JPH067118B2 - Air-fuel ratio sensor - Google Patents

Air-fuel ratio sensor

Info

Publication number
JPH067118B2
JPH067118B2 JP60036032A JP3603285A JPH067118B2 JP H067118 B2 JPH067118 B2 JP H067118B2 JP 60036032 A JP60036032 A JP 60036032A JP 3603285 A JP3603285 A JP 3603285A JP H067118 B2 JPH067118 B2 JP H067118B2
Authority
JP
Japan
Prior art keywords
oxygen
diffusion
gas
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60036032A
Other languages
Japanese (ja)
Other versions
JPS61221644A (en
Inventor
暢博 早川
健 美濃羽
豊 安達
治久 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Tokushu Togyo KK
Original Assignee
Mitsubishi Electric Corp
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Tokushu Togyo KK filed Critical Mitsubishi Electric Corp
Priority to JP60036032A priority Critical patent/JPH067118B2/en
Priority to DE19863606044 priority patent/DE3606044A1/en
Publication of JPS61221644A publication Critical patent/JPS61221644A/en
Priority to US07/228,808 priority patent/US5194135A/en
Priority to US07/298,145 priority patent/US5242573A/en
Publication of JPH067118B2 publication Critical patent/JPH067118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃焼機器に供給される混合気の空燃比を検出す
る空燃比センサーに関し、特に酸素イオン伝導性固体電
解質を用いた混合気のリーン(理論空燃比より空気過剰
の状態)域からリッチ(理論空燃比より燃料過剰の状
態)域における空燃比を検出し得る空燃比センサーに関
するものである。
TECHNICAL FIELD The present invention relates to an air-fuel ratio sensor for detecting an air-fuel ratio of an air-fuel mixture supplied to a combustion device, and particularly to a lean air-fuel mixture using an oxygen ion conductive solid electrolyte. The present invention relates to an air-fuel ratio sensor capable of detecting an air-fuel ratio in a rich region (a state in which fuel is in excess of the stoichiometric air-fuel ratio) to a rich region (state in which air is in excess of the stoichiometric air-fuel ratio).

[従来の技術] 従来より、例えば、内燃機関等の燃焼機器において、燃
費やエミッションの改善を図るべく、排気中の酸素濃度
を検出し、燃焼容器中で燃焼される混合気を理論空燃比
近傍に制御するといった、いわゆるフィードバック制御
を実行するものがある。そしてこの種の制御装置に用い
られ、排気中の酸素濃度を検出する酸素センサとして、
例えばイオン伝導性固体電解質に多孔質電極層を被着し
て構成され、排気の酸素分圧と空気の酸素分圧との差に
よって生ずる起電力の変化によって理論空燃比近傍の燃
焼状態を検知する酸素センサ等、一般には混合気の理論
空燃比を境として出力電圧がスイッチング的に変化する
酸素センサが知られている。
[Prior Art] Conventionally, for example, in a combustion device such as an internal combustion engine, in order to improve fuel efficiency and emission, the oxygen concentration in exhaust gas is detected and the air-fuel mixture burned in the combustion container is close to the stoichiometric air-fuel ratio. There is one that executes so-called feedback control, such as controlling to. And as an oxygen sensor used in this type of control device to detect the oxygen concentration in the exhaust gas,
For example, it is configured by depositing a porous electrode layer on an ion conductive solid electrolyte, and detects the combustion state near the stoichiometric air-fuel ratio by the change in electromotive force caused by the difference between the oxygen partial pressure of exhaust gas and the oxygen partial pressure of air. In general, an oxygen sensor such as an oxygen sensor in which the output voltage changes in a switching manner with the stoichiometric air-fuel ratio of the air-fuel mixture as a boundary is known.

ところで近年、混合気の空燃比を単に理論空燃比近傍に
制御するだけでなく、機器の運転状態に応じて目標とす
る空燃比を変化してフィードバック制御を実行すること
により、燃費やエミッションをより改善すると共に機器
の運転性を向上させるといったことが考えられている
が、上記従来の酸素センサにあっては混合気の理論空燃
比を検知し得るだけであることから、混合気を所望の空
燃比に制御することができなかった。
By the way, in recent years, by not only controlling the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio but also changing the target air-fuel ratio according to the operating state of the equipment and executing feedback control, it is possible to improve fuel economy and emissions. Although it is considered to improve the operability of the equipment as well as improve it, the conventional oxygen sensor described above can only detect the stoichiometric air-fuel ratio of the air-fuel mixture. The fuel ratio could not be controlled.

一方近年、上記の如き空燃比のフィードバック制御を実
現すべく、固体電解質酸素ポンプ素子の一方の電極面を
含んで密閉状態の空間を形成する室を備え、その室の壁
に微小な拡散孔を設け、この孔を通して被測定ガス中の
ガス成分を上記室内に限度一杯拡散導入させるよう電極
面間に電圧を印加して上記室内の雰囲気を均一にいわゆ
る化学当量点状態を含む酸素不足状態にするときに流れ
る電流量を測定して被測定ガス中のガス成分濃度を測定
する方法、即ちいわゆる拡散限界電流方式によるガス成
分濃度の測定方法が特開昭52−72286号や特開昭
53−66292号に提案されている。
On the other hand, in recent years, in order to realize the feedback control of the air-fuel ratio as described above, a chamber for forming a sealed space including one electrode surface of the solid electrolyte oxygen pump element is provided, and a minute diffusion hole is formed in the wall of the chamber. A voltage is applied between the electrode surfaces so that the gas components in the gas to be measured are diffused and introduced into the chamber as much as possible through this hole, so that the atmosphere in the chamber is uniformly made into an oxygen-deficient state including a so-called chemical equivalence point state. A method for measuring the gas component concentration in the gas to be measured by measuring the amount of current flowing sometimes, that is, a method for measuring the gas component concentration by the so-called diffusion limiting current method is disclosed in JP-A-52-72286 and JP-A-53-66292. Has been proposed in the issue.

