JPS6130355A - Adjustment controller in machine tool - Google Patents

Adjustment controller in machine tool

Info

Publication number
JPS6130355A
JPS6130355A JP15018684A JP15018684A JPS6130355A JP S6130355 A JPS6130355 A JP S6130355A JP 15018684 A JP15018684 A JP 15018684A JP 15018684 A JP15018684 A JP 15018684A JP S6130355 A JPS6130355 A JP S6130355A
Authority
JP
Japan
Prior art keywords
tool
workpiece
contact
speed
adaptive control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15018684A
Other languages
Japanese (ja)
Inventor
Kuniyuki Niwa
邦幸 丹羽
Sukeyuki Fujimura
祐之 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP15018684A priority Critical patent/JPS6130355A/en
Publication of JPS6130355A publication Critical patent/JPS6130355A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4166Controlling feed or in-feed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37405Contact detection between workpiece and tool, probe, feeler
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43152Feed in, transfer line, rapid traverse to work, grip speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To prevent a tool from being beforehand by starting adjustment control in correspondence with the output signal supplied from a contact detecting circuit for detecting the contact of a tool with a workpiece and reducing the feeding speed at this time in comparison with the speed before the contact of the tool. CONSTITUTION:When a tool T contacts with a workpiece W, a contact detection signal TDS is outputted from a contact detecting means A, and an adjustment control starting means C operates an adjustment control means B. At the same time, a speed reducing means D reduces the feeding speed of the tool T at the start of adjustment control to a prescribed speed. Therefore, the tool T is not applied with the load over an allowable value when the tool T contacts with the workpiece W, and the optimum feeding control is carried-out, starting the adjustment control immediately after contact. Therefore, the tool is prevented from being damaged because of the application of a large load onto the cutting edge part of the tool.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、工作物加工中に工具に加わる負荷を検出し、
この検出された負荷に応じて工具の相対送り速度を制御
するようにした工作機械における適応制御装置に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention detects the load applied to a tool during machining of a workpiece,
The present invention relates to an adaptive control device for a machine tool that controls the relative feed rate of a tool in accordance with the detected load.

〈従来の技術〉   − 従来においては、工具に加わる負荷を検出し、この検出
した工具負荷によって工具の相対送り速度を段階的に変
更制御するようにしている。
<Prior Art> - Conventionally, the load applied to a tool is detected, and the relative feed speed of the tool is controlled to be changed in stages based on the detected tool load.

また、工具が工作物に接していない空切削の時間を短縮
するため、第5図(a)、 (b)に示されるように、
工具に加わる負荷が設定値1.sを越えるまでは、オー
バライド率ORRを例えば200%まで増大させて工具
を指令速度よりも速い速度で移動させ、人工具に作用す
る負荷が設定値Lsを越えた時点から適応制御を開始し
て、工具に加わる負荷が最適となるようにオーバライド
率ORRを小さくして送り速度を低減し、また、負荷が
軽くなった場合にはオーバライド率ORRを高くして送
り速度を高くするようにしていた。
In addition, in order to shorten the idle cutting time when the tool is not in contact with the workpiece, as shown in Figures 5(a) and (b),
The load applied to the tool is the set value 1. s is exceeded, the override rate ORR is increased to, for example, 200%, the tool is moved at a speed faster than the commanded speed, and the adaptive control is started from the time when the load acting on the manual tool exceeds the set value Ls. In order to optimize the load applied to the tool, the override rate ORR was reduced to reduce the feed rate, and when the load became lighter, the override rate ORR was increased to increase the feed rate. .

〈発明が解決しようとする問題点〉 しかしながら、一般の適応制御においては、第5図(b
lに示すように、オーバライド率0’RRを負荷に応じ
て一定の割合毎に段階的に変更するようになっているた
め、工具が工作物に接触しても、送り速度がすぐに低下
せず、早い送り速度の状態で加工が開始されることにな
る。このため、工具の刃先に大きな負荷が作用して、工
具を損傷する恐れがあった。
<Problems to be solved by the invention> However, in general adaptive control, Fig. 5 (b)
As shown in Figure 1, the override rate 0'RR is changed stepwise at a fixed rate according to the load, so even if the tool contacts the workpiece, the feed rate will not drop immediately. First, machining is started at a high feed rate. Therefore, a large load is applied to the cutting edge of the tool, and there is a risk of damaging the tool.

