas to zero. With the goal. The inventors of the present invention have various types of hydrogen gas flow rate in the hydrogen production process operation, desulfurization reforming hydrocarbon flow rate to be supplied to the reforming reactor, feed hydrocarbon flow rate to be supplied to the hydrogen production apparatus, etc. The present invention has been completed as a result of earnestly studying the manipulated variables.

【0006】[0006]

【課題を解決するための手段】本発明によれば、原料炭
化水素類から硫黄分を水素添加して吸着除去する水添脱
硫工程、脱硫した炭化水素類をスチーム改質するスチー
ム改質反応工程、改質ガスのシフト反応工程、及び、改
質ガス中の不純物を吸着分離して水素ガスを精製する圧
力スイング吸脱着工程を有する水素製造装置において、
(1)製造される水素ガスの圧力を予め所定値に設定
し、該水素製造装置の出口側で検出した圧力と前記設定
した所定水素ガス圧力との変位と、製造された水素ガス
流量に基づく遅れ時間補償要素とにより該スチーム改質
反応工程に導入する改質用炭化水素類の流量を調節し、
水素ガス圧を所定値にフィードフォワード制御すると共
に、(2)スチーム改質反応工程に導入する該改質用炭
化水素類を流量調節する上流側圧力を予め所定値に設定
し、該上流側圧力で検出した圧力と前記設定した所定上
流側圧力との変位と、該スチーム改質反応工程に供給す
る改質用炭化水素類の流量に基づく遅れ時間補償要素と
により該水添脱硫工程に導入する原料炭化水素類の流量
を調節し、上流側圧力を所定値にフィードフォワード制
御することにより水素を系外に放出することなく製品水
素圧を所定値に制御することを特徴とする水素製造装置
の制御方法が提供される。上記本発明の水素製造装置の
制御方法において、前記水素ガス流量に基づく遅れ時間
補償要素が、製品水素ガス流量の信号から演算されると
共に、前記改質用炭化水素類の流量に基づく遅れ時間補
償要素が改質用炭化水素流量の信号から演算されるもの
であることが好ましい。
According to the present invention, a hydrodesulfurization step for hydrogenating and removing a sulfur content from a raw material hydrocarbon by adsorption, and a steam reforming reaction step for steam-reforming desulfurized hydrocarbons In a hydrogen production device having a reforming gas shift reaction step, and a pressure swing adsorption / desorption step of adsorbing and separating impurities in the reforming gas to purify hydrogen gas,
(1) The pressure of the hydrogen gas to be produced is set to a predetermined value in advance, and it is based on the displacement between the pressure detected on the outlet side of the hydrogen producing device and the preset hydrogen gas pressure set, and the produced hydrogen gas flow rate. The flow rate of the reforming hydrocarbons introduced into the steam reforming reaction step is adjusted by the delay time compensation element,
Feed-forward control of the hydrogen gas pressure to a predetermined value and (2) the upstream pressure for adjusting the flow rate of the reforming hydrocarbons introduced into the steam reforming reaction step is set to a predetermined value in advance, and the upstream pressure is set. Introduced into the hydrodesulfurization step by the displacement between the pressure detected in step 1 and the preset predetermined upstream pressure and a delay time compensation element based on the flow rate of the reforming hydrocarbons supplied to the steam reforming reaction step. By adjusting the flow rate of the raw material hydrocarbons and feed-forward controlling the upstream pressure to a predetermined value, the product hydrogen pressure is controlled to a predetermined value without releasing hydrogen to the outside of the system. A control method is provided. In the method for controlling a hydrogen production apparatus according to the present invention, the delay time compensation element based on the hydrogen gas flow rate is calculated from a signal of the product hydrogen gas flow rate, and the delay time compensation based on the flow rate of the reforming hydrocarbons is performed. Preferably, the element is one that is calculated from the reforming hydrocarbon flow rate signal.