又、特開昭59−190652号には、上記のガス成分
濃度測定方法と基本的には拡散限界電流方式である点で
同一の原理・方式によるセンサであるが、化学当量点検
出手段としての基準酸素濃度ガスとして大気を用いた固
体電解質酸素濃淡電池素子を固体電解質酸素ポンプ素子
から切り離して独立して設け、かつそれらの素子により
拡散細孔を備えた空間室を形成し、該酸素濃淡電池素子
の起電力を、該空間室内雰囲気が均一に化学当量点状態
にある場合(即ち細孔を経る拡散速度が限界値になる状
態)に発生する起電力値(約500mV)とほぼ等しい
起電力値を示すように酸素ポンプ素子のポンプ電流を調
節して該空間室内雰囲気を均一に化学当量点状態となし
たときのポンプ電流値で被測定ガス中のガス成分濃度を
測定するセンサが記載されている。
Further, in Japanese Patent Application Laid-Open No. 59-190652, a sensor based on the same principle and method as the above-mentioned gas component concentration measuring method is basically a diffusion limiting current method, but as a chemical equivalent point detecting means. A solid electrolyte oxygen concentration battery element using air as a reference oxygen concentration gas is provided separately from the solid electrolyte oxygen pump element, and these elements form a space chamber having diffusion pores, and the oxygen concentration battery is formed. The electromotive force of the element is approximately equal to the electromotive force value (about 500 mV) generated when the atmosphere in the space is in the state of chemical equivalence point (that is, the diffusion rate through the pores reaches the limit value). A sensor for measuring the gas component concentration in the gas to be measured by the pump current value when the pump current of the oxygen pump element is adjusted to show the value and the atmosphere in the space is brought into a state of chemical equivalence point uniformly. It has been mounting.

しかしながらこれらのいわゆる拡散限界電流方式のセン
サでは、広い範囲のガス成分濃度にわたって測定可能と
したいという要求を、上記空間室内のガス成分濃度をで
きるだけ均一化して、拡散限界電流方式のセンサに特有
の被測定ガス中のガス成分濃度一定下での酸素濃淡電池
素子の起電力Vs対酸素ポンプ素子のポンプ電流Ipの
関係曲線におけるVsの急激な変化特性(以後、限界電
流特性と称する)を保持しつつ満足させるために、細孔
の径はきわめて小さくせざるを得ず、その結果応答性の
点で実用上満足できるものは得られなかった。
However, in these so-called diffusion limiting current type sensors, there is a demand for measurement over a wide range of gas component concentrations, and by making the gas component concentrations in the space chamber as uniform as possible, it is possible to achieve the characteristics specific to diffusion limiting current type sensors. While maintaining a rapid change characteristic of Vs (hereinafter referred to as a limiting current characteristic) in a relationship curve of the electromotive force Vs of the oxygen concentration battery element and the pump current Ip of the oxygen pump element under a constant gas component concentration in the measurement gas In order to satisfy it, the diameter of the pores had to be made extremely small, and as a result, the responsiveness was not practically satisfactory.

一方、同じく上記特開昭59−190652号には、基
準酸素濃淡電池素子と酸素ポンプ素子との間の空間室を
閉鎖状にせず、単に両素子の電極同士が微小空隙(0.
075mm)を介して対向するようにして拡散制限を行わ
せ、しかも酸素濃淡電池素子の起電力値は、仮に上記空
間室内が均一に化学当量点状態であったと想定したとき
に示すべき起電力値(約500mV)とほぼ等しい起電
力値を示すようにポンプ電流を調整し、そのときのポン
プ電流値で被測定ガス中のガス成分濃度を測定する方式
の、いうなれば微小空隙による拡散制限方式のセンサも
併せて開示されている。しかしながら、このセンサは、
少なくとも実用上要求されるところの比較的小さいサイ
ズ、即ち、センサをネジ付きの金属製ハウジング内に収
容してこれを内燃機関の排気管に取り付けて用いる関係
からすれば素子の幅寸法が10mmにも満たない小さいサ
イズ、において実施しようとするとき、間隙の周囲開放
端から多くの成分ガスが拡散流入し、これが空隙内でそ
の全域にわたって拡散制限を受けながら拡散するので、
対向する両電極面の沿う方向に酸素濃度分圧差が極めて
大きく生じ、その結果、限界電流特性は殆ど生じなくな
り(その意味ではこの方式は拡散限界電流方式とは言い
難い)、センサの測定精度は悪くなるとともに、対向す
る両電極間で対向方向に酸素濃度分圧差が大きく生じる
ことは避け難く、従ってポンプ電流値は許容値以上にな
り耐久性が極めて劣り、実用できなかった。
On the other hand, in the above-mentioned Japanese Patent Laid-Open No. 59-190652, the space between the reference oxygen concentration battery element and the oxygen pump element is not closed, but the electrodes of both elements are simply a minute gap (0.
(075 mm) so that the diffusion is controlled so as to face each other, and the electromotive force value of the oxygen concentration battery element is the electromotive force value that should be shown when it is assumed that the space chamber is in the state of chemical equivalence point uniformly. (Around 500 mV) A pump current is adjusted so as to show an electromotive force value almost equal to (about 500 mV), and the gas component concentration in the gas to be measured is measured by the pump current value at that time, that is, a diffusion-limited sensor using a minute air gap. Is also disclosed. However, this sensor
At least in practically required size, that is, the sensor is housed in a metallic housing with a screw and mounted on an exhaust pipe of an internal combustion engine, and the width of the element is 10 mm. When it is attempted to carry out in a small size which is less than the above, a large amount of component gas diffuses in from the open end of the periphery of the gap, and this diffuses in the void with diffusion restriction over the whole area,
Oxygen concentration partial pressure difference is extremely large in the direction along the opposing electrode surfaces, and as a result, the limiting current characteristic hardly occurs (in that sense, this method is hard to say as the diffusion limiting current method), and the measurement accuracy of the sensor is In addition, it is unavoidable that a large oxygen concentration partial pressure difference occurs between the two electrodes facing each other in the facing direction. Therefore, the pump current value exceeds the allowable value and the durability is extremely poor, which is not practical.

[発明が解決しようとする問題点] 上記した細孔による拡散制限方式(拡散限界電流方式)
や微小空隙による拡散制限方式の空燃比センサの問題点
を克服し、応答性がよく、かつ限界電流も十分明瞭に現
れる様にした新規な拡散制限方式の極めて有用な全領域
空燃比センサの提供を目的とする。
[Problems to be Solved by the Invention] Diffusion limiting method using pores (diffusion limiting current method)
A very useful full-range air-fuel ratio sensor that overcomes the problems of the diffusion-limited air-fuel ratio sensor with small air gaps and has excellent responsiveness and a sufficiently clear limiting current. With the goal.