〈問題点を解決するための手段〉 第1図は本発明を明示するための全体構成図である。本
発明は、工具Tが工作物Wに接触したことを検出する接
触検出手段Aと、この接触検出手段Aにより前記工具T
が工作物Wに接触したことが検出されたことに応答して
適応制御手段Bの動作を開始する適応制御開始手段Cと
、適応制御開始時の送り速度を接触検出前の速度に対し
て所定値まで低減させる速度低減手段DAを設けたこと
を特徴とするものである。
<Means for Solving the Problems> FIG. 1 is an overall configuration diagram for clearly demonstrating the present invention. The present invention provides a contact detection means A for detecting that the tool T has contacted the workpiece W, and a contact detection means A that detects the contact of the tool T with the workpiece W.
an adaptive control start means C that starts the operation of the adaptive control means B in response to detection of contact of the workpiece W with the workpiece W; The present invention is characterized in that it is provided with speed reduction means DA that reduces the speed to a certain value.

〈作用〉 工具Tが工作物Wに接触すると、この瞬間に接触検出手
段Aから接触検出信号TDSが出力され、これに応答し
て適応制御開始手段Cは適応制御手段Bを作動させる。
<Operation> When the tool T contacts the workpiece W, the contact detection means A outputs a contact detection signal TDS at this moment, and the adaptive control start means C activates the adaptive control means B in response to this.

また、これと同時に速度低減手段りは、適応制御開始時
における工具Tの送り速度を所定の速度まで低下させる
At the same time, the speed reduction means reduces the feed speed of the tool T at the start of the adaptive control to a predetermined speed.

これによ−リ、工具Tが工作物Wに接触した時に工具T
に許容以上の負荷を掛けることな(、かつ、接触直後か
ら適応制御を開始して最適な送り制御を行うことができ
る。
As a result, when the tool T contacts the workpiece W, the tool T
(Also, adaptive control can be started immediately after contact to perform optimal feed control.)

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図において、lOは機械本体1のベッドで、このベ
ッド10上には、工作物Wを載置するテーブル1)が紙
面と垂直な方向くX軸方向)に移動可能に案内され、ま
た主軸頭12を上下方向(Y軸方向)に移動可能に案内
するコラム13が左右方向(Y軸方向)に移動可能に案
内されている。
In FIG. 2, lO is a bed of the machine body 1, on which a table 1) on which a workpiece W is placed is guided so as to be movable in a direction perpendicular to the plane of the paper (X-axis direction). A column 13 that movably guides the spindle head 12 in the vertical direction (Y-axis direction) is movably guided in the left-right direction (Y-axis direction).

そして、テーブル1)はベッド10に固着されたサーボ
モータ14によってX軸方向に移動され、主軸頭12は
、ベッド10の後端部に取付けられたサーボモータ15
と、コラム13の上部に取付けられたサーボモータ16
とによってY軸方向およびY軸方向に移動されるように
なっている。
The table 1) is moved in the X-axis direction by a servo motor 14 fixed to the bed 10, and the spindle head 12 is moved by a servo motor 15 attached to the rear end of the bed 10.
and a servo motor 16 attached to the top of the column 13.
It is adapted to be moved in the Y-axis direction and the Y-axis direction by.

これらのサーボモータ14〜16はドライブユニット5
を介して数値制御装置2に接続され、数値制御装置2か
ら出力される分配パルスによって回転駆動されるように
なっている。
These servo motors 14 to 16 are connected to the drive unit 5.
It is connected to the numerical control device 2 via the numerical control device 2, and is rotationally driven by the distribution pulse outputted from the numerical control device 2.

