JPS6130758A - Air/fuel ratio sensor - Google Patents

Air/fuel ratio sensor

Info

Publication number
JPS6130758A
JPS6130758A JP15259084A JP15259084A JPS6130758A JP S6130758 A JPS6130758 A JP S6130758A JP 15259084 A JP15259084 A JP 15259084A JP 15259084 A JP15259084 A JP 15259084A JP S6130758 A JPS6130758 A JP S6130758A
Authority
JP
Japan
Prior art keywords
oxygen
electrode
solid electrolyte
pump
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15259084A
Other languages
Japanese (ja)
Inventor
Fumio Isamigawa
文雄 勇川
Yasuhide Inoue
靖秀 井上
Masayuki Toda
正之 任田
Masao Ishitani
誠男 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15259084A priority Critical patent/JPS6130758A/en
Publication of JPS6130758A publication Critical patent/JPS6130758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To simplify the construction, by arranging an oxygen sensor comprising a reference side first electrode, a measuring side second electrode and an oxygen ion conductive solid electrolyte and first and second oxygen pumps for controlling the concentration of oxygen of the first and second electrodes. CONSTITUTION:An oxygen sensor 25 is provided having a reference side first electrode 22 and a measuring side second electrode 23 as opposed to each other on the surface and back of an oxygen ion conductive solid electrolyte 24 respectively. A first oxygen pump 29 in which third and fourth electrodes 26 and 27 are provided on the surface and back of an oxygen ion conductive solid electrolyte 28 as opposed to each other is provided and an oxygen gas exhaust port 31 is provided in a spaced 30 defined while fifth and sixth electrodes 32 and 33 are provided on the surface and back of an oxygen ion conductive solid electrolyte 34 as opposed to each other and a second oxygen pump 36 having a combustion exhaust gas introduction port 35 formed at the center thereof 32 and 33 is provided to define a space 37. Moreover, a voltage measuring means 41 is connected between the electrodes 22 and 23, a first oxygen pump current source 42 between the electrodes 26 and 27 and a second oxygen pump current source 43 between the electrodes 32 and 33 to construct an air/fuel sensor 21.

Description

【発明の詳細な説明】 (&業上の利用分野) この発明は、燃焼排カス中の酸素濃度に基いて空気と燃
料との比を検出するのに利用される空燃比センサに関す
るものである。
[Detailed Description of the Invention] (& Field of Industrial Application) This invention relates to an air-fuel ratio sensor used to detect the ratio of air to fuel based on the oxygen concentration in combustion exhaust gas. .

(従来技術) 従来、この種の空燃比センサとしては、例えば第8図お
よび第9図に示すようなものがあった。
(Prior Art) Conventionally, there have been air-fuel ratio sensors of this type, such as those shown in FIGS. 8 and 9, for example.

すなわち、第8図に示す空燃比センサ1は、基板2の−
1−に、酸素センサおよび酸素ポンプ兼用の第1電極3
と、酸素イオン伝導性固体電解質4を順次積層し、前記
固体電解質4の上に、酸素センサ用第2電極5と、前記
第2電極5をはさむ形で酸素ポンプ用第3電極6とを並
べて積層し、前記第2電極5および第3電極6の上にガ
ス拡散制御層7を積層して、前記第1電極3と第2電極
5との間に電圧測定手段8を接続すると共に、前記第1
電極3と第3電極6との間にポンプ用電流源りを接続し
た構成を有するものである。
That is, the air-fuel ratio sensor 1 shown in FIG.
1-, a first electrode 3 serving as an oxygen sensor and an oxygen pump;
and an oxygen ion conductive solid electrolyte 4 are sequentially laminated, and on top of the solid electrolyte 4, a second electrode 5 for an oxygen sensor and a third electrode 6 for an oxygen pump are arranged with the second electrode 5 sandwiched therebetween. A gas diffusion control layer 7 is laminated on the second electrode 5 and the third electrode 6, and a voltage measuring means 8 is connected between the first electrode 3 and the second electrode 5. 1st
It has a configuration in which a pump current source is connected between the electrode 3 and the third electrode 6.

このような構成の空燃比センサ1においては、ポンプ用
電流源2より電流を流さない場合は、ガス拡散R−制御
N7を経て第2電極5に到達する燃焼排ガス中の酸素濃
度に応じて、理論空燃比において出力が急激に変化する
特性が電圧測定手段8によって得られる。一方、ポンプ
用電流源2より電流な飾して酸素イオン伝導性固体電解
質4内で第1電極3から第3電極6に向けてポンプ電流
を流すと、第3電極6では酸素か消費されるため、ガス
拡散制御層7を通って第2電極5に到達する燃焼排ガス
中の酸素濃度は、実際の燃焼排ガス中の酸素濃度よりも
低くなるので、理論空燃比よりもリーン(空気過剰)側
で出力が急激に変化する特性が電圧測定手段8によって
得られる。
In the air-fuel ratio sensor 1 having such a configuration, when no current is applied from the pump current source 2, the oxygen concentration in the combustion exhaust gas that reaches the second electrode 5 via the gas diffusion R-control N7 is A characteristic in which the output changes rapidly at the stoichiometric air-fuel ratio is obtained by the voltage measuring means 8. On the other hand, when a pump current is supplied from the pump current source 2 from the first electrode 3 to the third electrode 6 within the oxygen ion conductive solid electrolyte 4, oxygen is consumed at the third electrode 6. Therefore, the oxygen concentration in the combustion exhaust gas that passes through the gas diffusion control layer 7 and reaches the second electrode 5 is lower than the oxygen concentration in the actual combustion exhaust gas, so it is on the lean (excess air) side than the stoichiometric air-fuel ratio. The voltage measuring means 8 obtains a characteristic in which the output changes rapidly at .