[問題点を解決するための手段] 即ち、本発明の空燃比センサーは、 酸素イオン伝導性固体電解質媒体の表面に一対の電極を
備えしめた酸素ポンプ素子と、同じく酸素イオン伝導性
固体電解質媒体の表面に一対の電極を備えしめるととも
に該一対の電極の内の一方の電極を大気等の基準酸素濃
度ガスに曝すようにした酸素濃淡電池素子と、該酸素ポ
ンプ素子の一方の電極と該酸素濃淡電池素子の他方の電
極とが相対向するように該両素子を並行配設することに
より該両素子間に形成した空間と、該空間によって形成
されるとともに被測定ガスとの間でガス拡散制限手段を
介して連通せしめたガス拡散室とを備え、該酸素濃淡電
池素子の起電力が該拡散室内雰囲気が化学当量点状態で
ある場合の起電力値とほぼ等しい起電力値を常に保持す
るよう該酸素ポンプ素子に流すポンプ電流をフィードバ
ック信号に基づいて加減調節するようにし、その際のポ
ンプ電流値を空燃比センサ出力とする空燃比センサにお
いて、 前記拡散制限手段は、前記拡散室の壁部に該拡散室と被
測定ガス雰囲気とを連通するように設けられた細孔によ
り拡散制限を行う第1の拡散制限部と、該拡散室の空間
の厚み方向寸法を0.2mm以下0.01mm以上とするこ
とにより形成された微小空隙により拡散制限を行う第2
の拡散制限部とからなることを特徴とする。
[Means for Solving the Problems] That is, the air-fuel ratio sensor of the present invention includes an oxygen pump element having a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte medium, and an oxygen ion conductive solid electrolyte medium. An oxygen concentration battery element having a pair of electrodes on its surface and exposing one electrode of the pair of electrodes to a reference oxygen concentration gas such as the atmosphere; and one electrode of the oxygen pump element and the oxygen. Gas diffusion between the space formed between the two elements by arranging the two elements in parallel so that the other electrode of the concentration cell element faces each other, and the gas formed and measured gas. A gas diffusion chamber communicated via a limiting means, and the electromotive force of the oxygen concentration battery element always holds an electromotive force value substantially equal to the electromotive force value when the atmosphere in the diffusion chamber is in the chemical equivalence point state. In the air-fuel ratio sensor in which the pump current flowing in the oxygen pump element is adjusted based on the feedback signal, and the pump current value at that time is the air-fuel ratio sensor output, the diffusion limiting means is a wall of the diffusion chamber. The first diffusion limiting portion for limiting diffusion by the pores provided so that the diffusion chamber communicates with the gas atmosphere to be measured, and the dimension of the space in the diffusion chamber in the thickness direction is 0.2 mm or less. The second that limits diffusion by the minute voids formed by making it over 01 mm
And a diffusion limiting unit of.

酸素濃淡電池素子及び酸素ポンプ素子は、例えばY
−ZrO固溶体のような固体電解質板の表裏面に1
対の多孔質電極を設けることにより形成される。
The oxygen concentration cell element and the oxygen pump element are, for example, Y 2 O.
1 on the front and back of a solid electrolyte plate such as 3- ZrO 2 solid solution
It is formed by providing a pair of porous electrodes.

固体電解質板の材料としては、ジルコニアのイットリア
あるいはカルシア等との固溶体が代表的なものであり、
その他二酸化セリウム、二酸化トリウム、二酸化ハフニ
ウムの各固溶体、ペロブスカイト型酸化物固溶体、3価
金属酸化物固溶体等が使用可能である。
As a material of the solid electrolyte plate, a solid solution of zirconia with yttria or calcia is typical,
In addition, cerium dioxide, thorium dioxide, hafnium dioxide solid solutions, perovskite type oxide solid solutions, trivalent metal oxide solid solutions and the like can be used.

多孔質電極の材料としては、白金、金等を用いることが
でき、これらは、原料粉末を主成分としてペースト化し
厚膜技術を用いて印刷後、焼結して形成してもよく、又
フレーム熔射あるいは化学メッキもしくは蒸着などの薄
膜技術を用いて形成してもよい。
As a material for the porous electrode, platinum, gold or the like can be used, which may be formed by pasting raw material powder as a main component into a paste using a thick film technique, followed by sintering, and forming a frame. It may be formed using a thin film technique such as spraying, chemical plating or vapor deposition.

さらに、1枚の固体電解質板に酸素濃淡電池素子と酸素
ポンプ素子との両素子を設け、他の1枚の固体電解質に
酸素ポンプ素子を設けるようにしてよく、このようにす
ることによって酸素ポンプ素子の後述する拡散室内の酸
素ガスの排出、吸入能力が向上し、酸素濃淡電池素子電
極近傍の酸素ガス分圧制御がより容易となる。しかしい
づれにしても拡散室の一方の大面の大部分がポンプ素子
の電極とされるべきである。なお、ポンプ素子の電極の
面積は少なくとも5mm2以上は通常必要とする。
Further, both the oxygen concentration battery element and the oxygen pump element may be provided on one solid electrolyte plate, and the oxygen pump element may be provided on the other one solid electrolyte plate. The capability of discharging and inhaling oxygen gas in the diffusion chamber of the device, which will be described later, is improved, and the partial pressure control of oxygen gas in the vicinity of the oxygen concentration battery device electrode becomes easier. However, in any case, most of the large surface of one of the diffusion chambers should be the electrode of the pump element. It is usually necessary that the electrode area of the pump element is at least 5 mm 2 .

なお、後述実施例の様に、酸素ポンプ素子と酸素濃淡電
池素子との相対向する電極の面積を第1図及び第2図に
示す如く、ほぼ同じ面積となるようにすることは、被測
定ガス中のガス成分濃度が変化したときの酸素濃淡電池
素子による変化検出が速くなるため、結局応答性もよい
一つの好ましい形態である。
It is to be noted that, as in Examples described later, it is necessary to make the areas of the electrodes of the oxygen pump element and the oxygen concentration cell element facing each other to be substantially the same as shown in FIGS. 1 and 2. This is one of the preferable modes because the oxygen concentration cell element can detect the change quickly when the gas component concentration in the gas changes, and thus the response is good.

又、少なくとも酸素濃淡電池素子の拡散室に接しない面
は基準酸素濃度ガスと接する必要があり、例えば、公知
の方法によって大気を導びく通路を設ける。例えば、固
体電解質の拡散室に接しない面に、コの字形の応力緩和
層と板状の支持体とからなる通路形成体を接合すること
により大気導入通路としてもよい。
Further, at least the surface of the oxygen concentration battery element which is not in contact with the diffusion chamber needs to be in contact with the reference oxygen concentration gas, and for example, a passage for guiding the atmosphere is provided by a known method. For example, a passage forming body including a U-shaped stress relaxation layer and a plate-shaped support may be joined to the surface of the solid electrolyte that is not in contact with the diffusion chamber to form the air introduction passage.