【0007】また、本発明は、原料炭化水素類から硫黄
分を水素添加して吸着除去する水添脱硫反応器、脱硫し
た炭化水素類をスチーム改質するスチーム改質反応器、
改質ガスのシフト反応器、改質ガス中の不純物を吸着分
離して精製し脱着放出することにより高純度水素ガスを
製造する圧力スイング吸脱着装置及び制御用演算器を有
する水素製造装置であって、(1)スチーム改質反応
器、改質ガスのシフト反応器及び圧力スイング吸脱着装
置が流通ラインで順次連結されると共に、スチーム改質
反応器には改質用炭化水素及びスチーム供給ラインが配
備され、圧力スイング吸脱着装置には水素ガス流出ライ
ン及び吸着ガス排出ラインが配備されており、該水素ガ
ス流出ラインに水素ガス圧力調節器及び水素ガス流量測
定器を配置し、改質用炭化水素供給ラインに改質用炭化
水素量調節器を配置し、該水素ガス流量測定器から該演
算器への信号ライン、該演算器から該水素ガス圧力調節
器への信号ライン及び該水素ガス圧力調節器から該改質
用炭化水素量調節器への信号ラインがそれぞれ配備さ
れ、該演算器にて該水素ガス流量測定器からの信号に基
づき演算された遅れ時間要素信号が該水素ガス圧力調節
器に送られ、該水素ガス圧力調節器において算出される
水素ガス流出圧力測定値と水素ガス圧力設定値との水素
ガス圧力変位に付加されて流量調節信号として該改質用
炭化水素量調節器に送られる水素ガス圧力のフィードフ
ォワード制御系、及び(2)水添脱硫反応器には原料炭
化水素供給ライン及び脱硫炭化水素流出ラインが配備さ
れると共に、該脱硫炭化水素流出ラインと前記改質用炭
化水素供給ラインとが連結されており、該原料炭化水素
供給ラインには原料炭化水素流量調節器が配置され、該
脱硫炭化水素流出ラインには脱硫炭化水素圧力調節器が
配置され、前記改質用炭化水素量調節器から該演算器へ
の信号ライン、該演算器から該脱硫炭化水素圧力調節器
への信号ライン及び該脱硫炭化水素圧力調節器から該原
料炭化水素流量調節器への信号ラインがそれぞれ配備さ
れ、該演算器にて前記改質用炭化水素量調節器からの信
号に基づき演算された遅れ時間要素信号が該脱硫炭化水
素圧力調節器に送られ、該脱硫炭化水素圧力調節器にお
いて算出される脱硫炭化水素流出圧力測定値と脱硫炭化
水素圧力設定値との脱硫炭化水素圧力変位に付加されて
流量調節信号として該原料炭化水素流量調節器に送られ
る改質用炭化水素圧力のフィードフォワード制御系を有
することを特徴とする水素製造装置の制御装置を提供す
る。また、上記本発明の水素製造装置の制御方法及びそ
の装置において、前記水添脱硫工程が、水添反応工程と
硫化水素分の化学吸着工程とを有してなることが好まし
い。なお、本発明において、遅れ時間要素とは、遅れ、
ゲイン及び無駄時間の3要素のパラメータを含むものを
いう。
The present invention also relates to a hydrodesulfurization reactor for hydrogenating and removing a sulfur content from raw hydrocarbons by adsorption, a steam reforming reactor for steam reforming desulfurized hydrocarbons,
A shift reactor for reformed gas, a pressure swing adsorption / desorption device for producing high-purity hydrogen gas by adsorbing and separating impurities in the reformed gas for purification, and desorption / desorption. (1) The steam reforming reactor, the reforming gas shift reactor, and the pressure swing adsorption / desorption device are sequentially connected by a distribution line, and the reforming hydrocarbon and steam supply line are connected to the steam reforming reactor. The hydrogen gas outflow line and the adsorbed gas exhaust line are installed in the pressure swing adsorption / desorption device, and the hydrogen gas pressure regulator and the hydrogen gas flow rate measuring device are arranged in the hydrogen gas outflow line for reforming. A reforming hydrocarbon amount controller is arranged in the hydrocarbon supply line, and a signal line from the hydrogen gas flow rate measuring device to the calculator, a signal line from the calculator to the hydrogen gas pressure controller, and Signal lines from the hydrogen gas pressure controller to the reforming hydrocarbon amount controller are respectively provided, and the delay time element signal calculated based on the signal from the hydrogen gas flow rate measuring device by the calculator is The reforming carbonization is sent to the hydrogen gas pressure regulator and is added to the hydrogen gas pressure displacement between the hydrogen gas outflow pressure measurement value and the hydrogen gas pressure set value calculated by the hydrogen gas pressure regulator and used as a flow rate control signal. A feed-forward control system for the hydrogen gas pressure sent to the hydrogen amount regulator, and (2) a hydrodesulfurization reactor is provided with a feed hydrocarbon feed line and a desulfurized hydrocarbon outflow line, and the desulfurized hydrocarbon outflow line And the reforming hydrocarbon supply line are connected to each other, a raw hydrocarbon flow rate controller is arranged in the raw hydrocarbon supply line, and desulfurized hydrocarbon water is provided in the desulfurized hydrocarbon outflow line. A pressure controller is disposed, a signal line from the reforming hydrocarbon amount controller to the computing unit, a signal line from the computing unit to the desulfurized hydrocarbon pressure controller, and the desulfurized hydrocarbon pressure controller to the signal line. Signal lines to the feedstock hydrocarbon flow rate controller are respectively provided, and the delay time element signal calculated by the calculator based on the signal from the reforming hydrocarbon amount controller is supplied to the desulfurized hydrocarbon pressure controller. The raw hydrocarbon flow rate controller, which is sent and is added to the desulfurized hydrocarbon pressure displacement between the desulfurized hydrocarbon outflow pressure measurement value and the desulfurized hydrocarbon pressure set value calculated in the desulfurized hydrocarbon pressure controller as a flow rate control signal. And a feedforward control system for the reforming hydrocarbon pressure to be sent to the reactor. In the method for controlling a hydrogen production apparatus and the apparatus thereof according to the present invention, it is preferable that the hydrodesulfurization step includes a hydrogenation reaction step and a hydrogen sulfide content chemisorption step. In the present invention, the delay time element means a delay,
It includes a parameter including three elements of gain and dead time.