17は主軸頭12に軸架され主軸モータ18によ−って
回転駆動されるスピンドルで、工具Tが挿着されている
。主軸頭12の先端外周部には、抵抗Rを介して交流電
源19に接続され゛トロイダル状に巻装された接触検出
用のコイル20が配設されており、工具Tの先端外周面
が工作物Wに接触すると、第1図に破線で示す誘導電流
路を介して誘導電流が流れて、コイル20に流れる励磁
電流が増大し、抵抗Rの両端に発生する電圧が増加する
。接触検出回路13はこの抵抗Rの両端に発生する電圧
信号の増加によって工作物Wと工具Tが接触したことを
検出するもので、接触が検出されると接触検出信号TD
Sを送出する。また、6は主軸モータ18の消費電力に
よって工具Tに加わる負荷を検出する負荷検出回路であ
る。
A spindle 17 is mounted on the spindle head 12 and rotated by a spindle motor 18, into which a tool T is inserted. A contact detection coil 20 connected to an AC power source 19 via a resistor R and wound in a toroidal shape is disposed on the outer periphery of the tip of the spindle head 12, and the outer periphery of the tip of the tool T is used for machining. When the object W comes into contact with the object W, an induced current flows through the induced current path shown by the broken line in FIG. 1, the excitation current flowing through the coil 20 increases, and the voltage generated across the resistor R increases. The contact detection circuit 13 detects contact between the workpiece W and the tool T by an increase in the voltage signal generated across the resistor R, and when contact is detected, a contact detection signal TD is generated.
Sends S. Further, 6 is a load detection circuit that detects the load applied to the tool T due to the power consumption of the spindle motor 18.

2は公知の数値制御装置で、紙テープ21にプログラム
されているデータの内、Mコード等のデータを出力する
データ出力端子と、外部からオーバライドの割合を指定
するデータを受けいれるためのデータ入力端子とが設け
られており、指令速度にオーバライド率を掛けた速度で
工具Tを移動させるためのパルス分配を行う。
Reference numeral 2 denotes a known numerical control device, which has a data output terminal for outputting data such as the M code among the data programmed on the paper tape 21, and a data input terminal for receiving external data specifying the override ratio. is provided, and distributes pulses to move the tool T at a speed that is the command speed multiplied by the override rate.

適応制御装置4はマイクロコンピュータ等の演算処理装
置によって構成され、回路のRTC信号発生回路からR
TC信号が与えられる度に、第3図(a)に示すプログ
ラムを実行するようになっている。また、接触検出回路
3から接触検出信号TDSが送出されると、これが割込
信号として適応制御装置4に与えられ、適応制御装置4
はこれに応答して第3図(blに示す処理を実行する。
The adaptive control device 4 is constituted by an arithmetic processing device such as a microcomputer, and is connected to the RTC signal generation circuit of the circuit.
Each time the TC signal is applied, the program shown in FIG. 3(a) is executed. Further, when the contact detection signal TDS is sent out from the contact detection circuit 3, this is given to the adaptive control device 4 as an interrupt signal, and the adaptive control device 4 receives the contact detection signal TDS as an interrupt signal.
In response to this, executes the process shown in FIG. 3 (bl).

また、数値制御装置2から適応制御の開始を指令するM
55のデータが与えられた場合には回路のルーチンにて
これを判別して適応制御モードフラッグACMをセット
し、適応制御の終了を指令するM56のコードが与えら
れた場合には、適応制御モードフラッグACMをリセッ
トするようになっている。
Also, M which commands the start of adaptive control from the numerical control device 2
55 is given, the circuit routine determines this and sets the adaptive control mode flag ACM, and when given the code M56, which commands the end of adaptive control, the adaptive control mode is set. The flag ACM is reset.

数値制御装置2から適応制御の開始を指令するM2Sの
コードが与えられてフラッグACMがセントされ、かつ
工具Tが工作物Wに接しない状態では、第3図+alに
示すプログラムが実行されると、ステップ(30)、 
 (1))、  (32)、  (33)を介してステ
ップ(35)へ移行し、オーバライド率ORRを200
%にセットし、゛このオーバライド率を数値制御装置2
に対して出力する。これにより工具Tの送り速度は、プ
ログラムされた標準送り速度Foの2倍になり、空切削
の時間が短縮される。
When the M2S code commanding the start of adaptive control is given from the numerical control device 2 and the flag ACM is set, and the tool T is not in contact with the workpiece W, the program shown in Fig. 3+al is executed. , step (30),
(1)), (32), and (33) to step (35), and set the override rate ORR to 200.
%, and set this override rate to numerical control device 2.
Output for. As a result, the feed rate of the tool T becomes twice the programmed standard feed rate Fo, and the idle cutting time is shortened.