細孔によるガス拡散制限手段としては、拡散室と測定ガ
ス雰囲気とを結ぶ空隙と平行な孔を用いることができ
る。この孔は、比較的大径とし、これを1つ、あるいは
2つ以上設け、内部に多孔質材を充填して拡散抵抗をよ
り増すようにしてもよい。この孔は、後述の拡散室を形
成するスペーサーに拡散室と測定ガスとを結ぶ切り欠き
を設けることにより容易に形成される。尚、本発明の空
燃比センサでは、ガスの拡散制限はこのガス拡散制限手
段のみで行なわれるのではなく、後述の如く拡散室にお
いても行なわれる。即ち、ガスの拡散制限はガス拡散制
限手段の一部をなす孔と、拡散室とにより、さらに孔に
多孔質材が充填されている場合にはその多孔質材によっ
ても行なわれるのである。
As the gas diffusion limiting means by the pores, a hole parallel to the void connecting the diffusion chamber and the measurement gas atmosphere can be used. This hole may have a relatively large diameter, and one or two or more holes may be provided and the inside thereof may be filled with a porous material to further increase the diffusion resistance. This hole is easily formed by providing a notch that connects the diffusion chamber and the measurement gas to a spacer that forms the diffusion chamber described later. In the air-fuel ratio sensor of the present invention, the gas diffusion restriction is performed not only by the gas diffusion restriction means but also in the diffusion chamber as described later. That is, the diffusion of the gas is limited by the hole forming a part of the gas diffusion limiting means and the diffusion chamber, and also by the porous material when the hole is filled with the porous material.

拡散室は、酸素濃淡電池素子の設けられた固体電解質板
と、酸素ポンプ素子の設けられた固体電解質板との間
に、拡散室となる空所を有する所定厚さのスペーサーを
挟んで接合することにより形成される。特に焼成前にこ
の拡散室内に、拡散室とほぼ等しい直径を持つスプレー
ドライヤー等により製造された造粒粒子を一層に配設し
ておくと焼成時にこの拡散室が変形することを防ぐので
好ましい。
The diffusion chamber is joined by sandwiching a spacer having a predetermined thickness having a void serving as a diffusion chamber between a solid electrolyte plate provided with an oxygen concentration battery element and a solid electrolyte plate provided with an oxygen pump element. It is formed by Particularly, it is preferable to dispose one layer of granulated particles produced by a spray dryer or the like having a diameter substantially equal to that of the diffusion chamber before firing, because this diffusion chamber is prevented from being deformed during firing.

この拡散室の厚さすなわち両素子の電極表面間の空隙の
距離は、拡散室内において電極の面に沿う方向に拡散制
限作用を行わせるべく0.01〜0.2mmであることが
好ましく、特に0.05〜0.1mmであると好ましい。
この厚さが0.01mmより小さいと、拡散室自体による
酸素ガスの拡散制限の効果が大きすぎて空燃比センサー
の限界電流特性が十分には生じなくなり、測定精度が悪
化するとともに応答性がかえって悪化し、又、製造時に
変形しやすくなり、酸素濃淡電池素子と酸素ポンプ素子
間の電気絶縁の保持も困難となるし品質のそろった製品
をつくりにくいといった問題がある。又、逆にこの厚さ
が0.2mmより大きければ、応答性を確保しようとする
と拡散室内の、特に対向する両電極の間の対向方向の成
分ガスの分圧差が大きくなり、ポンプ電流が酸素ポンプ
素子の能力以上に大きくなり、一方、ポンプ電流を低め
に抑える限りは、応答性は悪くなる。即ち、従来の拡散
限界電流方式のセンサーではその測定動作時の酸素濃淡
電池素子の出力電圧はほぼ500mV前後(450〜5
50mV)に設定して拡散室内を均一な化学当量点状態
とするので応答性と限界電流特性(測定精度)の点から
好ましいと考えられたが、その場合になお応答性が不足
し、これを実用上満足できるレベル(350〜400m
sec以下)に保持すべくポンプ電流の大きさを大きく
選ぼうとするときには空間室内においてその電極対向方
向に分圧差が生じ、酸素ポンプセルの耐久性の観点から
問題となったのであるが、上記拡散室の厚みを0.2mm
より大きくすると同様の問題が生じてくるのである。
The thickness of this diffusion chamber, that is, the distance between the electrode surfaces of both elements, is preferably 0.01 to 0.2 mm in order to perform the diffusion limiting action in the direction along the surface of the electrode in the diffusion chamber, and particularly, It is preferably 0.05 to 0.1 mm.
If this thickness is less than 0.01 mm, the effect of limiting the diffusion of oxygen gas by the diffusion chamber itself is too large, and the limiting current characteristics of the air-fuel ratio sensor will not sufficiently occur, resulting in poor measurement accuracy and responsiveness. There is a problem in that it deteriorates and is easily deformed during manufacturing, it becomes difficult to maintain electrical insulation between the oxygen concentration battery element and the oxygen pump element, and it is difficult to produce a product of uniform quality. On the other hand, if the thickness is larger than 0.2 mm, the partial pressure difference of the component gas in the facing direction in the diffusion chamber, especially between the two electrodes facing each other, becomes large when the responsiveness is secured, and the pump current becomes oxygen. It becomes larger than the capacity of the pump element, and on the other hand, as long as the pump current is kept low, the response becomes poor. That is, in the conventional diffusion limiting current type sensor, the output voltage of the oxygen concentration battery element during the measurement operation is about 500 mV (450 to 5
50 mV) to make a uniform chemical equivalence point state in the diffusion chamber, which was considered preferable from the viewpoint of responsiveness and limiting current characteristics (measurement accuracy), but in that case, responsiveness was still insufficient, and this Practically satisfactory level (350-400m
When trying to select a large pump current to keep the value of (sec or less), a partial pressure difference occurs in the space chamber in the electrode facing direction, which is a problem from the viewpoint of durability of the oxygen pump cell. Chamber thickness 0.2mm
If it is made larger, the same problem will occur.

[作用] 本発明の空燃比センサーの作用について説明する。[Operation] The operation of the air-fuel ratio sensor of the present invention will be described.

先ず、混合気がリーン域である時、該空燃比センサーを
排ガス中に入れ、酸素ポンプ素子の大気側の電極に正、
拡散室側の電極に負の電圧を印加することにより、酸素
ポンプ素子の固体電解質内を酸素イオンが拡散室反対側
へ移動し、拡散室内の酸素ガスが汲み出される。
First, when the air-fuel mixture is in the lean range, the air-fuel ratio sensor is put in the exhaust gas, and the positive electrode is placed on the atmosphere side electrode of the oxygen pump element.
By applying a negative voltage to the electrode on the diffusion chamber side, oxygen ions move in the solid electrolyte of the oxygen pump element to the opposite side of the diffusion chamber, and oxygen gas in the diffusion chamber is pumped out.

上記の如く拡散室内より酸素ガスが汲み出されると、酸
素濃淡電池素子の大気側と拡散室内との間に拡散制限手
段の酸素拡散制限的作用によって酸素ガス濃度の差を生
ずる。この濃度差により、酸素濃淡電池素子に起電力を
生ずるのである。そして例えばこの起電力Eが予め定め
た一定値に維持されるように、酸素ポンプ素子側に流す
電流量(ポンプ電流)を変化調整させると、その電流量
は、測定ガス中の酸素ガスの含有率にほぼ直線的に比例
するようにすることができ、酸素ガス濃度を求めること
ができる。
When oxygen gas is pumped out of the diffusion chamber as described above, a difference in oxygen gas concentration occurs between the atmosphere side of the oxygen concentration battery element and the diffusion chamber due to the oxygen diffusion limiting action of the diffusion limiting means. Due to this concentration difference, an electromotive force is generated in the oxygen concentration battery element. Then, for example, when the amount of current (pump current) flowing to the oxygen pump element side is changed and adjusted so that the electromotive force E is maintained at a predetermined constant value, the amount of current is determined by the content of oxygen gas in the measurement gas. The rate can be made to be almost linearly proportional to the rate, and the oxygen gas concentration can be obtained.