【0008】本発明の水素製造装置の制御は上記のよう
に構成され、水素製造装置の水添脱硫装置に供給される
原料炭化水素類の流量及び改質反応器に供給される改質
用炭化水素類の流量を、需要側の水素ガス必要量の変動
に応じてそれに見合うように迅速に調節するものであ
る。そのため、水素ガス必要量の変動に対応して直ぐに
変動が生じる水素製造装置のPSA工程から流出する水
素ガスの圧力を測定し、所定の設定圧力値と測定値との
変位を原料炭化水素類の供給量に反映させるように改質
反応器へ供給される水添脱硫後の改質用炭化水素類の流
量を調節する。また、その改質用炭化水素類の流出量と
連動される水添脱硫工程に供給される原料炭化水素の流
量を、水添脱硫工程から流出される水添脱硫炭化水素類
の圧力を測定して予め設定した水添脱硫工程流出ガス圧
とその測定値との変位により原料炭化水素類の流量を調
節する。それと同時に、製品水素ガス流量及び脱硫炭化
水素流量に基づく遅れ、ゲイン及び無駄時間からなる遅
れ時間要素をフィードフォワード制御のパラメータとし
てそれぞれ制御用演算器において演算した結果を、上記
各圧力変位と共に原料炭化水素類流量及び改質用炭化水
素類流量をそれぞれ調節する。このようにして原料炭化
水素流量調節により需要先の製品水素ガスの必要量の変
動に迅速に追随して製品水素ガス圧を制御することがで
きる。
The control of the hydrogen production apparatus of the present invention is configured as described above, and the flow rate of the raw material hydrocarbons supplied to the hydrodesulfurization apparatus of the hydrogen production apparatus and the reforming carbonization supplied to the reforming reactor. The flow rate of hydrogens is rapidly adjusted to meet the fluctuation of the demanded hydrogen gas demand. Therefore, the pressure of the hydrogen gas flowing out from the PSA process of the hydrogen production device, which immediately fluctuates in response to the fluctuation of the required amount of hydrogen gas, is measured, and the displacement between the predetermined set pressure value and the measured value is measured as the raw hydrocarbons. The flow rate of the reforming hydrocarbons after hydrodesulfurization supplied to the reforming reactor is adjusted so as to be reflected in the supply amount. In addition, the flow rate of the raw material hydrocarbons supplied to the hydrodesulfurization process that is linked to the outflow amount of the reforming hydrocarbons, and the pressure of the hydrodesulfurization hydrocarbons that flow out from the hydrodesulfurization process are measured. The flow rate of the raw material hydrocarbons is adjusted by the displacement between the gas pressure of the hydrodesulfurization step and the measured value set in advance. At the same time, the results of calculating the delay time elements consisting of the delay based on the product hydrogen gas flow rate and the desulfurized hydrocarbon flow rate, the gain, and the dead time as the parameters of the feedforward control in the control calculators are used together with the above-mentioned pressure displacements for the raw material carbonization. The flow rate of hydrogens and the flow rate of reforming hydrocarbons are adjusted respectively. In this way, by adjusting the flow rate of the raw material hydrocarbons, the product hydrogen gas pressure can be controlled by quickly following the fluctuation in the required amount of the product hydrogen gas at the demand destination.

【0009】また、本発明の制御は、水添脱硫工程及び
スチーム改質反応工程の2段階でフィードフォワード制
御して水素ガス圧力を所定値に制御することから、1段
で制御する場合に比較して制御性が向上し、例えば、従
来は制御が困難であった運転負荷変動が小さく制御系内
の遅れ時間要素が非常に大きい場合でも、制御が可能と
なり需要先の水素ガス必要量の変動に確実に対応して制
御できる。即ち、装置内に導入する原料炭化水素類の流
量を、水素ガス流出に近い方向から2段階で、且つ、製
品水素ガス流量及び改質反応器入口原料流量に連動して
装置内の運転負荷変動パラメータに合わせて迅速調節す
ることから、流出水素ガス圧を所定値に簡便に制御する
ことができる。また、制御が確実且つ的確に行えること
から、装置のスタートアップ、シャットダウン等急激な
大幅な需要変動の場合を除き、従来のような水素ブリー
ドが全く不要となる。
Further, the control of the present invention controls the hydrogen gas pressure to a predetermined value by feed-forward control in two stages of the hydrodesulfurization process and the steam reforming reaction process. The controllability is improved, and for example, even if the operating load fluctuation that was difficult to control in the past is small and the delay time element in the control system is very large, it becomes possible to control and the fluctuation of the required hydrogen gas demand Can be controlled in a reliable manner. That is, the flow rate of the raw material hydrocarbons introduced into the apparatus is changed in two steps from the direction close to the outflow of hydrogen gas, and the operating load fluctuation in the apparatus is linked with the product hydrogen gas flow rate and the reforming reactor inlet raw material flow rate. Since the rapid adjustment is made according to the parameters, the outflow hydrogen gas pressure can be easily controlled to a predetermined value. Further, since the control can be performed reliably and accurately, the hydrogen bleeding as in the conventional case is not necessary at all, except in the case of a large and drastic demand change such as the start-up and shutdown of the device.

【0010】[0010]

【発明の実施の形態】本発明の実施の態様を図面を参照
にして更に詳細に説明する。但し、本発明は、下記の実
施態様に制限されるものでない。図1は、本発明の水素
製造装置の制御方法及びその装置の一実施例の構成を示
した概要説明図である。図1において、回収ガス及びナ
フサまたはブタンを主成分とする原料炭化水素類は、原
料炭化水素類供給部1から流通ラインL1により加熱炉
(図示せず)を経て脱硫部の水添反応器2に流入され
る。水添反応器2において、原料炭化水素類は、含有さ
れる硫黄が硫化水素に変換されて引続き硫黄分吸着反応
器3に流入され硫化水素が除去され水添脱硫炭化水素類
となる。水添脱硫炭化水素類は、更に、流通ラインL2
を通り改質用炭化水素類として流通ラインL3を経て、
流通ラインL4からの所定量のスチームと共に改質反応
器4に流入する。スチーム改質反応器4においては、脱
硫された原料炭化水素類が所定に加熱されスチーム改質
されて水素を含む改質ガスが生成される。スチーム改質
反応器4にて生成された改質ガスは、流通ラインL5を
経てCOシフト反応器5に流入して引き続き水素が生成
される。COシフト反応器5から流出された水素含有シ
フトガスは、流通ラインL6を経て不純物処理のための
PSA装置6に流入し、ガス中の水素ガスは吸着され
ず、吸着されたメタン、CO、炭酸ガス、スチーム等の
不純物ガスは順次脱着処理されて流通ラインL8より排
出され、スチーム改質反応器の加熱炉(図示せず)燃料
として送られる。一方、吸着されない水素ガスは、約9
9.9%以上の高純度水素ガスとして所定圧で流通ライ
ンL7により需要先に送られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the embodiments described below. FIG. 1 is a schematic explanatory diagram showing the configuration of an embodiment of a method for controlling a hydrogen production apparatus of the present invention and the apparatus. In FIG. 1, the recovered gas and the raw material hydrocarbons containing naphtha or butane as a main component are fed from the raw material hydrocarbons supply section 1 through a heating line (not shown) through a distribution line L1 to a hydrogenation reactor 2 in a desulfurization section. Is flowed into. In the hydrogenation reactor 2, raw material hydrocarbons are converted into hydrogen sulfide by converting the contained sulfur into hydrogen sulfide and subsequently flowing into the sulfur content adsorption reactor 3 to remove hydrogen sulfide and become hydrogenated desulfurized hydrocarbons. The hydrodesulfurized hydrocarbons are further distributed in the distribution line L2.
Through the distribution line L3 as reforming hydrocarbons,
It flows into the reforming reactor 4 together with a predetermined amount of steam from the distribution line L4. In the steam reforming reactor 4, the desulfurized raw material hydrocarbons are heated to a predetermined temperature and steam-reformed to generate a reformed gas containing hydrogen. The reformed gas generated in the steam reforming reactor 4 flows into the CO shift reactor 5 through the distribution line L5 and hydrogen is continuously generated. The hydrogen-containing shift gas flowing out from the CO shift reactor 5 flows into the PSA device 6 for impurity treatment through the distribution line L6, and hydrogen gas in the gas is not adsorbed, but adsorbed methane, CO, carbon dioxide gas. Impurity gas such as steam is sequentially desorbed, discharged from the distribution line L8, and sent as fuel for a heating furnace (not shown) of the steam reforming reactor. On the other hand, hydrogen gas not adsorbed is about 9
High-purity hydrogen gas of 9.9% or more is sent to the demand destination through the distribution line L7 at a predetermined pressure.