工具Tが早送りで移動し、時刻toにおいて工具Tの先
端が工作物Wに接すると、これが接触検出回路3によっ
て直ぐに検出され、第4図(alに示すように時刻to
以後適応制御装置4に接触検出信号TDSが送出される
。これにより、適応制御装置4は第3図(blに示す処
理を実行し、タッチフラッグTFをセントするとともに
、時計数カウンタTCCを零にリセットする。
When the tool T moves in rapid traverse and the tip of the tool T comes into contact with the workpiece W at time to, this is immediately detected by the contact detection circuit 3, and as shown in FIG.
Thereafter, a contact detection signal TDS is sent to the adaptive control device 4. As a result, the adaptive control device 4 executes the process shown in FIG. 3 (bl), sets the touch flag TF, and resets the clock counter TCC to zero.

このようにタッチフラッグTFがリセットされると、こ
の後に第3図(a)の処理が実行された段階では、ステ
ップ(30)、(3’2)および(33)を介してステ
ップ(36)へと移行し、時計数カウンタTCCが設定
値Tsを越えているか否がを判別する。前記したように
工具Tが工作物Wに接触した時刻toでは第3図中)の
処理によって時計数カウンタTCCが零にセットされて
いるため、ステップ(36)から(37)へ移行し、オ
ーバライド値100を内部レジスタIRにセントすると
ともに、数値制御装置2に出力する。これにより工具T
の相対送り速度が指令速度Foに向けて急速に低減され
、工′具Tが工作物Wに接触した直後において工具刃先
の一部に負荷が集中することを防止できる。
When the touch flag TF is reset in this way, when the process of FIG. Then, it is determined whether the clock number counter TCC exceeds the set value Ts. As described above, at the time to when the tool T contacts the workpiece W, the clock counter TCC is set to zero by the process shown in FIG. The value 100 is sent to the internal register IR and output to the numerical control device 2. This allows the tool T
The relative feed speed is rapidly reduced toward the command speed Fo, and it is possible to prevent the load from concentrating on a part of the tool cutting edge immediately after the tool T contacts the workpiece W.

そして、設定値Tsに応じた回数だけ第3図(alに示
す処理が繰返され、時計数カウンタTCCの計数値が設
定値Tsになると、これがステップ(36)にて判別さ
れてステップ(38)〜(45)の適応制御処理を行う
。この適応制御処理では、負荷検出回路6によって検出
した負荷が上限設定値Luを越えた場合には、内部レジ
スタIR内のオーバライド値を10%減じるとともに(
41)、これを数値制御装置2へ出力しく45)、検出
した負荷が下限設定値LLを下回わった場合には、内部
レジスタIR内のオーバライド値を10%増加させ(4
3)、これを数値制御装置2へ出力する(45)。
Then, the process shown in FIG. 3 (al) is repeated the number of times corresponding to the set value Ts, and when the count value of the clock counter TCC reaches the set value Ts, this is determined in step (36) and the process shown in step (38) is repeated. The adaptive control processing of ~(45) is performed. In this adaptive control processing, when the load detected by the load detection circuit 6 exceeds the upper limit setting value Lu, the override value in the internal register IR is reduced by 10%, and (
41), output this to the numerical control device 2.45), and when the detected load falls below the lower limit set value LL, increase the override value in the internal register IR by 10% (45).
3), output this to the numerical control device 2 (45).

したがって、工具Tが工作物Wに接触した後のオーバラ
イド率ORRは第4図(b)のように変化し、接触後一
定時間Tsは、指令速度Foに等しい速度で送りが行わ
れ、一定時間が経過すると、適応制御が開始される。そ
して、工具T4こ加わる負荷が上限値Luを越えまるで
は、工具Tの送り速度fが段階的に増加されるとともに
、負荷が上限値Luを越えると、送り速度fが段階的に
減少され、また、負荷が下限値LLを下回った場合には
、送り速度fが再び段階的に増大される。
Therefore, the override rate ORR after the tool T contacts the workpiece W changes as shown in FIG. Adaptive control is started when the time period has elapsed. If the load applied to the tool T4 exceeds the upper limit Lu, the feed rate f of the tool T is increased in stages, and when the load exceeds the upper limit Lu, the feed rate f is decreased in stages, Further, when the load falls below the lower limit value LL, the feed rate f is increased again in stages.