また、第9図に示す空燃比センサ11は、基板12の上
に、酸素センサ用第1電極13と前記第1電極13をは
さむ形の酸素ポンプ用第2電極14とを並べて積層し、
前記第1電極13と第2電極14の上に酸素イオン伝導
性固体電解質15を積層し、前記固体電解質15の上に
、酸素ポンプ用第3電極16と、前記第3電極16をは
さむ形の酸素センサ用第4電極17を並べて積層し、前
記第3電極16と第4電極17の上にガス拡散制御層1
8を積層し、前記酸素センサ用第1電極13と第4電極
17との間に電圧測定手段12を接続すると共に、酸素
ポンプ用第2電極14と第3電極16との間にポンプ用
電流源20を接続した構成を有するものである(特開昭
56−14.534−2号)。
Further, the air-fuel ratio sensor 11 shown in FIG. 9 has a first electrode 13 for an oxygen sensor and a second electrode 14 for an oxygen pump sandwiching the first electrode 13 stacked side by side on a substrate 12.
An oxygen ion conductive solid electrolyte 15 is stacked on the first electrode 13 and the second electrode 14, and a third electrode 16 for an oxygen pump is sandwiched between the third electrode 16 and the third electrode 16 on top of the solid electrolyte 15. A fourth electrode 17 for an oxygen sensor is stacked side by side, and a gas diffusion control layer 1 is formed on the third electrode 16 and the fourth electrode 17.
A voltage measuring means 12 is connected between the oxygen sensor first electrode 13 and the fourth electrode 17, and a pump current is connected between the oxygen pump second electrode 14 and the third electrode 16. It has a configuration in which a power source 20 is connected (Japanese Patent Laid-Open No. 56-14.534-2).

このような構成の空燃比センサ11においても、前記し
た空燃比センサ1の場合と同様に、ポンプ電流を流さな
い場合に理論空燃比で出力が急激に変化する特性が得ら
れ、固体電解質15内を第2電極14から第3電極16
に向けてポンプ電流を流すことによってリーン(空気過
剰)側で出力が急激に変化する特性が得られる。
Similarly to the air-fuel ratio sensor 1 described above, the air-fuel ratio sensor 11 having such a configuration also has the characteristic that the output changes rapidly at the stoichiometric air-fuel ratio when no pump current is applied. from the second electrode 14 to the third electrode 16
By flowing the pump current towards the lean side (excess air), a characteristic can be obtained in which the output changes rapidly on the lean (excess air) side.

しかしながら、このような従来の空燃比センサ1.11
では、酸素センサ用電極5,13.17と酸素ポンプ用
電極6,14.16とが接近しすぎているため、特に酸
素センサ用基準電極3゜13の酸素濃度が高くなりにく
いという問題点かあった。また、酸素センサ用の測定電
極である第2電極5および第4電極17が、酸素ポンプ
用電極6,16付近でのCo、H2の発生および第1電
極3.酸素ポンプ用型−極14で発生する02のふき返
し等の影響を受けた場合に十分な出力特性を得ることが
できないという問題点もあった。
However, such conventional air-fuel ratio sensor 1.11
So, is the problem that the oxygen concentration of the oxygen sensor reference electrode 3°13 is difficult to increase because the oxygen sensor electrode 5, 13.17 and the oxygen pump electrode 6, 14.16 are too close? there were. Further, the second electrode 5 and the fourth electrode 17, which are measurement electrodes for the oxygen sensor, cause the generation of Co and H2 near the oxygen pump electrodes 6 and 16, and the first electrode 3. There was also the problem that sufficient output characteristics could not be obtained when affected by 02 flare-up occurring in the oxygen pump mold electrode 14.

(発明の目的) この発明は、上述したような従来の問題点に着目してな
されたもので、酸素センサを構成する基準電極における
酸素濃度と測定電極における酸素濃度とを別個の酸素ポ
ンプで制御するようにし、基準電極における酸素濃度を
常に安定して大きく維持することが可能であって、外部
から大気を導入する必要がないため簡単な構造にするこ
とができ、測定電極においてはC0IH2の発生やo2
のふき返し等による影響を受けないようにして、安定し
たmm力特性が得られるようにすることを目的としてい
る。
(Object of the Invention) The present invention was made by focusing on the above-mentioned problems of the conventional art. By doing so, it is possible to always maintain a stable and high oxygen concentration at the reference electrode, and there is no need to introduce atmospheric air from the outside, so the structure can be simplified, and the generation of C0IH2 at the measurement electrode is possible. Yao2
The purpose is to obtain stable mm force characteristics without being affected by flailing, etc.

(発明の構成) この発明による空燃比センサは、一対の基準側第1電極
および測定側第2電極と酸素イオン伝導性固体電解質と
からなる酸素センサと、前記基準側第1電極の酸素濃度
を制御する一対の第3電極および第4電極ど酸素イオン
伝導性固体電解質とからなる第1酸素ポンプと、前記測
定側第2電極の酸素濃度を制御する一対の第5電極およ
び第6電極と酸素イオン伝導性固体電解質とからなる第
2酸素ポンプと、を具備したことを特徴としていこの発
明による空燃比センサにおいては、酸素センサおよび酸
素ポンプを構成する電極の材質および形成方法等は特に
限定されず、従来の電極材ネ4および形成手段等の中か
ら選択することができる。また、酸素センサおよび酸素
ポンプを構成する酸素イオン伝導性固体電解質は一体構
造のものとしたりあるいは別体構造のものとしたりする
ことができる。また、この酸素イオン伝導性固体電解質
の材質や形成方法等も特に限定されない。さらに、この
酸素イオン伝導性固体電解質を構造基体としたり、別に
構造基体を設けたすしてもよい。さらにまた、発熱体を
設けることも必要に応じて望ましい。
(Structure of the Invention) The air-fuel ratio sensor according to the present invention includes an oxygen sensor including a pair of a first electrode on the reference side, a second electrode on the measurement side, and an oxygen ion conductive solid electrolyte, and an oxygen concentration sensor in the first electrode on the reference side. a first oxygen pump consisting of a pair of third and fourth electrodes that control the oxygen ion conductive solid electrolyte; a pair of fifth and sixth electrodes that control the oxygen concentration of the second electrode on the measurement side; In the air-fuel ratio sensor according to the present invention, the material and forming method of the electrodes constituting the oxygen sensor and the oxygen pump are not particularly limited. First, it is possible to select from conventional electrode materials 4 and forming means. Further, the oxygen ion conductive solid electrolyte constituting the oxygen sensor and the oxygen pump can be constructed as an integral structure or as separate structures. Furthermore, the material and formation method of this oxygen ion conductive solid electrolyte are not particularly limited. Furthermore, this oxygen ion conductive solid electrolyte may be used as a structural base, or a separate structural base may be provided. Furthermore, it is also desirable to provide a heating element if necessary.