【0011】また、上記水素製造装置において、所定の
定常状態にて運転されている状態から需要先の水素消費
量が変動した場合の流出水素ガス圧の制御システムにつ
いて説明する。即ち、定常状態運転時の需要先の水素ガ
ス必要量の変動に対応して改質用炭化水素類及び原料炭
化水素の流量を調節し、PSA装置6からの流出水素ガ
ス圧の制御について説明する。図1において、PSA装
置6から需要先へ水素ガスを送る流通ラインL7に連絡
する水素圧制御計PC1で、PSA装置から流出する水
素ガス圧の測定値と定常運転時の所定の設定圧力値との
変位を算出する。一方、流通ラインL7に配置した流量
検出器FIでPSA装置から流出する水素ガスの流量を
検出し、水素ガス流量検出値の信号を信号ラインSL1
により制御系演算器7に送り、検出された水素ガス流量
に応じた運転負荷値を演算し、それに基づく遅れ時間要
素からなる運転設定パラメータ信号を信号ラインSL2
を経て水素圧制御計PC1に送る。この場合、例えば、
制御系演算器7には運転負荷0%から100%の間を所
定間隔で各運転負荷値に対応するゲイン、無駄時間及び
遅れからなる遅れ時間要素をフィードフォワード制御の
設定パラメータとして入力保持して、検出された水素ガ
ス流量値が当該装置の設計流量で運転負荷パーセントを
演算し、その運転負荷における設定パラメータに自動的
に変更されて運転操作が継続するように予め組込むこと
によって行うことができる。従って、水素圧制御計PC
1で算出された圧力変位と遅れ時間要素とを合わせた制
御信号を信号ラインSL3を経て改質用炭化水素類が流
入する流通ラインL3に配置された流量制御計FC1に
送り、需要先の必要な水素ガス量に見合う運転負荷の設
定パラメータに自動的に変更され改質用炭化水素類の流
量が調節される。
A control system of the outflowing hydrogen gas pressure when the hydrogen consumption amount at the demand destination fluctuates from the state in which the hydrogen production apparatus is operated in a predetermined steady state will be described. That is, the control of the outflowing hydrogen gas pressure from the PSA device 6 will be described by adjusting the flow rates of the reforming hydrocarbons and the raw material hydrocarbons in response to the fluctuations of the demanded hydrogen gas amount during the steady state operation. . In FIG. 1, a hydrogen pressure controller PC1 that communicates with a distribution line L7 that sends hydrogen gas from a PSA device 6 to a customer has a measured value of hydrogen gas pressure flowing out of the PSA device and a predetermined set pressure value during steady operation. Calculate the displacement of. On the other hand, the flow rate detector FI arranged on the distribution line L7 detects the flow rate of the hydrogen gas flowing out from the PSA device, and the signal of the hydrogen gas flow rate detection value is sent to the signal line SL1.
Is sent to the control system calculator 7 to calculate an operation load value according to the detected hydrogen gas flow rate, and an operation setting parameter signal composed of a delay time element based on the calculated operation load value is sent to the signal line SL2.
To the hydrogen pressure controller PC1. In this case, for example,
The control system calculator 7 inputs and holds a delay time element consisting of a gain corresponding to each operating load value, a dead time and a delay at a predetermined interval from 0% to 100% of the operating load as a setting parameter of the feedforward control. , The detected hydrogen gas flow rate value can be calculated by calculating the operating load percentage at the design flow rate of the device and incorporating it in advance so that the operating parameter is automatically changed to the set parameter and the operating operation is continued. . Therefore, hydrogen pressure controller PC
A control signal obtained by combining the pressure displacement calculated in 1 with the delay time element is sent to the flow rate controller FC1 arranged in the distribution line L3 into which the reforming hydrocarbons flow in via the signal line SL3, and the customer needs it. The parameter of the operating load is automatically changed to match the amount of hydrogen gas, and the flow rate of the reforming hydrocarbons is adjusted.