次に、混合気がリッチ側である時に、上記空燃比センサ
ーを排ガス中に入れると、酸素濃淡電池素子は両電極の
間に酸素ポンプ素子を働かせて酸素ガス分圧差を惹起さ
せなくても起電力が発生するので、酸素濃淡電池素子の
起電力を一定にするために、酸素ポンプ素子に流すポン
プ電流の向きは逆となる。即ち、酸素濃淡電池素子の拡
散室側電極部において、酸素が排ガス中の未燃焼の炭化
水素や一酸化炭素によって消費されるために拡散室側と
大気側との酸素ガス分圧の差が大きくなりすぎてしま
い、起電力が所定の値よりも大きくなってしまうのであ
る。そのため、起電力を所定の値に維持するよう、酸素
ポンプ素子により拡散室内に酸素を送り込むことが必要
となる。この時、ポンプ電流は、リーン域におけるポン
プ電流と逆向きになり、又、必要なポンプ電流の大きさ
は排ガス中の未燃焼の炭化水素や一酸化炭素の量に対応
する。したがって、リッチ域においてポンプ電流は空燃
比に対応する。
Next, when the air-fuel ratio sensor is put into the exhaust gas when the air-fuel mixture is on the rich side, the oxygen concentration cell element is activated without causing an oxygen gas partial pressure difference by operating the oxygen pump element between both electrodes. Since electric power is generated, the direction of the pump current flowing through the oxygen pump element is reversed to keep the electromotive force of the oxygen concentration battery element constant. That is, in the diffusion chamber side electrode portion of the oxygen concentration battery element, since oxygen is consumed by unburned hydrocarbons and carbon monoxide in the exhaust gas, the difference in oxygen gas partial pressure between the diffusion chamber side and the atmosphere side is large. It becomes too much, and the electromotive force becomes larger than a predetermined value. Therefore, it is necessary to send oxygen into the diffusion chamber by the oxygen pump element so as to maintain the electromotive force at a predetermined value. At this time, the pump current is opposite to the pump current in the lean region, and the magnitude of the required pump current corresponds to the amount of unburned hydrocarbons and carbon monoxide in the exhaust gas. Therefore, the pump current corresponds to the air-fuel ratio in the rich region.

即ち、上記空燃比センサーの酸素濃淡電池素子の起電力
が予め定めた一定値に維持されるように酸素ポンプ素子
に流すポンプ電流を調節する時、そのポンプ電流は空燃
比に対応する。この関係の模様を第3図に示す。
That is, when the pump current flowing through the oxygen pump element is adjusted so that the electromotive force of the oxygen concentration cell element of the air-fuel ratio sensor is maintained at a predetermined constant value, the pump current corresponds to the air-fuel ratio. The pattern of this relationship is shown in FIG.

ここで、拡散室内の酸素ガス分圧は低く化学当量状態に
近いほど空燃比センサーの応答性と限界電流特性がよい
ことは容易に知れるが、本発明のセンサでは、更に拡散
室をあえて極端に偏平な室として微小空隙による拡散制
限を、細孔による拡散制限と併せ行わせ、しかも一つの
限界的拡散制限を行うようにしたので、拡散室内の酸素
濃淡電池素子と酸素ポンプ素子との対向する両電極にお
いて電極面に沿う方向には成分ガス分圧の差を生ぜしめ
るが、該両電極間で対向方向には成分ガス分圧の差は過
大とならず、従って、耐久性を損なうことなく、そして
又、限界電極特性の悪化、即ち、測定精度の劣化も有利
に抑えつつ、拡散室の容積に対する成分ガスの拡散流量
(即ち、ポンプ電流量)の割合を高めて応答性が実用レ
ベル(例えば400〜350msec以内)にまで顕著
に向上される。
Here, it is easily known that the oxygen gas partial pressure in the diffusion chamber is lower and the closer to the chemical equivalence state, the better the responsiveness and the limiting current characteristic of the air-fuel ratio sensor. As a flat chamber, the diffusion limitation due to the minute voids is performed together with the diffusion limitation due to the pores, and one limiting diffusion limitation is performed, so that the oxygen concentration cell element and the oxygen pump element in the diffusion chamber face each other. In both electrodes, a difference in component gas partial pressure is produced in the direction along the electrode surface, but the difference in component gas partial pressure in the opposing direction between the two electrodes does not become excessive, and therefore durability is not impaired. Also, while the deterioration of the limit electrode characteristics, that is, the deterioration of the measurement accuracy is advantageously suppressed, the ratio of the diffusion flow rate of the component gas (that is, the pump current amount) to the volume of the diffusion chamber is increased to make the responsiveness at a practical level ( For example 40 Up to ~350msec within) is significantly improved.

なお、ここで、対向方向の成分ガスの分圧差が過大でな
いかどうかの判断は、酸素濃淡電池素子の出力電圧Vs
が、所定の値、即ち約500mVに一定に維持されると
きの酸素ポンプ素子の両電極間に生じる起電力値(印加
電圧Vpに対して内部抵抗による電圧降下分を補正して
求めた値)と上記Vs値との差が少なくとも700mV
以内、好ましくは500mV以内、より好ましくは20
0mV以内となっているべきことから容易に判断でき
る。この値が過大であるときは、酸素ポンプ素子の拡散
室を向く側の電極中の最も酸素分圧の小さい部分で、そ
の酸素分圧値が10−24atm以下となってしまい、
(ガス)−(電極)−(固体電解質)の界面における固
体電解が還元され変質してしまう。
It should be noted that, here, it is determined whether the partial pressure difference between the component gases in the opposite direction is excessive or not by determining the output voltage Vs of the oxygen concentration battery element.
Is a predetermined value, that is, an electromotive force value generated between both electrodes of the oxygen pump element when it is constantly maintained at about 500 mV (value obtained by correcting the voltage drop due to the internal resistance with respect to the applied voltage Vp). And the difference between the above Vs value is at least 700mV
Within, preferably within 500 mV, more preferably 20
It can be easily judged from the fact that it should be within 0 mV. When this value is excessively large, the oxygen partial pressure value becomes 10 −24 atm or less in the portion of the electrode of the oxygen pump element facing the diffusion chamber where the oxygen partial pressure is smallest.
The solid electrolysis at the interface of (gas)-(electrode)-(solid electrolyte) is reduced and deteriorated.