以下同様の動作の繰返しにより、工作物加工中において
最適な加工が行われるように工具Tの送り速度が制御さ
れる。そして、工作物Wの加工が完了し、工具Tが工作
物Wから離れると、接触検出信号TDSが送出されなく
なり、適応制御装置4はステップ(30)にてこれを判
別して、タッチフラッグTFをリセットする。これによ
り、工具Tの送り速度fが再び指令速度の200%とな
り、工具Tの移動時間が短縮される。
Thereafter, by repeating similar operations, the feed rate of the tool T is controlled so that optimal machining is performed during machining of the workpiece. Then, when the machining of the workpiece W is completed and the tool T leaves the workpiece W, the contact detection signal TDS is no longer sent out, and the adaptive control device 4 determines this in step (30) and sets the touch flag TF. Reset. As a result, the feed speed f of the tool T becomes 200% of the command speed again, and the moving time of the tool T is shortened.

〈発明の効果〉 以上述べたように本発明においては、工具が工作物に接
触したことを検出する接触検出回路を設け、この接触検
出回路から接触検出信号が出力されたことに応答して適
応制御を開始するとともに、適応制御開始時の送り速度
を工具が工作物に接触する前の速度に対して低減させる
ようにしたので、工具が工作物に接触した瞬間に工具の
送り速度が  ゛低減され、工具の刃先部分に大きな負
荷が加わって工具が損傷するとこを未然に防止できる利
点がある。
<Effects of the Invention> As described above, in the present invention, a contact detection circuit is provided to detect that the tool has come into contact with a workpiece, and an adaptation is made in response to a contact detection signal output from the contact detection circuit. At the same time as control starts, the feed rate at the start of adaptive control is reduced compared to the speed before the tool contacts the workpiece, so the tool feed rate decreases the moment the tool contacts the workpiece. This has the advantage of preventing damage to the tool due to a large load being applied to the cutting edge of the tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を明示するための全体構成図、第2図〜
第4図は本発明の実施例を示すもので、第2図は、適応
制御装置を備えた工作機械の構成を示す図、第3図(a
l、 (blは第2図における適応制御装置4の動作を
示すフローチャート、第4図(a)。 (blは接触検出信号TDSの送出時期とオーバライド
率の変化を示すタイムチャート、第5図(al、 (b
lは従来の制御方式を示すタイムチャートである。 1・・・機械本体、2・・・数値制御装置、3・・・接
触検出回路、4・・・適応制御装置、6・・・負荷検出
回路、20・・・コイル、T・・・工具、W・・・工作
物。
Figure 1 is an overall configuration diagram for clearly demonstrating the present invention, Figures 2-
FIG. 4 shows an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a machine tool equipped with an adaptive control device, and FIG.
(bl is a flowchart showing the operation of the adaptive control device 4 in FIG. 2, FIG. 4(a). (bl is a time chart showing the transmission timing of the contact detection signal TDS and changes in the override rate, FIG. 5( al, (b
1 is a time chart showing a conventional control method. DESCRIPTION OF SYMBOLS 1... Machine body, 2... Numerical control device, 3... Contact detection circuit, 4... Adaptive control device, 6... Load detection circuit, 20... Coil, T... Tool , W...workpiece.

Claims (1)

【特許請求の範囲】[Claims] (1)工作物加工中に工具に加わる負荷を検出し、この
検出された負荷に応じて工具の相対送り速度を制御する
ようにした工作機械における適応制御装置において、工
具が工作物に接触したことを検出する接触検出手段と、
この接触検出手段により前記工具が工作物に接触したこ
とが検出されたことに応答して適応制御手段の動作を開
始する適応制御開始手段と、適応制御開始時の送り速度
を接触検出前の速度に対して所定値まで低減させる速度
低減手段とを設けたことを特徴とする工作機械における
適応制御装置。
(1) In an adaptive control device for a machine tool that detects the load applied to the tool during machining of the workpiece and controls the relative feed rate of the tool according to the detected load, the tool contacts the workpiece. contact detection means for detecting that
adaptive control start means for starting the operation of the adaptive control means in response to detection of contact of the tool with the workpiece by the contact detection means; An adaptive control device for a machine tool, characterized in that it is provided with a speed reduction means for reducing the speed to a predetermined value.
JP15018684A 1984-07-18 1984-07-18 Adjustment controller in machine tool Pending JPS6130355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15018684A JPS6130355A (en) 1984-07-18 1984-07-18 Adjustment controller in machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15018684A JPS6130355A (en) 1984-07-18 1984-07-18 Adjustment controller in machine tool

Publications (1)

Publication Number Publication Date
JPS6130355A true JPS6130355A (en) 1986-02-12

Family

ID=15491389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15018684A Pending JPS6130355A (en) 1984-07-18 1984-07-18 Adjustment controller in machine tool

Country Status (1)

Country Link
JP (1) JPS6130355A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353649U (en) * 1986-09-26 1988-04-11
JPH03161244A (en) * 1989-11-20 1991-07-11 Mitsubishi Motors Corp Nc cutting device
US5941151A (en) * 1995-10-04 1999-08-24 Acuson, Corporation Method and apparatus for determining a workpiece's surface position
US6824336B2 (en) 2000-12-28 2004-11-30 Mazda Motor Corporation Method for controlling cutting machine
JP2008146189A (en) * 2006-12-07 2008-06-26 Renesas Technology Corp Power source system
JP2018051665A (en) * 2016-09-27 2018-04-05 株式会社塩 Numerical control grinding device, and control device, control method, and control program respectively therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015183A (en) * 1973-06-13 1975-02-18
JPS5722702A (en) * 1980-05-27 1982-02-05 Colgate Palmolive Co Golf shoes and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015183A (en) * 1973-06-13 1975-02-18
JPS5722702A (en) * 1980-05-27 1982-02-05 Colgate Palmolive Co Golf shoes and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353649U (en) * 1986-09-26 1988-04-11
JPH03161244A (en) * 1989-11-20 1991-07-11 Mitsubishi Motors Corp Nc cutting device
US5941151A (en) * 1995-10-04 1999-08-24 Acuson, Corporation Method and apparatus for determining a workpiece's surface position
US6824336B2 (en) 2000-12-28 2004-11-30 Mazda Motor Corporation Method for controlling cutting machine
JP2008146189A (en) * 2006-12-07 2008-06-26 Renesas Technology Corp Power source system
JP2018051665A (en) * 2016-09-27 2018-04-05 株式会社塩 Numerical control grinding device, and control device, control method, and control program respectively therefor

Similar Documents

Publication Publication Date Title
US4246577A (en) Tool breakage detecting apparatus
JPS6321922B2 (en)
US4707780A (en) Method and apparatus for reducing track errors in computer controlled machine tools or industrial robots
WO1994013423A1 (en) Arc welding control method using welding robot
EP0633092B1 (en) Method of resuming laser beam machining
JPS6130355A (en) Adjustment controller in machine tool
JP2682310B2 (en) Wire electric discharge machining method and apparatus
KR920007640B1 (en) Wire-cut discharge machining device
JPH08155744A (en) Wire electric discharge machining method
US4370537A (en) Electric discharge machine
JPS63288647A (en) Tool breakage detecting method
JPS5940963Y2 (en) Step feed machine tool
JPS63169267A (en) Wheel dressing device for grinding machine
JP2680963B2 (en) Fast-forward control method
JPH01218780A (en) Method for controlling start of work in laser beam machine
JPS63150137A (en) Adaptive controller
JP2595573B2 (en) Wire electric discharge machining method
JPS61152351A (en) Machine tool with function of returning to original position
JPH01107968A (en) Crater treatment in arc welding
JPS5847567A (en) Electric power source for welding
JPS6294248A (en) Numerical control device
JPH04315552A (en) Machine tool
SU1493446A1 (en) Device for adaptive controlling of grinding of magnetic head working face
JP2741860B2 (en) Control device for wire electric discharge machine
KR100206135B1 (en) Works cutting control method