【0012】更に、水添脱硫工程に供給される原料炭化
水素類の流量も、同様にL3に配置した流量検出器FC
1で検出し、水添脱硫炭化水素の流量検出値の信号を信
号ラインSL4により制御系演算器7に送り、検出され
た水添脱硫炭化水素流量に応じた運転負荷値を演算し、
それに基づく遅れ時間要素からなる運転設定パラメータ
信号を信号ラインSL5を経て水添脱硫炭化水素類の流
通ラインL2に連絡する水添脱硫炭化水素圧制御計PC
2に送る。水添脱硫炭化水素圧制御計PC2では、吸着
反応器3から流出する水添脱硫炭化水素圧の測定値と定
常運転時の所定の設定圧力値との変位を算出し、更に、
自動的に流出水素ガス量に見合う運転負荷の運転パラメ
ータに変更されて信号ラインSL5で送られてくる運転
パラメータ信号とを合わせ、信号ラインSL6を経て原
料炭化水素類が流入する流通ラインL1に配置された流
量制御計FC2に送り、需要先の必要な水素ガス量に見
合う運転負荷の設定パラメータに自動的に変更され原料
炭化水素類の流量が調節される。上記したように、本発
明の水素製造装置においては、改質反応器4に供給する
改質用炭化水素類の流量の調節と共に、水添脱硫反応器
2への原料炭化水素類の流量が調節され、水素製造装置
から需要先に流出する水素ガスの圧力及び流量を測定
し、予め設定した圧力所定値との変位に水素ガス流量に
基づく遅れ時間要素とから、2段階に炭化水素類の流量
を迅速に調節して最終的にPSA装置6からの水素ガス
圧を所定値にフィードフォワード制御することができ
る。なお、運転の開始または停止や、緊急時等には、図
示していない放出圧力逃がし弁を設けて対応すること
は、一般的な大型化学装置と同様である。
Further, the flow rate of the raw material hydrocarbons supplied to the hydrodesulfurization step is also the flow rate detector FC arranged in L3.
1, the signal of the flow rate detection value of the hydrodesulfurized hydrocarbon is sent to the control system calculator 7 through the signal line SL4 to calculate the operation load value according to the detected hydrodesulfurized hydrocarbon flow rate,
A hydrodesulfurized hydrocarbon pressure controller PC for connecting an operation setting parameter signal based on the delay time element to a distribution line L2 for hydrodesulfurized hydrocarbons via a signal line SL5.
Send to 2. The hydrodesulfurized hydrocarbon pressure controller PC2 calculates the displacement between the measured value of the hydrodesulfurized hydrocarbon pressure flowing out from the adsorption reactor 3 and a predetermined set pressure value during steady operation, and further,
It is automatically placed in the distribution line L1 into which the feedstock hydrocarbons flow in via the signal line SL6 by combining with the operation parameter signal sent through the signal line SL5 after being automatically changed to the operating parameter of the operating load corresponding to the outflowing hydrogen gas amount. The flow rate of the raw material hydrocarbons is adjusted by automatically changing the setting parameter of the operating load corresponding to the required amount of hydrogen gas at the demand destination to the flow rate controller FC2. As described above, in the hydrogen production device of the present invention, the flow rate of the reforming hydrocarbons supplied to the reforming reactor 4 is adjusted, and the flow rate of the raw material hydrocarbons to the hydrodesulfurization reactor 2 is adjusted. The pressure and flow rate of the hydrogen gas flowing out from the hydrogen production device to the customer are measured, and the flow rate of the hydrocarbons is divided into two stages from the delay time element based on the hydrogen gas flow rate due to the displacement with the preset pressure predetermined value. Can be rapidly adjusted to finally feedforward control the hydrogen gas pressure from the PSA device 6 to a predetermined value. It should be noted that it is the same as in a general large-scale chemical device that a discharge pressure relief valve (not shown) is provided to respond to the start or stop of operation, an emergency, or the like.

【0013】本発明の水素製造装置の制御方式によれ
ば、需要側の水素ガス必要量が変動して製品水素ガス圧
が低下傾向または上昇傾向を示す場合、上記のように流
出水素量から改質用炭化水素流量と脱硫用原料炭化水素
流量をフィードフォワード制御、特に、2段階で制御す
ることにより、水素製造装置は自動的にその原料炭化水
素供給量を増加または減少し、製品水素ガス圧力を一定
にする保持することができる。その結果、粗水素ガスを
精製処理するPSA装置の運転操作が安定し、且つ、水
素回収率等の吸脱着性能を最大限に発揮させることがで
き効果的である。特に、流出水素量により上記のように
2段階でフィードフォワード制御するため、従来の1段
制御に比較して、需要先の変動の大小によらず殆どに対
応して水素ガス圧を所定に制御することができ、水素ガ
スの放出を予定する必要がない。その結果、水素ガスの
ロスを緊急時を除き常時ゼロとすることができる。これ
により水素製造の原料炭化水素及び燃料が削減でき地球
資源の浪費を防止し、ひいては大気汚染及び地球汚染に
対する影響も低減され、地球環境上も好ましい。また、
水素製造装置の制御系が小さな場合には、流出水素量に
基づき改質用炭化水素流量と脱硫用原料炭化水素流量の
双方をフィードフォワード制御することもできる。
According to the control system of the hydrogen production apparatus of the present invention, when the hydrogen gas demand on the demand side fluctuates and the product hydrogen gas pressure tends to decrease or increase, the amount of hydrogen outflow is changed as described above. Feed-forward control of the quality hydrocarbon flow rate and the desulfurization feedstock hydrocarbon flowrate, especially by controlling in two stages, the hydrogen production equipment automatically increases or decreases the feedstock hydrocarbon feed rate, and the product hydrogen gas pressure Can be held constant. As a result, the operation of the PSA device for purifying the crude hydrogen gas is stable, and the adsorption / desorption performance such as the hydrogen recovery rate can be maximized, which is effective. In particular, since the feedforward control is performed in two stages as described above depending on the amount of outflowing hydrogen, compared to the conventional one-stage control, the hydrogen gas pressure is controlled to a predetermined level according to most of the fluctuations in the demand destination. Yes, there is no need to schedule the release of hydrogen gas. As a result, the loss of hydrogen gas can be always zero except in an emergency. As a result, the raw material hydrocarbons and fuels for hydrogen production can be reduced, the waste of global resources can be prevented, and the effects on air pollution and global pollution can be reduced, which is favorable for the global environment. Also,
When the control system of the hydrogen production apparatus is small, both the reforming hydrocarbon flow rate and the desulfurization raw material hydrocarbon flow rate can be feedforward controlled based on the outflowing hydrogen amount.

【0014】[0014]

【発明の効果】本発明の水素製造装置の制御方法及びそ
の装置は、製品水素ガスの消費量の変動に的確に対応し
て迅速に製品水素ガス圧を所定値に自動的に制御するこ
とができ、従来の多めに設定した製造水素量の余剰放出
水素量を最小限に制御するブリード水素最小化制御方式
と異なり、通常の定常運転において少量の水素の放出も
予定する必要がない。また、本発明は、流出水素ガス圧
を常時所定値に制御して保持することができるため、製
造装置に圧力スイング吸脱着法を組込み安定して操作す
ることができ、水素精製の性能を粗水素ガスを精製して
99.9%以上の高純度水素ガスを安定して水素精製の
性能を保持し高回収率で製造することができる。
The method and apparatus for controlling a hydrogen production device of the present invention can automatically and quickly control the product hydrogen gas pressure to a predetermined value in response to fluctuations in the product hydrogen gas consumption. Therefore, unlike the conventional bleed hydrogen minimization control method that controls the excess release hydrogen amount of the production hydrogen amount set to a large amount, it is not necessary to schedule the release of a small amount of hydrogen in the normal steady operation. Further, according to the present invention, since the outflow hydrogen gas pressure can be controlled and maintained at a predetermined value at all times, the pressure swing adsorption / desorption method can be incorporated into the manufacturing apparatus for stable operation, and the performance of hydrogen purification can be improved. It is possible to purify hydrogen gas and stably produce 99.9% or more high-purity hydrogen gas with stable hydrogen purification performance and a high recovery rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示した概要説明図FIG. 1 is a schematic explanatory diagram showing a configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原料炭化水素類供給部 2 水添反応器 3 硫黄分吸着反応器 4 スチーム改質反応器 5 COシフト反応器 6 PSA装置 7 制御系演算器 PC1 水素圧制御計 PC2 水添脱硫炭化水素圧制御計 FI 流量検出器 FC1、FC2 流量制御計 L1、L2、L3、L4、L5、L6、L7、L8 流
通ライン SL1、SL2、SL3、SL4、SL5、SL6 信
号ライン
1 raw material hydrocarbons supply part 2 hydrogenation reactor 3 sulfur content adsorption reactor 4 steam reforming reactor 5 CO shift reactor 6 PSA device 7 control system calculator PC1 hydrogen pressure controller PC2 hydrodesulfurization hydrocarbon pressure control Meter FI Flow rate detector FC1, FC2 Flow rate control meter L1, L2, L3, L4, L5, L6, L7, L8 Distribution line SL1, SL2, SL3, SL4, SL5, SL6 Signal line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三松 史季 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 中島 猛 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 大音 貴哉 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumiaki Mimatsu 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Inventor Takeshi Nakajima Tsurumi-chuo, Tsurumi-ku, Yokohama-shi, Kanagawa 2-12-1 Chiyoda Kakoh Construction Co., Ltd. (72) Inventor Takaya Ohne 2-12-1 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原料炭化水素類から硫黄分を水素添加し
て吸着除去する水添脱硫工程、脱硫した炭化水素類をス
チーム改質するスチーム改質反応工程、改質ガスのシフ
ト反応工程、及び、改質ガス中の不純物を吸着分離して
水素ガスを精製する圧力スイング吸脱着工程を有する水
素製造装置において、(1)製造される水素ガスの圧力
を予め所定値に設定し、該水素製造装置の出口側で検出
した圧力と前記設定した所定水素ガス圧力との変位と、
製造された水素ガス流量に基づく遅れ時間補償要素とに
より該スチーム改質反応工程に導入する改質用炭化水素
類の流量を調節し、水素ガス圧を所定値にフィードフォ
ワード制御すると共に、(2)スチーム改質反応工程に
導入する該改質用炭化水素類を流量調節する上流側圧力
を予め所定値に設定し、該上流側圧力で検出した圧力と
前記設定した所定上流側圧力との変位と、該スチーム改
質反応工程に供給する改質用炭化水素類の流量に基づく
遅れ時間補償要素とにより該水添脱硫工程に導入する原
料炭化水素類の流量を調節し、上流側圧力を所定値にフ
ィードフォワード制御することにより水素を系外に放出
することなく製品水素圧または流量を所定値に制御する
ことを特徴とする水素製造装置の制御方法。
1. A hydrodesulfurization step of hydrogenating and removing a sulfur content from raw material hydrocarbons by adsorption, a steam reforming reaction step of steam reforming desulfurized hydrocarbons, a reforming gas shift reaction step, and In a hydrogen production apparatus having a pressure swing adsorption / desorption step of adsorbing and separating impurities in a reformed gas to purify hydrogen gas, (1) the pressure of the produced hydrogen gas is set to a predetermined value in advance, and the hydrogen production is performed. Displacement of the pressure detected at the outlet side of the device and the preset hydrogen gas pressure set,
The flow rate of the reforming hydrocarbons introduced into the steam reforming reaction step is adjusted by the delay time compensating element based on the produced hydrogen gas flow rate, and the hydrogen gas pressure is feedforward controlled to a predetermined value, and (2 ) The upstream pressure for adjusting the flow rate of the reforming hydrocarbons to be introduced into the steam reforming reaction step is set to a predetermined value in advance, and the displacement between the pressure detected by the upstream pressure and the set predetermined upstream pressure is set. And the delay time compensating element based on the flow rate of the reforming hydrocarbons supplied to the steam reforming reaction step, the flow rate of the raw material hydrocarbons to be introduced into the hydrodesulfurization step is adjusted, and the upstream pressure is set to a predetermined value. A method for controlling a hydrogen production apparatus, wherein the product hydrogen pressure or flow rate is controlled to a predetermined value by performing feedforward control to a value without releasing hydrogen to the outside of the system.
【請求項2】 前記水素ガス流量に基づく遅れ時間補償
要素が製品水素ガス流量の信号から演算されると共に、
前記改質用炭化水素類の流量に基づく遅れ時間補償要素
が改質用炭化水素流量の信号から演算される請求項1記
載の水素製造装置の制御方法。
2. A delay time compensation element based on the hydrogen gas flow rate is calculated from a product hydrogen gas flow rate signal, and
The method for controlling a hydrogen production apparatus according to claim 1, wherein the delay time compensation element based on the flow rate of the reforming hydrocarbons is calculated from a signal of the reforming hydrocarbon flow rate.