[実施例] 第1図の部分破断斜視図、第2図の説明図によって本発
明の第1実施例について説明する。
[Embodiment] A first embodiment of the present invention will be described with reference to a partially broken perspective view of FIG. 1 and an explanatory view of FIG.

本実施例は、拡散室1を挟んで1つの酸素濃淡電池素子
2と1つの酸素ポンプ素子3とが対向するよう構成され
ている。
In this embodiment, one oxygen concentration cell element 2 and one oxygen pump element 3 are arranged to face each other with the diffusion chamber 1 interposed therebetween.

酸素濃淡電池素子2は、7×45×0.6mmのY
−ZrO固溶体からなる固体電解質板4の両面にY
−ZrO固溶体を5重量%含む白金からなる電極
5、6を厚膜技術で設け、固体電解質4の拡散室1に接
しない面に、AlとZrOとの混合焼結体であ
る厚さ1.0mm、外形7×45mm、内形5×43mmのコ
の字形の応力緩和層7及びAlからなる7×45
×0.8mmの支持体8によって形成される通路形成体9
を設けることによってなる。大気は通路形成体9によっ
て形成される通路10によって酸素濃淡電池素子2の電
極5に導入される。又、支持体8の通路10側には発熱
体11が設けられる。
The oxygen concentration battery element 2 is made of 7 × 45 × 0.6 mm Y 2 O 3
-Y 2 on both surfaces of the solid electrolyte plate 4 made of ZrO 2 solid solution
Electrodes 5 and 6 made of platinum containing 5 wt% of O 3 -ZrO 2 solid solution are provided by a thick film technique, and a mixed sintering of Al 2 O 3 and ZrO 2 is performed on a surface of the solid electrolyte 4 which is not in contact with the diffusion chamber 1. The body is a thickness of 1.0 mm, the outer shape is 7 × 45 mm, the inner shape is 5 × 43 mm, and the U-shaped stress relaxation layer 7 and Al 2 O 3 are 7 × 45.
Passage forming body 9 formed by a support body 8 of 0.8 mm
It becomes by providing. The atmosphere is introduced into the electrode 5 of the oxygen concentration cell element 2 through the passage 10 formed by the passage forming body 9. Further, a heating element 11 is provided on the passage 10 side of the support 8.

酸素ポンプ素子3は、酸素濃淡電池素子2と同様に固体
電解質板12、電極13、14、応力緩和層15及び支
持体16からなる通路形成体17からなる。大気は通路
形成体17によって形成される通路18によって酸素ポ
ンプ素子3の電極13に導入される。又、支持体16に
は発熱体19が設けられる。
Like the oxygen concentration battery element 2, the oxygen pump element 3 includes a solid electrolyte plate 12, electrodes 13, 14, a stress relaxation layer 15, and a passage forming body 17 including a support body 16. The atmosphere is introduced into the electrode 13 of the oxygen pump element 3 by the passage 18 formed by the passage forming body 17. A heating element 19 is provided on the support 16.

拡散室1はAlとZrOとの混合焼結体である
厚さ0.1mm、外形7×45mm、内形3×9mmのほぼコ
の字形で三方に断面0.1×0.1mmの拡散制限部30
を形成するようにする拡散室および拡散制限部の形成体
20を、酸素濃淡電池素子2の設けられた固体電解質板
4と酸素ポンプ素子3の設けられた固体電解質板12と
によって挟み、接合することによって形成される。拡散
制限部としての孔の中に例えばアルミナの粒子結合体か
らなる多孔質材を充填して更に拡散抵抗を増すようにす
ることもできる。そのさい多孔質の多孔度は比較的大き
くてよく従って目詰りによる特性の変化をきたす恐れが
少くなりしかも、製造し易いものとなる。
The diffusion chamber 1 is a mixed sintered body of Al 2 O 3 and ZrO 2 and has a thickness of 0.1 mm, an outer shape of 7 × 45 mm, and an inner shape of 3 × 9 mm, and has a substantially U-shaped cross section with a cross section of 0.1 × 0. 1mm diffusion limiter 30
The diffusion chamber and the diffusion limiting portion forming body 20 for forming the above are sandwiched and joined by the solid electrolyte plate 4 provided with the oxygen concentration battery element 2 and the solid electrolyte plate 12 provided with the oxygen pump element 3. Formed by. It is also possible to further increase the diffusion resistance by filling the pores as the diffusion limiting portion with a porous material made of, for example, a particle-bonded body of alumina. At that time, the porosity of the porous material may be relatively large, and therefore there is less risk that the characteristics will be changed due to clogging, and it is easy to manufacture.

本実施例の空燃比センサーは拡散室1が偏平な室であり
かつ拡散室1の容積に比べてポンプ電極面積が大きくと
れるので速やかに拡散室内の成分ガス濃度の調節が行え
て応答性がよく、しかもポンプ電流が小さくてすむので
両素子の電極間での対向する方向の成分ガス分圧差を小
さくすることができ、電極の耐久性が保持できる。
In the air-fuel ratio sensor of this embodiment, since the diffusion chamber 1 is a flat chamber and the pump electrode area can be made larger than the volume of the diffusion chamber 1, the concentration of the component gas in the diffusion chamber can be adjusted quickly and the response is good. Moreover, since the pump current is small, it is possible to reduce the difference in the partial pressures of the component gases in the opposing directions between the electrodes of both elements, and the durability of the electrodes can be maintained.

又、通路形成体9、17に応力緩和層7、15としてA
とZrOとの混合焼結体を用いているため
に、使用時における空燃比センサーの反りや、熱膨張率
の差による破損を防ぐことができる。特に拡散室1を中
心にほぼ面対称に構成されているために使用時の反りは
ほぼ完全に打ち消される。
In addition, the stress relief layers 7 and 15 are formed on the passage forming bodies 9 and 17 as A
Since the mixed sintered body of l 2 O 3 and ZrO 2 is used, it is possible to prevent the warp of the air-fuel ratio sensor during use and the damage due to the difference in thermal expansion coefficient. In particular, the warp during use is almost completely canceled out because it is configured to be substantially plane-symmetrical about the diffusion chamber 1.

さらに発熱体11、19を有するために温度補償を容易
に行なうことができる。
Further, since the heating elements 11 and 19 are provided, temperature compensation can be easily performed.