(実施例) 第1図はこの発明の一実施例による空燃比センサの模型
的断面説明図であって、この空燃比センサ21は、一対
の基準側第1電極22および測定側第2電極23を酸素
イオン伝導性固体電解質24の表裏面に対向させて設け
た酸素センサ25を備え、前記酸素セ〉す25の基準側
第1電極22側に間隔をおいて、一対の第3電極26お
よび第4電極27を酸素イオン伝導性固体電解質28の
表裏面に対向させて形成I7た第1酸素ポンプ22を設
けて、前記酸素センサ25と第1酸素ポンプ22との間
に空間30を形成し、この空間30の一部に酸素ガス排
出1」31を形成すると共に、前記酸素センサ25の測
定側第2電極23側に間隔をおいて、一対の第5電極3
28よひ第6電極33を酸素イオン伝導性固体電解質3
4の表裏面に対向させて設けかつ前記電極32.33の
中心部分に燃焼排ガス導入[」35を形成した第2酸素
ポンプ36を設けて、前記酸素センサ25と第2酸素ポ
ンプ36との間に空間37を形成し、前記酸素センサ2
5の第1電極22と第2電極23との間に電圧測定手段
41を接続すると共しこ、第1酪素ポンプ22の第3電
極26と第4電8i27との間に第1酸素ポンプ用電流
源4zを接続し、第2酸素ポンプ36の第5電極32と
第6電極33との間に第2酸素ポンプ用電流源43を接
続した構成をなすものである。
(Embodiment) FIG. 1 is a schematic cross-sectional view of an air-fuel ratio sensor according to an embodiment of the present invention. A pair of third electrodes 26 and A first oxygen pump 22 is provided in which a fourth electrode 27 is formed I7 facing the front and back surfaces of an oxygen ion conductive solid electrolyte 28, and a space 30 is formed between the oxygen sensor 25 and the first oxygen pump 22. , an oxygen gas discharge 1'' 31 is formed in a part of this space 30, and a pair of fifth electrodes 3 are arranged at a distance on the measuring side second electrode 23 side of the oxygen sensor 25.
28, the sixth electrode 33 is an oxygen ion conductive solid electrolyte 3
Between the oxygen sensor 25 and the second oxygen pump 36, a second oxygen pump 36 is provided opposite to each other on the front and back surfaces of the oxygen sensor 25 and has a combustion exhaust gas introduction port 35 formed in the center of the electrode 32, 33. A space 37 is formed in the oxygen sensor 2.
At the same time, the voltage measuring means 41 is connected between the first electrode 22 and the second electrode 23 of the first oxygen pump 22, and the first oxygen pump is connected between the third electrode 26 of the first butyric pump 22 and the fourth electrode 8i27. The second oxygen pump current source 4z is connected between the fifth electrode 32 and the sixth electrode 33 of the second oxygen pump 36.

第2図は第1図に示す空燃比センサ21の製造要領を示
す分解説明図であって、第1酪素ポンプ22を構成する
酸素イオン伝導性固体電解質28を例えば5モル%Y2
O3−95モル%ZrO2よりなるセラミックスグリ−
ンシートより切り出して用意する。この固体電解質28
には、矩形溝状の空間30が形成しであると共に、溝状
の酪素ガ(排出I]31か形成しである。
FIG. 2 is an exploded explanatory diagram showing the manufacturing procedure of the air-fuel ratio sensor 21 shown in FIG.
Ceramic grease consisting of O3-95 mol% ZrO2
Cut out from the sheet and prepare. This solid electrolyte 28
A rectangular groove-shaped space 30 is formed therein, and a groove-shaped butylene gas (discharge I) 31 is also formed.

そして、上記固体電解質28の裏面に、例えば白金ペー
ストを用いて酸素ポンプ用第3電極26を積層して乾燥
すると共に、同体電解質28の−L面でかつ前記空間3
0の底面部分に同じく白金ペーストを用いて酸素ポンプ
用第4電極27を積層して乾燥する。このとき、両電極
26.27に1才リード部26a、27aを形成してお
く。
Then, on the back surface of the solid electrolyte 28, a third electrode 26 for an oxygen pump is laminated using, for example, platinum paste and dried.
Similarly, a fourth electrode 27 for an oxygen pump is laminated on the bottom surface of the substrate 0 using platinum paste and dried. At this time, one-year lead portions 26a and 27a are formed on both electrodes 26 and 27.

また、酸素センサ25を構成する酸素イオン伝導性固体
電解質24を例えば5モル%y2o3−95モル%Zr
O2よりなるセラミックスゲ1ルーンシートより切(1
出し、て用意する。この固#電解質24には、矩形渦状
の空間37が形成しである。そして、上記固体電解質2
4の裏面に1例えは白金ペーストを用いて酸素センサ用
第1電極22を積層して乾燥すると共に、固体電解質2
4の上面でかつ前記空間37の底面部分に同じく白金ペ
ーストを用いて酸素センサ用第2電極23を積層して乾
燥する。このとき、両電極22.23にはリード部22
a 、23aを形成しておく。そして、前記酸素ポンプ
用固体電解質28の一部に前記酸素センサ用固体電解質
2斗を重ねる。このとき1両国体電M賀24.28の間
には、前記各リード部22a、27aに接続したリード
線52.57の先端をはさみ込む。また、リート部26
aにはリード線56の先端を付着させる。
Further, the oxygen ion conductive solid electrolyte 24 constituting the oxygen sensor 25 may be made of, for example, 5 mol% y2o3-95 mol% Zr.
Cut from 1 rune sheet of ceramic gel made of O2 (1
Remove and prepare. This solid electrolyte 24 has a rectangular spiral space 37 formed therein. Then, the solid electrolyte 2
The first electrode 22 for the oxygen sensor is laminated on the back side of the solid electrolyte 2 using, for example, platinum paste and dried.
The second electrode 23 for the oxygen sensor is laminated on the upper surface of the electrode 4 and the bottom surface of the space 37 using platinum paste, and then dried. At this time, the lead portion 22 is attached to both electrodes 22 and 23.
a, 23a is formed in advance. Then, the solid electrolyte 2 for the oxygen sensor is overlapped on a part of the solid electrolyte 28 for the oxygen pump. At this time, the ends of the lead wires 52, 57 connected to the respective lead parts 22a, 27a are inserted between the two Ryogoku body electric cables M 24, 28. In addition, the reed part 26
The tip of the lead wire 56 is attached to a.

さらに、第2酸素ポンプ36を構成する酸素イオン伝導
性固体電解質34を例えば5モル%Y、03−95モル
%ZrO,,よりなるセラミ・ンクスグリーンシートよ
り切り出して用意する。この固体電解質34には排ガス
導入孔35を形成するための小孔35bが設けて、ある
。そして、−ヒ記固体電#賀34の裏面に、例えは白金
ペーストを用いて酸素ポンプ用第5電極32を積層して
乾燥すると共に、固体電解質34の上面には同じく白金
ペーストを用いて酸素ポンプ用第6電極33を積層して
乾燥する。このとき、両電極32.33には排ガス導入
孔35を形成するだめの小孔35a 、35Cを前記小
孔35bと同位置に設けると共に、リード部32a、3
3aを形成しておく。そして、前記酸素センサ用固体電
解質24のトに前記酸素ポンプ用固体電解質34を重ね
る。
Further, an oxygen ion conductive solid electrolyte 34 constituting the second oxygen pump 36 is prepared by cutting out a ceramic green sheet made of, for example, 5 mol % Y and 03-95 mol % ZrO. This solid electrolyte 34 is provided with a small hole 35b for forming an exhaust gas introduction hole 35. Then, on the back side of the solid electrolyte 34, for example, using platinum paste, the fifth electrode 32 for the oxygen pump is laminated and dried, and on the top side of the solid electrolyte 34, platinum paste is also used to layer the fifth electrode 32 for oxygen pumping. The sixth pump electrode 33 is stacked and dried. At this time, small holes 35a and 35C for forming the exhaust gas introduction hole 35 are provided in both electrodes 32 and 33 at the same position as the small hole 35b, and lead portions 32a and 3
Form 3a. Then, the solid electrolyte 34 for the oxygen pump is placed on top of the solid electrolyte 24 for the oxygen sensor.

このどき、両国体電解質24,34の間には、前記各リ
ート部23a 、32aに接続したリード線53.62
の先端をノオさみ込む。また、リード部33aにはリー
ド線63の先端を付着させる。
At this time, between the Ryogokutai electrolytes 24 and 34, the lead wires 53 and 62 connected to the respective reed parts 23a and 32a are connected.
Insert the tip of the saw. Furthermore, the tip of the lead wire 63 is attached to the lead portion 33a.

その後、前記の積層体を適切な温風条件で焼成する。な
お、必要に応して多孔質の保護層を設けることもよい。
Thereafter, the laminate is fired under appropriate hot air conditions. Note that a porous protective layer may be provided if necessary.

第3図は第1図に示す空燃比センサ21における結線例
を示す図であって、第1酎素ポンプ22の第3電極26
ど第4電極、27との間にそれぞれリード線56.57
を介して第1酸素ポンプ用定電流源42を接続すると共
に、酸素センサ25の第1電極22と第2電極23との
間にそれぞれリード線52.53を介して電圧測定手段
41を接続し、第2酸素ポンプ36の第5電極32と第
6電極33との間にそれぞれリード線62.63を介し
て第2酸素ポンプ用可変電流源43および抵抗44を接
続する。
FIG. 3 is a diagram showing an example of wiring in the air-fuel ratio sensor 21 shown in FIG.
Lead wires 56 and 57 are connected between the fourth electrode and 27, respectively.
A constant current source 42 for the first oxygen pump is connected through the oxygen sensor 25, and a voltage measuring means 41 is connected between the first electrode 22 and the second electrode 23 of the oxygen sensor 25 through lead wires 52 and 53, respectively. , a second oxygen pump variable current source 43 and a resistor 44 are connected between the fifth electrode 32 and the sixth electrode 33 of the second oxygen pump 36 via lead wires 62 and 63, respectively.

このような構成になる空燃比センサ21を用いて燃焼排
ガス中の酸素濃度に基いて空燃比を検出するに際しては
、第1酸素ポンプ用定電流源42より電流を供給して酸
素イオン伝導性固体電解質28内で第4電極27から第
3電極26に向けて定電流を流す。したがって、第3電
ai2.6から第4電極27に向けて酸素イオンの移動
を生じて第4電極27で酸素が発生し、空間30内が酸
素濃度の高い状態となり、余剰の酸素ガスは排出口31
より排出されるため、空間30内の酸素濃度は高い状態
でほぼ一定に維持され、酸素センサ25の第1電極22
の酸素濃度も高い状態に維持される。一方、酸素センサ
25の第2電極23には燃焼ガス導入口35を通して空
間37内に流入した燃焼ガスが接触し、燃焼排ガス中の
酸素濃度と前記第1電極22の酸素濃度との差に対応し
た出力が電圧測定手段41により測定される。
When detecting the air-fuel ratio based on the oxygen concentration in the combustion exhaust gas using the air-fuel ratio sensor 21 having such a configuration, a current is supplied from the first oxygen pump constant current source 42 to the oxygen ion conductive solid. A constant current is passed from the fourth electrode 27 to the third electrode 26 within the electrolyte 28 . Therefore, oxygen ions move from the third electrode ai2.6 toward the fourth electrode 27, and oxygen is generated at the fourth electrode 27, resulting in a high oxygen concentration state in the space 30, and excess oxygen gas is exhausted. Exit 31
Therefore, the oxygen concentration in the space 30 is maintained almost constant at a high level, and the first electrode 22 of the oxygen sensor 25
The oxygen concentration is also maintained at a high level. On the other hand, the second electrode 23 of the oxygen sensor 25 comes into contact with the combustion gas that has flowed into the space 37 through the combustion gas inlet 35, and corresponds to the difference between the oxygen concentration in the combustion exhaust gas and the oxygen concentration at the first electrode 22. The resulting output is measured by the voltage measuring means 41.

他方、前記電圧測定手段41により測定される酸素セン
サ25の出力が一定となるように、第2酸素ポンプ用可
変電流源43からの電流値を変化させるようにする場合
に、例えば燃焼排ガス中の酪素濃度が高いリーン雰囲気
のときには、前記酸素センサ25の出力を一定にするた
めに、第2酸素ポンプ36における固体電解質34内で
第6電極33から第5電極32に向けてより多くの電流
を流す必要があり、反対に燃焼排ガス中の酸素濃度が低
いリッチ雰囲気のときには前記酸素センサ25の出力を
一定するために第2酸素ポンプ36における固体電解質
54内で第5電極32から第6電極33に向けてより多
くの電流を流す必要がある。このように、燃焼排ガスの
当量比の変化に応じて第2酸素ポンプ36に供給する第
2酸素ポンプ用可変電流源斗3の電流が直線的に変化す
るようになり、したがって、第3図に示す抵抗44の両
端における電位圧■2も直線的に変化して第4図に示す
特性が得られる。
On the other hand, when changing the current value from the second oxygen pump variable current source 43 so that the output of the oxygen sensor 25 measured by the voltage measuring means 41 is constant, for example, In a lean atmosphere with a high butyric concentration, more current flows from the sixth electrode 33 to the fifth electrode 32 in the solid electrolyte 34 in the second oxygen pump 36 in order to keep the output of the oxygen sensor 25 constant. On the other hand, in a rich atmosphere where the oxygen concentration in the combustion exhaust gas is low, in order to keep the output of the oxygen sensor 25 constant, the fifth electrode 32 to the sixth electrode are It is necessary to send more current toward 33. In this way, the current of the second oxygen pump variable current source 3 that is supplied to the second oxygen pump 36 changes linearly in accordance with the change in the equivalence ratio of the combustion exhaust gas, and therefore, as shown in FIG. The potential voltage (2) at both ends of the resistor 44 also changes linearly, resulting in the characteristics shown in FIG.

この第4図に示す特性を得る場合の具体的な回路を第5
図に示す。すなわち、第5図に示すように、酸素センサ
25を構成する第1電極22は抵抗R1を介して差動増
幅器46の一端に入力されると共に第2電極23は接地
される。また、差動増幅器46の他端には基準電圧発生
器47からの基準電圧が入力され、差動増幅器46の出
力側は抵抗R2を介して前記第2酸素ポンプ36を構成
する第6電極63に接続されると共に第5電極32は図
示しないポンプ電流検出手段に接続される端子IPに接
続されると共に抵抗R3を介して接地される。
A specific circuit for obtaining the characteristics shown in Figure 4 is shown in Figure 5.
As shown in the figure. That is, as shown in FIG. 5, the first electrode 22 constituting the oxygen sensor 25 is input to one end of the differential amplifier 46 via the resistor R1, and the second electrode 23 is grounded. Further, a reference voltage from a reference voltage generator 47 is inputted to the other end of the differential amplifier 46, and the output side of the differential amplifier 46 is connected to the sixth electrode 63 constituting the second oxygen pump 36 via a resistor R2. The fifth electrode 32 is connected to a terminal IP connected to pump current detection means (not shown) and grounded via a resistor R3.

このような回路構成において、例えば、被測定ガスがリ
ーン(空気過剰)の状態にあるときは、酸素センサ25
からの出力が基準電圧よりも小さくなるため、差動増幅
器46の出力が正側に大となり、第6電極33から第5
電極32へと流れるポンプ電流が大きくなる。反対に、
被測定ガスがリッチ(燃料過剰)の状態にあるときは、
酸素センサ25かもの出力が基準電圧よりも大きくなる
ため、差動増幅器46の出力が負側に大となり、第5電
極32から第6電極33へと流れるポンプ電流が大きく
なり、第4図に示したようなポンプ電流特性となる。し
たがって、これによって被測定雰囲気がどの位リッチで
あるか、理論空燃比であるか、あるいはどの位リーンで
あるかの判断を行って、例えば燃料噴射弁からの燃料噴
射量を制御する。
In such a circuit configuration, for example, when the gas to be measured is in a lean state (excess air), the oxygen sensor 25
Since the output from the differential amplifier 46 becomes smaller than the reference voltage, the output of the differential amplifier 46 becomes large on the positive side, and the voltage from the sixth electrode 33 to the fifth electrode becomes smaller than the reference voltage.
The pump current flowing to the electrode 32 increases. Conversely,
When the measured gas is rich (excess fuel),
Since the output of the oxygen sensor 25 becomes larger than the reference voltage, the output of the differential amplifier 46 increases to the negative side, and the pump current flowing from the fifth electrode 32 to the sixth electrode 33 increases, as shown in FIG. The pump current characteristics will be as shown. Accordingly, this determines how rich, stoichiometric, or lean the atmosphere to be measured is, and controls, for example, the amount of fuel injected from the fuel injection valve.

第6図はこの発明の他の実施例による空燃比センサの模
型的断面説明図であって、この空燃比センサ71は、一
対の基準側第1電極22および測定側第2電極23を酸
素イオン伝導性固体電解質24の表裏面に対向させて設
けた酸素センサ25を備え、前記酸素センサ25の基準
側第1電極22側に間隔をおいて、一対の第3電極26
および第4電極27を酸素イオン伝導性固体電解買28
の表裏面に対向させて形成した第1酸素ポンプ29を設
けて、前記酸素センサ25と第1酸素ポンプ22との間
に1’FIII 30を形成し、この空間30の一部に
酸素ガス排出口31を形成すると共に、前記酸素センサ
25の測定側第2電極23の」二面に、微小空間37を
形成する多孔質ガス拡散層77を積層し、このガス拡散
層77の」二に、一対の第5電極32および第6電極3
3を酸素イオン伝導性固体電解質34の表裏面に対向さ
せて形成した第2酸素ポンプ36を設けて、前記酸素セ
ンサ25の第1電極22と第2電極23との間に電圧測
定手段41を接続すると共に、第1酸素ポンプ22の第
3電極26と第4電極27との間に第1酪素ポンプ用電
流源42を接続し、第2酸素ポンプ36の第5電極32
と第6電極33との間に第2酪素ポンプ用電流s、43
を接続した構成をなすものである。
FIG. 6 is a schematic cross-sectional view of an air-fuel ratio sensor according to another embodiment of the present invention, in which a pair of reference-side first electrode 22 and measurement-side second electrode 23 are connected to oxygen ions. An oxygen sensor 25 is provided to face the front and back surfaces of the conductive solid electrolyte 24, and a pair of third electrodes 26 are provided at a distance from each other on the reference side first electrode 22 side of the oxygen sensor 25.
and the fourth electrode 27 is an oxygen ion conductive solid electrolyte 28.
A first oxygen pump 29 is provided to face the front and back surfaces of the oxygen sensor 25 and the first oxygen pump 22, and a 1'FIII 30 is formed between the oxygen sensor 25 and the first oxygen pump 22, and a part of this space 30 is filled with oxygen gas exhaust. A porous gas diffusion layer 77 that forms the outlet 31 and also forms a microspace 37 is laminated on two sides of the measurement side second electrode 23 of the oxygen sensor 25, and on the second side of this gas diffusion layer 77, A pair of fifth electrode 32 and sixth electrode 3
A second oxygen pump 36 is provided, and a voltage measuring means 41 is provided between the first electrode 22 and the second electrode 23 of the oxygen sensor 25. At the same time, a current source 42 for the first butyric pump is connected between the third electrode 26 and the fourth electrode 27 of the first oxygen pump 22 , and the fifth electrode 32 of the second oxygen pump 36 is connected.
and the sixth electrode 33, a second butyric pump current s, 43
It has a configuration in which the two are connected.

このように、空間37を多孔質ガス拡散層77からなる
微小空間より形成したときでも、第1図に示した空燃比
センサ21の場合と同様の特性を得ることかできる。
In this way, even when the space 37 is formed from a microspace made of the porous gas diffusion layer 77, characteristics similar to those of the air-fuel ratio sensor 21 shown in FIG. 1 can be obtained.

第7図はこの発明のさらに他の実施例による空燃比セン
サの模型的断面説明図であって、図に示す空燃比センサ
81は、二つの空間30.37を形成した酸素イオン伝
導性固体電解質24を用い、一方の空間30に面して固
体電解質24に基準側$1電極22を形成すると共に、
他方の空間37に面して固体電解質24に測定側第2電
極23を形成して、前記第1電極22と第2電極23と
固体電解質24とで酸素センサ25を構成し、前記一方
の空間30に面して固体電解質24に第1酸素ポンプ用
第4電極27を形成すると共にこの第4電極27に対向
する前記固体電解質24の反対面側に第3電極26を形
成して、前記第3電極26と第4電極27と固体電解質
24とで第1酸素ポンプ22を構成し、前記固体電解質
24には空間30内の酸素ガスを排出する酸素カス排出
口31を形成し、前記他方の空間37に面して固体電解
質24に第2酸素ポンプ用第5電極32を形成すると共
にこの第5電極32に対向して前記固体電解質24の反
対面側に第6電極33を形成して、前記第5電極32と
固体電解質24と第6電極33とで第2酸素ポンプ36
を構成し、前記酸素センサ25の第1電極22と第2電
極23との間に電圧測定手段41を接続すると共に、第
1酸素ポンプ29の第3電極26と第4電極27との間
に第1酸素ポンプ用電流源42を接続し、第2酎素ポン
プ36の第5電極32と第6電極33との間に第2酸素
ポンプ用電流源43を接続した構成をなすものである。
FIG. 7 is a schematic cross-sectional view of an air-fuel ratio sensor according to still another embodiment of the present invention. 24, a reference side $1 electrode 22 is formed on the solid electrolyte 24 facing one space 30, and
A measurement-side second electrode 23 is formed on the solid electrolyte 24 facing the other space 37, and the first electrode 22, the second electrode 23, and the solid electrolyte 24 constitute the oxygen sensor 25, and the oxygen sensor 25 is formed in the solid electrolyte 24 facing the other space 37. A fourth electrode 27 for the first oxygen pump is formed on the solid electrolyte 24 facing the solid electrolyte 30, and a third electrode 26 is formed on the opposite side of the solid electrolyte 24 facing the fourth electrode 27. The first oxygen pump 22 is composed of the third electrode 26, the fourth electrode 27, and the solid electrolyte 24, and the solid electrolyte 24 is formed with an oxygen scum discharge port 31 for discharging the oxygen gas in the space 30. A fifth electrode 32 for the second oxygen pump is formed on the solid electrolyte 24 facing the space 37, and a sixth electrode 33 is formed on the opposite side of the solid electrolyte 24, facing the fifth electrode 32. A second oxygen pump 36 is formed by the fifth electrode 32, the solid electrolyte 24, and the sixth electrode 33.
A voltage measuring means 41 is connected between the first electrode 22 and the second electrode 23 of the oxygen sensor 25, and a voltage measuring means 41 is connected between the third electrode 26 and the fourth electrode 27 of the first oxygen pump 29. A current source 42 for the first oxygen pump is connected, and a current source 43 for the second oxygen pump is connected between the fifth electrode 32 and the sixth electrode 33 of the second oxygen pump 36.

このような構成の空燃比センサ81においても、第1酸
素ポンプ29によって空間30内すなわち酸素センサ2
5の基準側第1電極22の酸素濃度を一定に制御し、第
2酸素ポンプ36によって酸素センサ25の測定側第2
電極23の酸素濃度か一定になるように当該ポンプ電流
を制御すれば、第2酸素ポンプ36のポンプ電流は燃焼
排ガスの当量比変化に対して前記実施例と同様にほぼ直
線的に変化し、このポンプ電流によって空燃比を検出す
ることができる。
In the air-fuel ratio sensor 81 having such a configuration as well, the first oxygen pump 29 operates in the space 30, that is, the oxygen sensor 2
The oxygen concentration of the reference side first electrode 22 of the oxygen sensor 25 is controlled to be constant, and the measurement side second electrode of the oxygen sensor 25 is controlled by the second oxygen pump 36.
If the pump current is controlled so that the oxygen concentration of the electrode 23 is constant, the pump current of the second oxygen pump 36 changes almost linearly with respect to the change in the equivalence ratio of the combustion exhaust gas, as in the previous embodiment, The air-fuel ratio can be detected by this pump current.

(発明の効果) 以上説明してきたように、この発明によれば、一対の基
準側第1電極および測定側t52電極と酸素イオン伝導
性固体電解質とからなる酸素センサと、前記基準側第1
電極の酸素濃度を制御する一対の第3電極および第4電
極と酸素イオン伝導性固体電解質とからなる舘1酸素ポ
ンプと、前記測定側第2電極の酸素濃度を制御する一対
の第5電極および第6電極と酸素イオン伝導性固体電解
質とからなる第2酸素ポンプと、を具備した構成とした
から、第1酸素ポンプによって酸素センサの基準側第1
!極の酸素濃度を制御することが可能であると同時に第
2酸素ポンプによて酸素センサの測定側第2電極の酸素
濃度を制御することが可能であり、酸素センサの基準側
第1電極の酸素濃度を大気の導入によって一定に制御す
る必要がないためセンサホルダ等を含めて構成を著しく
簡単なものとすることができ、例えば酸素センサの測定
側電極の酸素濃度を一定に制御するための第2酸素ポン
プからのポンプ電流を検出することによって燃料過剰の
リッチ側から空気過剰のリーン側までの広い範囲の空燃
比を検出することが可能であり、酸素イオンおよび酸素
ガスの流れの機構が簡単になるためセンサ設計が容易で
あり、しかも酸素センサを構成する測定側電極がCo、
H2の発生や02のふき返し等による影響を受けること
がないため良好なる出力特性を得ることができるという
非常に優れた効果をもたらしうるちのである。
(Effects of the Invention) As described above, according to the present invention, there is provided an oxygen sensor including a pair of reference-side first electrodes, a measurement-side t52 electrode, and an oxygen ion-conducting solid electrolyte;
A first oxygen pump comprising a pair of third and fourth electrodes that control the oxygen concentration of the electrodes and an oxygen ion conductive solid electrolyte, a pair of fifth electrodes that control the oxygen concentration of the measurement side second electrode, and Since the configuration includes the sixth electrode and the second oxygen pump consisting of the oxygen ion conductive solid electrolyte, the first oxygen pump is used to connect the first oxygen sensor to the reference side.
! It is possible to control the oxygen concentration of the electrode, and at the same time, it is possible to control the oxygen concentration of the second electrode on the measurement side of the oxygen sensor with the second oxygen pump, and the oxygen concentration of the first electrode on the reference side of the oxygen sensor. Since it is not necessary to control the oxygen concentration to a constant level by introducing atmospheric air, the configuration including the sensor holder etc. can be made extremely simple. By detecting the pump current from the second oxygen pump, it is possible to detect a wide range of air-fuel ratios from the rich side with excess fuel to the lean side with excess air, and the flow mechanism of oxygen ions and oxygen gas can be detected. Because it is simple, sensor design is easy, and the measuring electrode that makes up the oxygen sensor is made of Co,
Since it is not affected by the occurrence of H2 or the flare-up of 02, it has the advantage of being able to obtain excellent output characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による空燃比センサの模型
的断面説明図、第2図は・第1図の空燃比センサを製作
する要領を示す分解斜視説明図、第3図は第1図の空燃
比センサの結線例を示す説明図、第4図は第3図の結線
により得られる当量比変化に対する出力変化を示す説明
図、第5図は第3図の結線図の具体的回路を示す説明図
、第6図および第7図はともにこの発明の他の実施例に
よる空燃比センサの各々模型的断面説明図、第8図およ
び第9図はともに従来の空燃比センサの各々模型的断面
説明図である。 21.71.81・・・空燃比センサ、22・・・第1
電極、 23・・・第2電極、 24・・・酸素イオン伝導性固体電解質、25・・・酸
素センサ、 26・・・第3電極、 27・・・第4電極、 28・・・酸素イオン伝導性固体電解質、22・・・第
1酸素ポンプ、 30.37・・・空間、 32・・・第5電極、 33・・・第6電極、 34・・・酸素イオン伝導性固体電解質、36・・・第
2酸素ポンプ、 41・・・電圧測定手段、 42・・・第1酸素ポンプ用電流源、 43・・・第2酸素ポンプ用電流源、 77・・・多孔質ガス拡散層。 第1図 王 第2図 伊 第8図 第9図