【請求項3】 前記水添脱硫工程が、水添反応工程と硫
化水素分の化学吸着工程とを有してなる請求項1または
2記載の水素製造装置の制御方法。
3. The method for controlling a hydrogen production apparatus according to claim 1, wherein the hydrodesulfurization step includes a hydrogenation reaction step and a hydrogen sulfide content chemical adsorption step.
【請求項4】 原料炭化水素類から硫黄分を水素添加し
て吸着除去する水添脱硫反応器、脱硫した炭化水素類を
スチーム改質するスチーム改質反応器、改質ガスのシフ
ト反応器、改質ガス中の不純物を吸着分離して水素ガス
を精製する圧力スイング吸脱着装置及び制御用演算器を
有する水素製造装置であって、(1)スチーム改質反応
器、改質ガスのシフト反応器及び圧力スイング吸脱着装
置が流通ラインで順次連結されると共に、スチーム改質
反応器には改質用炭化水素及びスチーム供給ラインが配
備され、圧力スイング吸脱着装置には水素ガス流出ライ
ン及び吸着ガス排出ラインが配備されており、該水素ガ
ス流出ラインに水素ガス圧力調節器及び水素ガス流量測
定器を配置し、改質用炭化水素供給ラインに改質用炭化
水素量調節器を配置し、該水素ガス流量測定器から該演
算器への信号ライン、該演算器から該水素ガス圧力調節
器への信号ライン及び該水素ガス圧力調節器から該改質
用炭化水素量調節器への信号ラインがそれぞれ配備さ
れ、該演算器にて該水素ガス流量測定器からの信号に基
づき演算された遅れ時間要素信号が該水素ガス圧力調節
器に送られ、該水素ガス圧力調節器において算出される
水素ガス流出圧力測定値と水素ガス圧力設定値との水素
ガス圧力変位に付加されて流量調節信号として該改質用
炭化水素量調節器に送られる水素ガス圧力のフィードフ
ォワード制御系、及び(2)水添脱硫反応器には原料炭
化水素供給ライン及び脱硫炭化水素流出ラインが配備さ
れると共に、該脱硫炭化水素流出ラインと前記改質用炭
化水素供給ラインとが連結されており、該原料炭化水素
供給ラインには原料炭化水素流量調節器が配置され、該
脱硫炭化水素流出ラインには脱硫炭化水素圧力調節器が
配置され、前記改質用炭化水素量調節器から該演算器へ
の信号ライン、該演算器から該脱硫炭化水素圧力調節器
への信号ライン及び該脱硫炭化水素圧力調節器から該原
料炭化水素流量調節器への信号ラインがそれぞれ配備さ
れ、該演算器にて前記改質用炭化水素量調節器からの信
号に基づき演算された遅れ時間要素信号が該脱硫炭化水
素圧力調節器に送られ、該脱硫炭化水素圧力調節器にお
いて算出される脱硫炭化水素流出圧力測定値と脱硫炭化
水素圧力設定値との脱硫炭化水素圧力変位に付加されて
流量調節信号として該原料炭化水素流量調節器に送られ
る改質用炭化水素圧力のフィードフォワード制御系を有
することを特徴とする水素製造装置の制御装置。
4. A hydrodesulfurization reactor for adsorbing and removing a sulfur content from raw material hydrocarbons by adsorption, a steam reforming reactor for steam reforming desulfurized hydrocarbons, a reforming gas shift reactor, A hydrogen production apparatus having a pressure swing adsorption / desorption device for adsorbing and separating impurities in a reformed gas to purify hydrogen gas, and a control computing unit, comprising: (1) a steam reforming reactor and a shift reaction of a reformed gas. The reactor and the pressure swing adsorption / desorption device are sequentially connected by a distribution line, the reforming hydrocarbon and steam supply line are installed in the steam reforming reactor, and the pressure swing adsorption / desorption device is equipped with a hydrogen gas outflow line and adsorption. A gas discharge line is provided, a hydrogen gas pressure controller and a hydrogen gas flow rate measuring device are arranged in the hydrogen gas outflow line, and a reforming hydrocarbon amount controller is arranged in the reforming hydrocarbon supply line. A signal line from the hydrogen gas flow rate measuring device to the computing device, a signal line from the computing device to the hydrogen gas pressure regulator, and the hydrogen gas pressure regulator to the reforming hydrocarbon amount regulator. Each signal line is provided, and the delay time element signal calculated by the calculator based on the signal from the hydrogen gas flow rate measuring device is sent to the hydrogen gas pressure controller and calculated by the hydrogen gas pressure controller. Hydrogen gas outflow pressure measured value and hydrogen gas pressure set value are added to the hydrogen gas pressure displacement and sent to the reforming hydrocarbon amount controller as a flow rate control signal, and a feedforward control system of the hydrogen gas pressure, and ( 2) A raw material hydrocarbon supply line and a desulfurized hydrocarbon outflow line are provided in the hydrodesulfurization reactor, and the desulfurized hydrocarbon outflow line and the reforming hydrocarbon supply line are connected to each other, A raw hydrocarbon flow rate controller is arranged in the raw hydrocarbon supply line, a desulfurized hydrocarbon pressure controller is arranged in the desulfurized hydrocarbon outflow line, and a desulfurized hydrocarbon pressure controller is provided from the reforming hydrocarbon amount controller to the arithmetic unit. A signal line, a signal line from the computing unit to the desulfurized hydrocarbon pressure controller, and a signal line from the desulfurized hydrocarbon pressure controller to the raw hydrocarbon flow rate controller are respectively provided, and in the computing unit, The delay time element signal calculated based on the signal from the quality hydrocarbon amount controller is sent to the desulfurized hydrocarbon pressure controller, and the desulfurized hydrocarbon outflow pressure measurement value calculated in the desulfurized hydrocarbon pressure controller and A feedforward control system for the reforming hydrocarbon pressure which is added to the desulfurized hydrocarbon pressure set value and desulfurized hydrocarbon pressure displacement and is sent to the raw hydrocarbon flow rate controller as a flow rate control signal. Controller of the hydrogen production apparatus characterized by.
【請求項5】 前記水添脱硫反応器が、水添反応器と硫
化水素分の化学吸着反応器とを有してなる請求項4記載
の水素製造装置の制御装置。
5. The hydrogen production apparatus control device according to claim 4, wherein the hydrodesulfurization reactor comprises a hydrogenation reactor and a hydrogen sulfide content chemisorption reactor.
JP7297411A 1995-10-20 1995-10-20 Control method of hydrogen producing equipment and device therefor Pending JPH09110401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7297411A JPH09110401A (en) 1995-10-20 1995-10-20 Control method of hydrogen producing equipment and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7297411A JPH09110401A (en) 1995-10-20 1995-10-20 Control method of hydrogen producing equipment and device therefor

Publications (1)

Publication Number Publication Date
JPH09110401A true JPH09110401A (en) 1997-04-28

Family

ID=17846163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7297411A Pending JPH09110401A (en) 1995-10-20 1995-10-20 Control method of hydrogen producing equipment and device therefor

Country Status (1)

Country Link
JP (1) JPH09110401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390679A (en) * 2016-11-16 2017-02-15 广西大学 Method using pressure swing adsorption to purify hydrogen produced from anaerobic fermentation of kitchen garbage
JP2017088489A (en) * 2015-11-09 2017-05-25 東京瓦斯株式会社 Hydrogen production apparatus
WO2021110455A1 (en) * 2019-12-05 2021-06-10 Thyssenkrupp Industrial Solutions Ag Method of stable operation of a steam reforming plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088489A (en) * 2015-11-09 2017-05-25 東京瓦斯株式会社 Hydrogen production apparatus
CN106390679A (en) * 2016-11-16 2017-02-15 广西大学 Method using pressure swing adsorption to purify hydrogen produced from anaerobic fermentation of kitchen garbage
WO2021110455A1 (en) * 2019-12-05 2021-06-10 Thyssenkrupp Industrial Solutions Ag Method of stable operation of a steam reforming plant

Similar Documents

Publication Publication Date Title
US8303848B2 (en) Operation method of synthesis gas reformer in GTL plant
US7025801B2 (en) Method for controlling a unit for the treatment by pressure swing adsorption of at least one feed gas
US20100152900A1 (en) Optimizing refinery hydrogen gas supply, distribution and consumption in real time
CN101102830B (en) Apparatus and method for producing hydrogen
US7763085B2 (en) Apparatus for producing hydrogen
JP2008524107A (en) Apparatus and method for hydrogen production
JP2023526396A (en) Pressure control method in a loop for the production of ammonia or methanol
JPH09110401A (en) Control method of hydrogen producing equipment and device therefor
CN114429791A (en) Control method and application of multi-stage bed carbon dioxide hydrogenation reactor
JPH07206401A (en) Control method of hydrogen producing apparatus and its device
US7452393B2 (en) Installation for hydrogen production and methods for using same
CN111394117B (en) Treatment method and treatment system for gasoline adsorption desulfurization, electronic equipment and storage medium
CA3090113C (en) Reducing fluctuations in tail gas flow and fuel property from an adsorption unit
US20230017255A1 (en) Method for stable operation of a steam reforming system
CN113429998B (en) Gasoline adsorption desulfurization intelligent control system and equipment
JPH10120401A (en) Production of hydrogen
JP7312123B2 (en) Hydrogen supply system, hydrogen supply method
JP7048321B2 (en) Hydrogen production controller, method, and program
JPS5984979A (en) Process for controlling hydrocarbon oil refining system
JPH0516361B2 (en)
JPH01284331A (en) Simulator of a catalytic reaction-type reactor
CA2150783C (en) Process for continuously controlling the heat content of a partial oxidation unit feed-gas stream
CN114442561A (en) Automatic control method and system for hydrogenation reactor before carbon dioxide generation
JPH08225302A (en) Production of hydrogen
JPH0510681B2 (en)