第3図は本実施例の使用における特性を示す図である。
前述の通り、第3図は酸素濃淡電池素子2の出力電圧が
一定となるようにした時のポンプ電流と空燃比との関係
を示している。上記の実施例では酸素ポンプ素子の、ガ
ス拡散室と反対側の電極は大気に接するように通路を形
成したが、これを単に排ガスにさらし排ガス中の酸素ま
たは酸素含有成分から酸素をとりだすようにしてもよい
ことはいうまでもない。
FIG. 3 is a diagram showing characteristics in use of this embodiment.
As described above, FIG. 3 shows the relationship between the pump current and the air-fuel ratio when the output voltage of the oxygen concentration battery element 2 is kept constant. In the above embodiment, the electrode of the oxygen pump element on the side opposite to the gas diffusion chamber was formed with a passage so as to contact the atmosphere, but this was simply exposed to the exhaust gas so that oxygen was extracted from the oxygen or oxygen-containing component in the exhaust gas. It goes without saying that it is okay.

[発明の効果] 本発明は 酸素イオン伝導性固体電解質媒体の表面に一対の電極を
備えしめた酸素ポンプ素子と、同じく酸素イオン伝導性
固体電解質媒体の表面に一対の電極を備えしめるととも
に該一対の電極の内の一方の電極を大気等の基準酸素濃
度ガスに曝すようにした酸素濃淡電池素子と、該酸素ポ
ンプ素子の一方の電極と該酸素濃淡電池素子の他方の電
極とが相対向するように該両素子を並行配設することに
より該両素子間に形成した空間と、該空間によって形成
されるとともに被測定ガスとの間でガス拡散制限手段を
介して連通せしめたガス拡散室とを備え、該酸素濃淡電
池素子の起電力が該拡散室内雰囲気が化学当量点状態で
ある場合の起電力値とほぼ等しい起電力値を常に保持す
るよう該酸素ポンプ素子に流すポンプ電流をフィードバ
ック信号に基づいて加減調節するようにし、その際のポ
ンプ電流値を空燃比センサ出力とする空燃比センサにお
いて、 前記拡散制限手段は、前記拡散室の壁部に該拡散室と被
測定ガス雰囲気とを連通するように設けられた細孔によ
り拡散制限を行う第1の拡散制限部と、該拡散室の空間
の厚み方向寸法を0.2mm以下0.01mm以上とするこ
とにより形成された微小空隙により拡散制限を行う第2
の拡散制限部とからなるので、酸素濃淡電池素子と酸素
ポンプ素子との対向する両電極において電極面に沿う方
向には酸素分圧差を生ぜしめるが該両電極の間で対向方
向には酸素分圧差が過大にはならず、従って酸素ポンプ
素子の耐久性を損なうことなく、そして又、限界電流特
性の悪化、即ち測定精度の劣化も有利に抑えつつ、拡散
室の容積に対する成分ガスの拡散流量(ポンプ電流量)
の割合を高めて応答性が実用レベルにまで顕著に向上さ
れる。
EFFECTS OF THE INVENTION The present invention provides an oxygen pump element having a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte medium, and a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte medium. Of one of the electrodes of the oxygen concentration battery element in which one electrode is exposed to a reference oxygen concentration gas such as the atmosphere, and one electrode of the oxygen pump element and the other electrode of the oxygen concentration battery element face each other. A space formed between the two elements by arranging them in parallel with each other, and a gas diffusion chamber formed by the space and communicating with the gas to be measured through gas diffusion limiting means. The pump current supplied to the oxygen pump element is controlled so that the electromotive force of the oxygen concentration cell element is almost equal to the electromotive force value when the atmosphere in the diffusion chamber is in the chemical equivalence point state. In the air-fuel ratio sensor that adjusts the amount based on the feedback signal and uses the pump current value at that time as the air-fuel ratio sensor output, the diffusion limiting means includes the diffusion chamber and the measurement gas atmosphere in the wall of the diffusion chamber. A first diffusion limiting portion that limits diffusion by pores provided so as to communicate with the micropores formed by setting the dimension of the space of the diffusion chamber in the thickness direction to 0.2 mm or less and 0.01 mm or more. The second that limits diffusion by a gap
Of the oxygen concentration cell element and the oxygen pump element, a difference in oxygen partial pressure is produced in the direction along the electrode surface between the two electrodes facing each other. The pressure difference does not become excessive, and therefore the durability of the oxygen pump element is not impaired, and while the deterioration of the limiting current characteristics, that is, the measurement accuracy is also advantageously suppressed, the diffusion flow rate of the component gas with respect to the volume of the diffusion chamber is suppressed. (Pump current amount)
The responsiveness is remarkably improved to a practical level by increasing the ratio.