FIG. 1 is a schematic cross-sectional view of an air-fuel ratio sensor according to an embodiment of the present invention, FIG. 2 is an exploded perspective view showing the procedure for manufacturing the air-fuel ratio sensor of FIG. 1, and FIG. Fig. 4 is an explanatory diagram showing an example of the connection of the air-fuel ratio sensor shown in Fig. 4. Fig. 4 is an explanatory diagram showing the output change with respect to the equivalence ratio change obtained by the wiring diagram in Fig. 3. Fig. 5 is a specific circuit diagram of the wiring diagram in Fig. 3. FIG. 6 and FIG. 7 are both schematic cross-sectional diagrams of an air-fuel ratio sensor according to another embodiment of the present invention, and FIGS. 8 and 9 are each a model of a conventional air-fuel ratio sensor. FIG. 21.71.81...Air-fuel ratio sensor, 22...First
Electrode, 23... Second electrode, 24... Oxygen ion conductive solid electrolyte, 25... Oxygen sensor, 26... Third electrode, 27... Fourth electrode, 28... Oxygen ion Conductive solid electrolyte, 22... First oxygen pump, 30.37... Space, 32... Fifth electrode, 33... Sixth electrode, 34... Oxygen ion conductive solid electrolyte, 36 ...Second oxygen pump, 41...Voltage measuring means, 42...Current source for first oxygen pump, 43...Current source for second oxygen pump, 77...Porous gas diffusion layer. Figure 1 King Figure 2 Italy Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)一対の基準側第1電極および測定側第2電極と酸
素イオン伝導性固体電解質とからなる酸素センサと、前
記基準側第1電極の酸素濃度を制御する一対の第3電極
および第4電極と酸素イオン伝導性固体電解質とからな
る第1酸素ポンプと、前記測定側第2電極の酸素濃度を
制御する一対の第5電極および第6電極と酸素イオン伝
導性固体電解質とからなる第2酸素ポンプと、を具備し
たことを特徴とする空燃比センサ。
(1) An oxygen sensor consisting of a pair of reference-side first electrodes, a measurement-side second electrode, and an oxygen ion-conducting solid electrolyte, and a pair of third and fourth electrodes that control the oxygen concentration of the reference-side first electrodes. a first oxygen pump consisting of an electrode and an oxygen ion conductive solid electrolyte; and a second oxygen pump consisting of a pair of fifth and sixth electrodes that control the oxygen concentration of the measurement side second electrode and an oxygen ion conductive solid electrolyte. An air-fuel ratio sensor characterized by comprising an oxygen pump.
JP15259084A 1984-07-23 1984-07-23 Air/fuel ratio sensor Pending JPS6130758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15259084A JPS6130758A (en) 1984-07-23 1984-07-23 Air/fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15259084A JPS6130758A (en) 1984-07-23 1984-07-23 Air/fuel ratio sensor

Publications (1)

Publication Number Publication Date
JPS6130758A true JPS6130758A (en) 1986-02-13

Family

ID=15543768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15259084A Pending JPS6130758A (en) 1984-07-23 1984-07-23 Air/fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPS6130758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214347A (en) * 1986-03-17 1987-09-21 Ngk Insulators Ltd Electrochemical device
US4772376A (en) * 1986-03-11 1988-09-20 Nissan Motor Co., Ltd. Air/fuel ratio sensor having oxygen sensor cell and oxygen pump cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772376A (en) * 1986-03-11 1988-09-20 Nissan Motor Co., Ltd. Air/fuel ratio sensor having oxygen sensor cell and oxygen pump cell
JPS62214347A (en) * 1986-03-17 1987-09-21 Ngk Insulators Ltd Electrochemical device

Similar Documents

Publication Publication Date Title
US4300991A (en) Air-fuel ratio detecting apparatus
US6355152B1 (en) Gas sensor and nitrogen oxide sensor
JP3355796B2 (en) Air-fuel ratio detection device and method of manufacturing the same
JPH0437378B2 (en)
JPH09509747A (en) Measuring sensor for detecting the oxygen content of gas mixtures
US6068747A (en) Solid electrolyte gas sensor
JPS5943348A (en) Air/fuel ratio sensor
JPH067118B2 (en) Air-fuel ratio sensor
JPS6130758A (en) Air/fuel ratio sensor
US20040111868A1 (en) Gas sensor element designed to ensure required measurement accuracy
JPS62129751A (en) Regulation of oxygen concentration detector
JP4101501B2 (en) Compound gas sensor element
JPS61194345A (en) Method for detecting concentration of gas
JPS6082952A (en) Oxygen concentration detector
JPH0668482B2 (en) Air-fuel ratio sensor
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPH0516544B2 (en)
EP0323015B1 (en) A method of making planar oxygen pumping devices
JPS6111653A (en) Air-fuel ratio detector
JPS60230051A (en) Oxygen sensor
JPS61111455A (en) Electrochemical instrument
JPH065224B2 (en) Air-fuel ratio detection element
JPS6130759A (en) Air/fuel ratio sensor
JPS60231159A (en) Oxygen concentration measuring apparatus
JPS63138257A (en) Oxygen sensor for internal combustion engine