そして、本発明によれば、上述した様に実用上十分な限
界電流特性と応答性と耐久性とが共に得られるようにし
た結果、これらをすべて満足させんがためのセンサの大
型化をする必要もなく、まさに実用レベルの小型全領域
空燃比センサを初めて提供することができるようになっ
た。
According to the present invention, as described above, the practically sufficient limiting current characteristics, responsiveness, and durability are obtained together, and as a result, the size of the sensor for satisfying all of them is increased. It became possible for the first time to provide a small-sized full-range air-fuel ratio sensor of a practical level without the need for it.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の部分破断斜視図、第2図はそ
の展開説明図、第3図はその使用時における特性図であ
る。 1…拡散室 2…酸素濃淡電池素子 3…酸素ポンプ素子 10、18…通路 30…拡散制限部
FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention, FIG. 2 is a development explanatory view thereof, and FIG. 3 is a characteristic view during use thereof. DESCRIPTION OF SYMBOLS 1 ... Diffusion chamber 2 ... Oxygen concentration battery element 3 ... Oxygen pump element 10, 18 ... Passage 30 ... Diffusion restriction part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安達 豊 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 塩見 治久 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (56)参考文献 特開 昭60−1336(JP,A) 特開 昭60−14161(JP,A) 特開 昭59−190652(JP,A) 特開 昭59−3252(JP,A) 特開 昭59−43348(JP,A) 特開 昭59−67455(JP,A) 実開 昭59−78968(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Adachi 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Nihon Special Ceramics Co., Ltd. No. 18 in Nihon Special Ceramics Co., Ltd. (56) Reference JP-A-60-1336 (JP, A) JP-A-60-14161 (JP, A) JP-A-59-190652 (JP, A) JP-A 59-3252 (JP, A) JP-A-59-43348 (JP, A) JP-A-59-67455 (JP, A) Actual development Sho-59-78968 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性固体電解質媒体の表面に
一対の電極を備えしめた酸素ポンプ素子と、同じく酸素
イオン伝導性固体電解質媒体の表面に一対の電極を備え
しめるとともに該一対の電極の内の一方の電極を大気等
の基準酸素濃度ガスに曝すようにした酸素濃淡電池素子
と、該酸素ポンプ素子の一方の電極と該酸素濃淡電池素
子の他方の電極とが相対向するように該両素子を並行配
設することにより該両素子間に形成した空間と、該空間
によって形成されるとともに被測定ガスとの間でガス拡
散制限手段を介して連通せしめたガス拡散室とを備え、
該酸素濃淡電池素子の起電力が該拡散室内雰囲気が化学
当量点状態である場合の起電力値とほぼ等しい起電力値
を常に保持するよう該酸素ポンプ素子に流すポンプ電流
をフィードバック信号に基づいて加減調節するように
し、その際のポンプ電流値を空燃比センサ出力とする空
燃比センサにおいて、 前記拡散制限手段は、前記拡散室の壁部に該拡散室と被
測定ガス雰囲気とを連通するように設けられた細孔によ
り拡散制限を行う第1の拡散制限部と、該拡散室の空間
の厚み方向寸法を0.2mm以下0.01mm以上とするこ
とにより形成された微小空隙により拡散制限を行う第2
の拡散制限部とからなることを特徴とする空燃比センサ
ー。
1. An oxygen pump element having a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte medium, and a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte medium as well as the pair of electrodes. An oxygen concentration battery element in which one of the electrodes is exposed to a reference oxygen concentration gas such as the atmosphere, and one electrode of the oxygen pump element and the other electrode of the oxygen concentration battery element are opposed to each other. A space formed between both elements by arranging both elements in parallel, and a gas diffusion chamber formed by the space and communicating with the gas to be measured via gas diffusion limiting means,
Based on a feedback signal, a pump current flowing through the oxygen pump element is always maintained so that the electromotive force of the oxygen concentration cell element is almost equal to the electromotive force value when the atmosphere in the diffusion chamber is in the chemical equivalence point state. In the air-fuel ratio sensor that adjusts and adjusts the pump current value at that time to be the output of the air-fuel ratio sensor, the diffusion limiting means connects the diffusion chamber and the measured gas atmosphere to the wall of the diffusion chamber. The first diffusion limiting portion for limiting diffusion by the pores provided in the above, and the microscopic voids formed by setting the dimension of the space of the diffusion chamber in the thickness direction to 0.2 mm or less and 0.01 mm or more Second to do
And an air-fuel ratio sensor.
【請求項2】前記第1の拡散制限部の細孔が開孔内に多
孔質材を充填して形成されたことを特徴とする特許請求
の範囲第1項記載の空燃比センサー。
2. The air-fuel ratio sensor according to claim 1, wherein the pores of the first diffusion limiting portion are formed by filling the inside of the openings with a porous material.
JP60036032A 1985-02-25 1985-02-25 Air-fuel ratio sensor Expired - Fee Related JPH067118B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60036032A JPH067118B2 (en) 1985-02-25 1985-02-25 Air-fuel ratio sensor
DE19863606044 DE3606044A1 (en) 1985-02-25 1986-02-25 Air/fuel ratio sensor
US07/228,808 US5194135A (en) 1985-02-25 1988-07-29 Air/fuel ratio sensor
US07/298,145 US5242573A (en) 1985-02-25 1989-01-18 Method of making air/fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036032A JPH067118B2 (en) 1985-02-25 1985-02-25 Air-fuel ratio sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63089737A Division JPS63265162A (en) 1988-04-12 1988-04-12 Air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS61221644A JPS61221644A (en) 1986-10-02
JPH067118B2 true JPH067118B2 (en) 1994-01-26

Family

ID=12458371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036032A Expired - Fee Related JPH067118B2 (en) 1985-02-25 1985-02-25 Air-fuel ratio sensor

Country Status (2)

Country Link
JP (1) JPH067118B2 (en)
DE (1) DE3606044A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2183042B (en) * 1985-09-27 1989-09-20 Ngk Spark Plug Co Air/fuel ratio sensor
JPH0713621B2 (en) * 1986-12-12 1995-02-15 日本特殊陶業株式会社 Air-fuel ratio sensor
JP2653831B2 (en) * 1988-06-02 1997-09-17 日本特殊陶業株式会社 Oxygen sensor
DE3825139A1 (en) * 1988-07-23 1990-03-22 Bosch Gmbh Robert ELECTROCHEMICAL PROBE
US5389223A (en) * 1988-07-23 1995-02-14 Robert Bosch Gmbh Electrochemical measuring sensor
JP2744088B2 (en) * 1989-10-13 1998-04-28 日本特殊陶業株式会社 Air-fuel ratio sensor
US20020029980A1 (en) * 2000-08-04 2002-03-14 Ngk Insulators, Ltd. Trace oxygen measuring apparatus and measuring method
JP3832437B2 (en) * 2002-04-03 2006-10-11 株式会社デンソー Gas sensor element
JP5198832B2 (en) 2007-11-06 2013-05-15 日本特殊陶業株式会社 Gas sensor
JP5749781B2 (en) * 2010-03-29 2015-07-15 日本碍子株式会社 Gas sensor
JP2011227061A (en) 2010-03-29 2011-11-10 Ngk Insulators Ltd Gas sensor
JP6323181B2 (en) * 2014-06-03 2018-05-16 株式会社デンソー Gas sensor element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272286A (en) * 1975-12-12 1977-06-16 Toyoda Chuo Kenkyusho Kk Oxygen concentration analyzer
US4158166A (en) * 1976-11-24 1979-06-12 Westinghouse Electric Corp. Combustibles analyzer

Also Published As

Publication number Publication date
DE3606044C2 (en) 1987-12-03
JPS61221644A (en) 1986-10-02
DE3606044A1 (en) 1986-09-11

Similar Documents

Publication Publication Date Title
US4300991A (en) Air-fuel ratio detecting apparatus
US6355152B1 (en) Gas sensor and nitrogen oxide sensor
JP2506551B2 (en) Wide range oxygen sensor
JP3855483B2 (en) Stacked air-fuel ratio sensor element
US4574627A (en) Air-fuel ratio detector and method of measuring air-fuel ratio
JP3626775B2 (en) Sensor for measuring the oxygen content in a gas mixture and method for adjusting the composition of a fuel / air mixture supplied to an internal combustion engine
JPS6365360A (en) Gas sensor and its manufacture
US4570479A (en) Air-fuel ratio detector and method of measuring air-fuel ratio
JPH09509747A (en) Measuring sensor for detecting the oxygen content of gas mixtures
JPH067118B2 (en) Air-fuel ratio sensor
US6068747A (en) Solid electrolyte gas sensor
JPH11326268A (en) Planar limiting current-type sensor
US5194135A (en) Air/fuel ratio sensor
US4938861A (en) Limiting current-type oxygen sensor
JPH0513262B2 (en)
EP0272774B1 (en) Electrochemical gas sensor
JP2004132960A (en) Gas sensor element
US5242573A (en) Method of making air/fuel ratio sensor
US4722778A (en) Gas sensor with gas diffusion chamber between two platy solid electrolyte cells
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JP4101501B2 (en) Compound gas sensor element
JPH0245819B2 (en)
JPS62148849A (en) Air-fuel ratio sensor
KR980010415A (en) Air-fuel ratio sensor
JPS61194344A (en) Air-fuel ratio sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees